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Abstract

Nowadays, front-running attacks have been prevalent in many blockchains such as Ethereum,
where a miner can inspect and order the transactions in a block with one’s preference to arbitrage.
The profit of this attack, so-called MEV (Miner Extractable Value), has grown to a billion market.

Different approaches have been proposed to defend against front-running attacks. One
promising approach is adding another consensus layer on the content of a block, which de-
centralizes the privilege of ordering transactions. However, this approach requires remarkable
changes to the existing blockchains’ consensus layer. Another ideal solution employs a two-phase
commit-and-reveal scheme, where miners have to order transactions in a blind manner. This
solution introduces remarkable latency as it requires multiple rounds of interactions between
the user and the blockchain.

Recent research shows the possibility of one-round interaction solutions. F3B (Flash Freezing
Flash Boys) is one of them, which is proposed as a low-latency, consensus-agnostic, commit-
and-reveal scheme, where users only need to interact with the blockchain once thanks to the
SMC (Secret Management Committee). In this project, we design and implement F3B-ETH,
a front-running protected version of Ethereum client. In F3B-ETH, users can send encrypted
transactions, which would be ordered in one block and decrypted for execution in a delayed
block. At the ordering time, the transactions are encrypted, so the miners cannot know the
content. At the execution time, the ordering of the transactions cannot be changed. Thus miners
are unable to front-run.

We unveil the drawbacks of several similar commit-and-reveal solutions. We show F3B-ETH
is a practical front-running protection design that achieves negligible latency compared to the
current Ethereum and minimal extra cost.
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Chapter 1

Introduction

Originating in 2018, DeFi (Decentralized Finance) has experienced explosive growth. Driven
by blockchain and inspired by smart contracts, DeFi’s open-source and non-custody property
win itself wide adoptions. Nowadays, millions of transactions are happening on DeFi ecosystem
every day. These transactions are signed and broadcasted by the users, ordered and executed by
the miners, and finally included in the blockchain.

Transparent and fair as DeFi is, huge profits are extracted under the seemingly peaceful
space. As miners have the priority to inspect and order the transactions in a way they want, they
can front-run a transaction with a well-designed order to make a profit. So-called MEV (Miner
Extractable Value) has been recognized as a controversial existence in DeFi. The cumulative
extracted profit has reached 600 million dollars since 2020.

Several solutions have been studied to mitigate MEV. One promising approach is Content by
Consensus: transactions and their order in a block are randomly shuffled by consensus. However,
one more consensus layer would significantly worsen the efficiency of blockchains. Another
direction is to blindly order based on a commit-and-reveal scheme, though requires over two
rounds of user interactions.

Existing approaches are either non-trivial to implement or unfriendly to users. Fortunately,
F3B (Flash Freezing Flash Boy) serves as a low-latency commit-and-reveal scheme that requires
only one round of interaction. Depending on a secret management committee, the users are free
to go after the commit, and the committee will be responsible for the reveal.

Theoretically, this solution is agnostic to the consensus layer. However, there is no integra-
tion of F3B on mainstream blockchains. To bring it to Ethereum, we implement F3B-ETH, a
front-running resistant Ethereum client. We add a new encrypted transaction type, modify the
transaction execution logic, and re-distribute the priority gas fee. We conclude that F3B is flexible
to integrate with Ethereum with minor code modifications. The simulation test results show that
F3B only adds a negligible latency and minimal cost.
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Chapter 2

Background

In this section, We briefly introduce blockchains, smart contracts, and DeFi (Decentralized
Finance), especially on Ethereum [21]. Then we present the front-running attacks, as well as
some existing mitigations to the attacks.

2.1 Blockchains

Generally speaking, Blockchain is an immutable distributed ledger maintained by a group of
participants (usually called nodes, validators, or miners) to record some data. Most of these
blockchains are used to store and execute transactions. The earliest implementation dates
back to Bitcoin [13], a blockchain that records the transactions of Bitcoins. Nowadays there are
blockchains with various functionalities, such as Ethereum [21], Filecoin [11], and Ripple [17].
Despite the different protocols these blockchains have, they all target defending Sybil attacks [3]
with different consensus algorithms such as PoW (Proof of Work) and PoS (Proof of Stake). Forging
identities is unrealistic as PoW requires high computational power, and Ethereum PoS requires
36 ETH (around 40k USD at the price of writing) for each identity.

The state (data) of the blockchain will be updated by the nodes following the protocol. All the
nodes shall have the same view towards the state of the blockchain, otherwise, we call it a fork.

Currently, Ethereum is the biggest blockchain that is permissionless, atomic, and supports
smart contracts. Ether is the native cryptocurrency of Ethereum. Ethereum has shifted from
PoW to PoS since September 2022. In this project, we focus on Ethereum as it is one of the most
well-studied and mature ecosystems.
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2.2 Smart Contracts

Smart contracts [15] are data stored in blockchains that represent executable programs. These
programs model the contracts in reality. Smart contracts can be invoked by users or other
smart contracts to modify the blockchain storage. There are some mechanisms to guarantee
a deterministic execution of the invocation across all nodes, such as EVM( Ethereum Virtual
Machine).

2.3 Transactions

In blockchains, a transaction is associated with several accounts, which may be an EOA (exter-
nally owned account) or a smart contract. Usually, some financial assets will be involved in a
transaction and the blockchain storage will be modified. A typical example could be transferring
Bitcoin or Ether between two accounts, the balance of these two accounts would be updated
accordingly on chain.

The lifetime of a transaction starts when a user creates it and broadcasts it to miners of a
blockchain. At this stage, we call that the transaction is pending and lying in the public mem-
pool. Its lifetime ends when a miner picks it up and inserts it into a new block, representing
the change of global state. As there is limited space for transactions in each block, not all the
pending transactions can be put in the next block. It is obvious that the lifetime of a transaction
largely depends on the miners. Therefore, users need to pay miners gas fees (for executing the
transaction) and priority fees (for ordering the transaction as soon as possible). Though the
execution of a transaction can be successful or reverted, the user always pays fees for the steps
that the miner runs for this transaction.

A transaction is considered finalized when the block it resides in reaches finality. Finality
means the state that contains the transaction becomes immutable. In blockchains with prob-
abilistic finality, with some blocks of confirmation (i.e. several consecutive blocks), there is a
negligible probability that the transaction can be reverted.

2.4 Decentralized Finance

DeFi represents the mainstream application of smart contracts in the past five years. It provides
a self-custody financial instrument without relying on any centralized exchanges, banks and etc.
AMM (Automated Market Maker) and lending protocol are two typical applications. AMM is an
exchange protocol where users can exchange one token for another token. The exchange rate is
automatically calculated based on a constant function and the current liquidity in the pool. The
lending protocol is similar to what it is in reality, where users can deposit one token as collateral
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and borrow another token. In both applications, the users’ funds are locked into the protocol
and under the users’ control. There are no intermediaries that control the funds, and everything
follows the rules written in the smart contracts.

2.5 Front-running and Mitigations

Front-running derives from the fact that the contents of transactions are in plaintext, and the
order of transactions is centralized on miners. When generating a new block, a miner has the
privilege to inspect transactions contents in the public mempool, front-run a transaction, and
order the transactions with its own preference. For example, if one makes a big swap (transaction
TX ) from asset A to asset B on an AMM, the price of asset A would fall after this transaction.
Observing this, the miner can arbitrage by selling asset A before TX, and buying back asset A
after TX.

Front-running is not necessarily regarded as an "attack" from the perspective of Flashbots [5].
Flashbots aim at mitigating the side effects of MEV by a permissionless and transparent architec-
ture for everyone to extract the value. In flashbots auctions, users bid through a private channel
to the validators for a preferred transaction bundle. The MEV opportunity goes to the user who
wins the first-price sealed-bid auction. A recent study from Ben et al. [20] demonstrates the
success of Flashbots that over 80% MEV extraction is achieved in this way and miners’ profits
doubled since the launch of Flashbots.

Despite mitigating side effects of front-running, different approaches have been proposed
to eliminate the attack itself. Schwartz et al.[16] propose a novel direction that decentralizes
the control of the block content by one more consensus layer, where the transactions in the
mempool are randomly shuffled. Whereas, this approach requires remarkable changes in the
base layer protocol, which is expensive to implement. Another direction is to hide the transaction
contents from others. Besu hyperledger [7] solves front-running by private transactions which
will only be seen by the parties involved. Different privacy groups exist in Besu where smart
contracts can be created and executed. The state and transactions within this group are isolated
from the outside and only visible inside. In this case, front-running attacks would not work as
long as the attacker is not among the members involved.

Commit-and-reveal scheme based solutions [9, 12, 14] are also well-studied, where the min-
ers blindly order the user-submitted encrypted transactions. Later, users reveal the plaintext
transactions to miners for execution. Most commit-and-reveal designs involve more than two
rounds of interactions between users and the underlying blockchain, which is inefficient and
user-unfriendly. Submarine [19] is implemented in the application layer and agnostic to the un-
derlying blockchain. However, the user’s transaction for revealing may be temporarily excluded
by the miner to deter the execution.

Some are implemented in the execution layer like Fairblock [12], Shutter Network [14], and
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F3B [22]. Only one round of user interaction is required as all of these solutinos have an SMC
(Secret Management Committee) that is responsible for revealing. A block key is used to encrypt
all the transactions that target a certain block in Fairblock and Shutter Network. This greatly
increases the throughput, however, introduces front-running again regarding block gas limit. As-
suming 1000 encrypted transactions are targeted at block 1, where 200 are rejected for depleting
the block gas limit. These excluded encrypted transactions’ content would be necessarily leaked
upon the decryption of those included ones because they are encrypted by the same block key.

F3B [22] sheds light on the possibility of a low-overhead commit-and-reveal scheme based
solution in the execution layer. The SMC runs DKG (Distributed Key Generation) of a threshold
encryption scheme periodically to generate a distributed secret key. Users will get the per-
transaction-based key derived from the committee’s distributed secret key to encrypt their
transactions. Later, the miners will interact with the committee to decrypt and execute transac-
tions in the previous block. As the key is per-transaction-based, transactions not included in the
target block will not be decrypted and leaked. F3B’s effectiveness has been shown by a prototype
on Dela architecture. However, its compatibility and efficiency on a mature industrial blockchain
remain unclear. Theoretically, F3B is agnostic to the consensus layer and can be applied to most
blockchains.

9



Chapter 3

Design

3.1 F3B on Ethereum

The detailed F3B-ETH protocol is shown below. In order to distinguish two miners/validators
who order and execute the transactions, we name them as 1)the sequencer who orders an
encrypted transaction in block n and receives the gas tips. 2) the executor who executes the
encrypted transaction in block n+ d where d is the block delay for the ordering block to reach
finality. A system overview is provided in Fig. 3.1.

F3B Setup Phase: For each epoch, F3B committee follows TDH2 [18] cryptosystem with NIZK
(Non-Interactive Zero Knowledge) proof to run a DKG, generating a public key pksmc with shares
of secret key ski. We assume the user can retrieve this public key in each epoch from F3B.

Life Time of an Encrypted Transaction: The interactions between users, Ethereum nodes, and
F3B committee are shown below.

1. User A generates a random symmetric key k, and encrypts the transaction data with k:
ctx = Enck[tx]. Then A encrypts k with pksmc: ck = Encpksmc [k]. A sends the encrypted
transaction as (ctx, ck) to the Ethereum nodes.

2. The sequencer orders this encrypted transaction by committing it into a block.

3. After d blocks of delay, the executor retrieves the encrypted transactions from the previous
block and interacts with F3B committee for decrypted shares with NIZK proof.

4. The executor verifies the correctness of decryption and executes the transactions.

5. Other Ethereum miners validate the block the executor proposed by verifying decryption
and executing the decrypted transactions.
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Figure 3.1: Overview of F3B-ETH. For simplicity we assume 1 block delay to reach finality. Both
plaintext and encrypted transactions are enabled. (1) User sends an encrypted transaction. (2)
Sequencer commits the encrypted transaction into block n. (3) Executor retrieves verifiable
decryption from SMC. (4) Executor executes the decrypted transaction in block n+ 2.

3.2 F3B SMC Misbehaviors

The most obvious malicious scenario is that the SMC colludes to decrypt and front-run encrypted
transactions. Another kind of misbehavior is blocking the threshold decryption by going offline.
A malicious member may also provide a wrong decryption share to the executor. However,
this member would be identified because of the NIZK proof. We suggest a mature staking and
slashing protocol as Ethereum PoS to limit the possibility and profits of these attacks.

3.3 Executor Misbehaviors

A benign executor would follow the rules to execute a correctly decrypted transaction. However,
a malicious executor may also hide the correct decrypted data and claim garbage data as a
decryption result. In this case, the execution of this transaction would revert, and the executor
can inspect the correct decrypted data and front-run it in this or a later block.

We implement F3B-ETH under the assumption that the SMC is always online so that all
miners can verify the decrypted transaction by querying the secret management committee for
the decrypted shares and proof. Whereas in a more practical situation, SMC would rotate and
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members may go offline. The data availability of shares and proof must be ensured for block
validation and fraud-proof. We come up with two approaches for storing shares and proof.

1. Data availability by Ethereum The user attaches a hash of the symmetric key to the
encrypted transaction. And the executor stores the decrypted symmetric key in the block
header. In this case, a validator can check if the hash of the decrypted symmetric key
matches the user-submitted hash. If so, the validator decrypts the data and verifies the
state. Otherwise, the validator can fall back to interact with F3B SMC, obtain the correct
decryption shares with proof and slash the executor who proposes the wrong key.

2. Data availability by external infrastructure The executor stores the verifiable shares with
NIZK proof in third-party decentralized storage like Filecoin, which acts as an Oracle for
decrypted shares and proof.

3.4 User Misbehaviors

Attacks can also be launched by a user. A user can use the wrong key to encrypt the transaction or
simply send garbage transaction data. In both cases, the transaction can be ordered and would
revert immediately upon execution in the delayed block. At a first glance, this behavior seems
harmless, because sending a garbage transaction is allowed in Ethereum. Ethereum prevents
this DoS (Denial of Service) attack by charging fees according to the length of transaction data as
well as the finished execution steps.

After a deeper investigation into Ethereum, the viciousness of this delayed spamming is
revealed. Before understanding the attack, let’s look into Ethereum’s execution layer first. A miner
would follow the steps in Alg. 1 to fill a block. Apparently, for plaintext transactions, the miner
will try to fill as many transactions as possible to maximize its tips. As the miner can execute
the transaction at the same time, one would know how much block space each transaction will
consume. If a plaintext transaction reverts immediately, the block space it consumes could be as
small as zero.

However, things are totally different when it comes to F3B encrypted transactions. At the
ordering phase, the sequencer is unable to execute the encrypted transaction, and thus reserves
the block space equal to the transaction gas limit. Here comes the very problem that one can
spam a whole block by sending garbage encrypted transactions. The sequencer being attacked
would lose most of the tips, as it spends all its block limit on these non-executable transactions.

To mitigate this spamming attack, we design that in F3B-ETH, the unused gas would not
be refunded to the users. Namely, a user shall carefully choose a transaction gas limit, as one
would finally pay the whole limit. The sequencer hence would be incentivized to order encrypted
transactions as it knows exactly how much it will get.

12



Algorithm 1 A miner fills transactions into a block on Ethereum
Input: An EVM. A public transaction mempool D where each transaction di ∈ D has a transac-

tion gas limit gi. Initial block gas limit S0. A coinbase P for collecting transaction tips. An
empty block B.

Output: A block contains transactions.
1: while D! = ∅ and Si! = 0 do
2: Pick a transaction di ∈ D according to miner’s preference.
3: if gi > Si then
4: Break: insufficient block gas space.
5: else
6: Purchase transaction gas limit gi from the sender’s balance.
7: Fill di into the block by running di on the EVM. Put this transaction di into the block B.

Get the gas cost ci and miner tips ti.
8: Refund the unused gas back to the sender.
9: Update the remaining block gas limit Si = Si−1 − ci and add tips to coinbase’s balance

Balance[P] = Balance[P] + ti.
10: end if
11: end while
12: return B
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Chapter 4

Implementation

4.1 Delayed Execution

In Ethereum PoS, finality is reached when 2 epochs (32 slots, 384 seconds) in a row are justified [4].
Therefore, a 32 blocks delay is required for a committed transaction to be executed. Given the
high volatility of cryptocurrency prices, trading on an AMM may always revert if the slippage
tolerance is low. A long delay before execution aggravates this situation. Even though, it is
believed that a slippage within 384 seconds incurs less loss compared to being front-run.

The implementation follows the design as described in Section. 3.1. The block validation
is carried out under the assumption that all the SMC members are online to provide data
availability for decrypted shares and proof. An analysis of two practical data availability solutions
is discussed in Chapter. 5.

4.2 Encrypted Transaction Type

Given the remarkable delay, we recognize that some transactions require fast execution and
could not necessarily be front-run. Thus, we decide to support the existing transaction types as
well. Namely, in F3B-ETH, users can choose to send a plaintext transaction for faster execution
with no front-running protection, or send an encrypted transaction for front-running protection.
We follow EIP-2718 [23] to design a new encrypted transaction type and modify the execution
logic accordingly.

Ideally, all the fields of an encrypted transaction should be encrypted. However, there are
certain fields necessary for the ordering phase that should remain plaintext. For example, gas
base fee and gas priority fee [4] are important for miners to select highly profitable transactions.
A transaction is invalid if the base fee is lower than that defined in the block header. And a
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miner would not be incentivized to order an encrypted transaction if the tips paid are unknown.
Besides, the value attached to a transaction should be clear, otherwise, it is impossible to check
if the sender has enough balance to execute the transaction. Obviously, chainID should also
be plaintext to resist replay attack. For simplicity, we only encrypt the message data of the
transaction by a symmetric key. Following F3B, we add an extra field Key to the transaction,
representing the symmetric key encrypted by pksmc concatenated with a user-submitted hash.
Most execution logic remains the same for encrypted transactions, except that a miner would
retrieve the decrypted shares and proof first before executing it. After decryption, the executor
would compare the decrypted key hash with the user-submitted key hash to identify potential
user misbehavior.

4.3 Updated Transaction Receipt

One-to-one correspondence between a transaction and a receipt is strictly enforced in Ethereum,
which raises the problem that we can not store both the ordering receipt and the execution
receipt of one encrypted transaction. A miner cannot store a decrypted version of an encrypted
transaction either, because the sender’s signature of the decrypted transaction is missing. Hence,
we implement it in a way that the former ordering receipt will be overwritten with the new
execution receipt. As one can deduct the content of the ordering receipt from the execution
receipt, an execution receipt suffices.

4.4 Interaction with Dela

We use a dkgcli of the F3B implementation on Dela blockchain to do the encryption and verifiable
decryption. For every transaction, the miner would call verifiable decryption to dkgcli, which
aggregates all the shares and proof and verifies the correctness.
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Chapter 5

Evaluation

In this chapter, we present the time and communication overhead of F3B-ETH, compared with
related works. All the experiments are conducted on a machine with Intel(R) Core(TM) i5-1035G1
CPU @ 1.00GHz single core and 8GB RAM. All the statistics analyzed in this section are based on
the average gas price at 30 gwei, average 160 transactions per block, block size at 75184 bytes,
and ETH price at around 1200$ from YCHARTS [8] on Dec 19th, 2022. All the results are based on
10 trials.

5.1 Time Overhead

We measure the time overhead introduced by ordering and executing the encrypted transactions.
In practice, ordering a transaction takes 0 in milliseconds. As shown in Fig. 5.1(a), we measure
the execution time of encrypted transactions and plaintext transactions with different batch
sizes. We set the SMC size as 3 across different batches. On average, an encrypted transaction
takes 117.56 ms during the second phase, where 1.14% is used for execution and 98.86% are used
for verifiable decryption with F3B. However, the decryption time can be regarded as a constant
once the symmetric key length is set, and the execution time is dependent on the transaction
itself. Compared to the application layer solution Submarine [19] that introduces 200% delay
because of three transactions, our solution only introduces around 10% delay.

The time overhead with respect to SMC size is shown in Fig. 5.1(b) where the transaction
batch size is 10. The communication overhead and decryption time overhead increases linearly
with respect to the size of SMC. Basically, a 251.28ms delay would be induced per-transaction,
which is higher than 79.65ms by identity-based encryption in Fairblock [12] on the same machine.
However, as we mentioned before, using identity-based encryption to encrypt a whole block
with one key would leak the contents of transactions that are not included in the target block.
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Figure 5.1: Overhead of F3B-Ethereum: (a) Time used for executing encrypted and plaintext
transactions with different tx batch sizes. (b) Decryption time and shares size with different
SMC sizes, where the batch size is set to 10 as a constant. For all experiments, we use the same
transaction: sending 1 Ether from Account1 to Account2 with a greeting message attached. The
x-axis of the figures is limited by the machine’s performance.

Table 5.1: Storage cost for different extra fields stored in the block. The conversion between gas
and USD is calculated based on Ether price at 1200$. In the best case, the extra cost is negligible.
In the worst case, 20$ is used to store shares and proof.

Extra fields stored in block per tx
tx.key tx.hash shares&proof decrypted key best worst

size(B) 32 32 35K 24 88 35.06K
fee (gas) 512 512 560K 384 1408 1051.8K

fee ($) 0.019 0.019 20.64 0.014 0.052 20.678

5.2 Storage Overhead

As shown in Fig. 5.1(b), the size of shares with proof increases linearly with respect to the number
of members in SMC. According to the committee size of each epoch in Ethereum, we can assume
there are 128 members in F3B SMC. Hence, each transaction would be associated with around
35.9KB for decrypted shares and proof if there is any misbehavior of the user or the executor.

The details of all the new fields possibly stored in a block are shown in Table. 5.1, where
we assume the extra fields are priced the same as msg.data at 16 unit gas per byte. In a benign
case, the extra cost for storing the 24-byte symmetric key is 0.052$, which is trivial. In the worst
case where there is misbehavior, an extra 21$ per transaction is induced on Ethereum, which is
acceptable for risky tradings. In general, the price for storage overhead is cheap.
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Table 5.2: Comparison between several decentralized storage infrastructures.
Worst case storage overhead per tx

Ethereum Filecoin Crust IPFS
cost($) 20.68 8.62 · 10−9 4.70 · 10−6 0

persistency yes yes yes no

The average block size on 19th Dec is 75184 bytes, so the decrypted keys would increase
the block size by 6.81% in a benign case. However, once the executor or user misbehaves, other
validators would interact with the SMC and store the shares and proof in the block header. An
SMC with threshold 128 would induce 160 · 35KB shares and proof for 160 transactions, the extra
storage would remarkably bloat a block by x100 times.

Third-party storage service is required if the shares are not stored in Ethereum due to high
costs. IPFS [1] provides unlimited free storage, despite the fact that data persistency is not en-
sured. Filecoin [10] enables persistency storage by Proof-of-Storage where miners periodically
submit proof of the committed storage. Crust [6] is another choice utilizing TEE (Trusted Ex-
ecution Environment) to provide persistency. The comparison between several decentralized
storage solutions is shown in Table. 5.2. In general, the cost of third-party storage services is
negligible.

5.3 Communication Overhead

As shown in Fig. 5.1(b), the length of decryption shares and proof grows proportionally to the
size of SMC. For a typical SMC with size 128, the size of shares and proof would be around 35
KB per transaction. Assuming N validators in F3B-ETH, the total communication overhead is
35 ∗N KB per transaction regardless of whether the shares and proof are stored in the Ethereum
block or external infrastructures.
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Chapter 6

Discussion

6.1 Limitations

As described in Section 4.1, there would be a significant delay (384 seconds) before an ordered
encrypted transaction is executed. However, reaching finality is a strong guarantee. If a fork
attack costs more than the profit of front-running, a shorter delay before finality may still be
acceptable. It may be a good direction for future work that one can choose the delay of front-
running protection so that efficiency and security could be both achieved.

Users are free from the reveal phase thanks to the SMC in F3B. Obviously, the SMC becomes
an external security dependence of the underlying blockchain. If the committee refuses to
decrypt the transactions, the blockchain will halt. If the committee colludes with the miners, the
front-running attack is still feasible. Hence, a proper protocol and incentives should be designed
to prevent the misbehavior of the committee. This protocol should take into consideration of
committee’s random selection, rotation, and slashing. We suggest the Ethereum PoS coordination
layer as the base protocol of SMC, which is not in the scope of this project. The current F3B-ETH
does not implement the storage of shares and proof into the block. Future work may consider
this direction, which should also integrate the protocol of SMC and executor slashing.

There is a trade-off regarding the data availability of the decrypted shares and proof. If the
shares and proof are stored in the block, the block would remarkably bloat x100 times and users
have to pay this high gas fee. Besides, larger blocks increase the network delay associated with
transaction data transmission and may induce security risks [2]. However, the data availability
is hard to be guaranteed if the shares and proof are stored somewhere other than the block.
Outsourcing data availability to decentralized storage infrastructures like Filecoin [10] would
largely influence the security model of Ethereum. In summary, we need a cheap data availability
solution without external security dependence. Rollups like Arbitrum and Optimism may be a
better fit for industry-level front-running protection as they cut up to 95% cost and theoretically
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inherit Ethereum mainnet’s security. A rollup bundles up the transactions on itself and finally
packs the entire batch to Ethereum. Fraud proof or zero-knowledge proof is utilized to ensure
the honesty of operators and the correctness of execution. Eventually, transactions on these
rollups will be as safe as on the Ethereum mainnet, though there is still a long way for rollups
to become mature by auditing their code and decentralizing their operators. Hence, a rollup
implementation like Shutter Network could be a direction for future work.

Currently, the throughput of F3B is lower than the identity-based solutions such as Fairblock
and Shutter Network. Using a block key would largely reduce the decryption time whereas posing
the threat that excluded transactions’ content may be leaked. The problem lies in the fact that
both the included and the excluded transactions are encrypted with the same block key Kb.
We observe that this problem can be solved if there is a distributed key-switch operation to
re-encrypt the included transactions from the target block key Kb to another key K ′

b. In this
case, SMC would reconstruct K ′

b to the executor upon execution. Hence, the executor can only
decrypt those included encrypted transactions but not those excluded ones. We haven’t found
such an efficient encryption scheme that is distributed, identity-based, verifiable and supports
re-encryption. The design of this encryption scheme and optimization of the throughput could
be a promising direction.
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Chapter 7

Conclusion

In conclusion, F3B-ETH is a practical front-running protection design that achieves negligible
latency compared to the current Ethereum and is agnostic to the upper-level consensus layer.
F3B-ETH eliminates the potential transaction leakage in Fairblocks [12] and Shutter network [14],
and achieves 10% delay compared to 200% in Submarine [19]. The implementation itself proves
the flexibility and composability of F3B on industrial blockchains.
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Chapter 8

Installation Guidelines

8.1 Prerequisite

F3B-ETH is a modified version of the Go-Ethereum client, which is written in Golang. Please
make sure to read the Go-Ethereum guidelines before using F3B-ETH. Preparation for F3B-ETH
client and F3B SMC in Dela:

• Download the source code of F3B-ETH from F3B-ETH for running the Ethereum client.

• Download the F3B SMC from Dela for running the SMC.

• Build geth with: go install -v ./cmd/geth

8.2 Parameters

In the code base, we already defined several pre-funded user accounts and authority accounts
for simulation. There are several default parameters that are changeable in the system in
core/types/transactions.go as shown below. The EncryptedBlockDelay defines the block delay
between the ordering block and the execution block. The GBar is a publicly known constant we
directly take from Dela dkg. The NodePath specifies the path to the SMC node directory which
would be used to launch the verifiable encryption. Make sure you adapt NodePath according to
your machine.

const EncryptedBlockDelay uint64 = 2

const SymKeyLen = 24 //length of symmetric key to encrypt msg.data

const GBar string = "1d0194fdc2fa2ffcc041d3ff12045b73c86e4ff95ff662a5eee82abdf44a53c7"
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const NodePath string = "D:/EPFL/master_thesis/dela/dkg/pedersen/dkgcli/tmp/node1/"

8.3 Single Geth Node Simulation

In this simulation, we run a single Geth node with PoA consensus for a quick example. There are
no other validators for block validation.

• Run Dela dkgcli to start a committee with n members.

• Initialize the Geth node with: geth −−datadir .ethereum/ init clique.json

• Run one Geth node with: geth –nodiscover −−networkid 42 −−datadir .ethereum/
−−unlock 0x280F6B48E4d9aEe0Efdb04EeBe882023357f6434 −−mine

• Send 1 encrypted transaction to this node with: go run script/f3b-eth/main.go -encrypted
-num 1

• Send 1 plaintext transaction to this node with: go run script/f3b-eth/main.go -num 1

8.4 Multiple Geth Nodes Simulation

In this simulation, we run two Geth nodes with PoA consensus, where two nodes would validate
the blocks proposed by each other.

• Run Dela dkgcli to start a committee with n members.

• Initialize the Geth node1 with: geth −−datadir .ethereum1/ init ../multiclique.json

• Initialize the Geth node2 with: geth −−datadir .ethereum2/ init ../multiclique.json

• Run Geth node1 with: geth −−nodiscover −−networkid 43 −−datadir .ethereum1/
−−unlock 0x280F6B48E4d9aEe0Efdb04EeBe882023357f6434 −−mine −−ipcpath
.1.ipc −−authrpc.port 8551 −−port 30303

• Run Geth node2 with: geth −−nodiscover −−networkid 43 −−datadir .ethereum2/
−−unlock 0xa9ca84343c8dB08d596400d35A7034027A5F4b31 −−mine −−ipcpath
.2.ipc −−authrpc.port 8552 −−port 30304 −−miner.etherbase
0xa9ca84343c8dB08d596400d35A7034027A5F4b31 −−syncmode full

• Setup peers with: geth attach \\.\pipe\geth1.ipc, where we add the enode of another node
by: admin.addPeer.
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• Send 1 encrypted transaction to node1 with: go run script/f3b-enc/main.go -num 1 -id 1
-encrypted

• Send 1 plaintext transaction to node2 with: go run script/f3b-enc/main.go -num 1 -id 2

• Query the balance of the accounts in block 3 from node1 with: go run script/view-
balance/main.go -id 1 -bn 3

8.5 Test

In the script above, we send a simple transaction, where a user sends 1 ether to the receiver,
with an attached message Merry Christmas. One can run two validators and send encrypted or
plaintext transactions to these validators. One can observe the logs of Geth nodes and query the
balance of these accounts in different blocks to verify that:

• Both plaintext and encrypted transactions are correctly handled.

• Encrypted transactions are delayed and executed correctly.

• Blocks proposed by one node are correctly validated and accepted by the other node.

• The gas tips of encrypted transactions go to the sequencer but not the executor.

• There is no gas refund for encrypted transactions.
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