
Proof of Personhood
Project Report

Semester Project

Louis Bettens, Romain Birling, Diego Boros, Stefan Eric, Robin
Goumaz, Nico Hauser, Anders Hominal, Zoé Marin, Johann Plüss,

Ajkuna Seipi, Maxime Zammit

June 10, 2022

Supervisors: Prof. B. Ford, P. Borsò, J. Viaene
Advisors: G. Fleischer, N. Kocher, N. Raulin

K. Schneiter, L. Merino, H. Zhang

Decentralized Distributed Systems Laboratory, EPFL

Contents

Contents i

1 Introduction 1
1.1 Proof of Personhood (PoP) . 1

1.1.1 Roll Calls . 2
1.2 The Project . 3
1.3 System Architecture . 4

1.3.1 Communication . 4
1.3.2 Organizers and Witnessing 4

2 E-Voting 6
2.1 Introduction . 6
2.2 Previous Work . 6

2.2.1 Functionality . 6
2.2.2 Design . 6
2.2.3 Security Considerations 7

2.3 Goals . 8
2.3.1 Primary goal . 8
2.3.2 Approach . 9

2.4 Design . 9
2.4.1 election#setup . 10
2.4.2 election#key . 10
2.4.3 election#cast vote . 10
2.4.4 Security Considerations 10

2.5 Other Changes . 11
2.6 Future Work . 12

2.6.1 Shuffling and Partial Decryption 12
2.6.2 Consensus . 12
2.6.3 Multiple Voting Methods 13

i

Contents

3 Digital Cash 14
3.1 Introduction . 14
3.2 Previous Work . 14
3.3 Goals . 15

3.3.1 Approach . 15
3.4 Design . 15

3.4.1 Basic Transaction Design 16
3.4.2 Coinbase Transaction Design 17
3.4.3 Specific Implementation Details 18
3.4.4 Security Considerations 18

3.5 Future Work . 20
3.5.1 Offline Payments . 20
3.5.2 Censorship Resistance 20
3.5.3 Addresses . 20
3.5.4 Privacy Enhancements 21

4 Engineering a Production-Ready System 23
4.1 Introduction . 23
4.2 Previous Work . 23
4.3 Strategy . 24

4.3.1 PoP Parties . 24
4.3.2 Integration Tests . 25
4.3.3 Unit Testing . 26
4.3.4 UI/UX Refactoring . 26

4.4 Execution . 27
4.4.1 Integration Tests . 27
4.4.2 UI . 30

4.5 Findings . 33
4.5.1 Idempotency . 33
4.5.2 Bugs . 34

4.6 Future Work . 35
4.6.1 Karate . 35
4.6.2 Network Resilience . 36

5 Subsytems 37
5.1 Back-End 1 - Go . 37

5.1.1 System Architecture . 37
5.1.2 E-Voting . 37
5.1.3 Digital Cash . 38
5.1.4 Other Changes . 39
5.1.5 Future Work . 41

5.2 Back-End 2 - Scala . 42
5.2.1 E-Voting . 42
5.2.2 Digital Cash . 44

ii

Contents

5.2.3 Code consolidation . 45
5.2.4 Future work . 47

5.3 Front-End 1- React/Typescript 48
5.3.1 System Architecture . 48
5.3.2 E-Voting . 51
5.3.3 Inter-Feature Dependencies 52
5.3.4 Client to Multiple Servers Communication 53
5.3.5 Properly Typed Navigation 54
5.3.6 Code Conventions . 54
5.3.7 Witnessing . 55
5.3.8 User Interface . 55
5.3.9 Future Work . 55

5.4 Front-End 2 - Android . 57
5.4.1 E-Voting . 57
5.4.2 Digital Cash . 58
5.4.3 Production Ready . 60
5.4.4 Future work . 61

6 Conclusions 63

A Appendix 65
A.1 Front-end 1 UI comparisons . 65
A.2 Front-end 2 UI comparisons . 65

Bibliography 79

iii

Chapter 1

Introduction

This is a report describing the work done as part of the Proof of Personhood
semester project at the DEDIS Lab at EPFL. We will start with a general
introduction of important terms and concepts, then outline the project’s ideas
and goals and finish the introduction with the system architecture that was
already determined before we started working on this project.

1.1 Proof of Personhood (PoP)

Online communication plays a big role in everyday life: People communicate
with other people using messengers and read content posted by others in
social networks. In contrast to conventional conversations in the real world,
in the digital world it is simply not possible to determine what person you are
talking to without having met them in real world. A user id or display name
cannot be authenticated and reliably linked to a real person. Even for verified
profiles you have to rely on the service provider’s verification mechanism.
And things are actually even worse: You do not even have the guarantee
that the other party is a real person. In almost all online services there is a
many-to-many relationship between online accounts and real people: Many
real people can own none or a single online account and a single real person
can own none to multiple online accounts.

For certain applications it is desirable, for others even of utmost importance,
to be able to ensure that a single real person can own at most one online
account. E-Voting is one of the most prominent examples where it is imme-
diately clear that only real people should be allowed to vote. For a more
comprehensive list of challenges, especially with respect to voting in democ-
racies, whose solutions often prerequisite a proof of personhood, we refer to
B. Ford [4].

Current “solutions” such as captchas may give evidence that a certain user

1

1.1. Proof of Personhood (PoP)

probably is a real person but even assuming it is impossible for machines
to solve them, nothing prevents a single real person from solving multiple
captchas. Thus strong guarantees, such as an actual proof of personhood
(PoP), are required to prevent a single user from having multiple online
identities.

One way to achieve this proof of personhood is by relying on the real world:
Real people can only be at one place at a given point in time. Moreover
robots are nowhere close to being indistinguishable from humans which
means we can leverage this property to proof one’s personhood in so-called
roll calls which are introduced as Pseudonym Parties by B. Ford [7].

1.1.1 Roll Calls

A roll call for proving one’s personhood is an event taking place in the real
world. The goal of a roll call is that attendees can prove they are in possession
of a real physical body. It assumes that exclusively people that have a real
physical body are capable of attending such an event. Each attendee is
supposed to generate a public/private key pair before attending the event
and the output of a roll call is then a list of public keys where each key
corresponds to at most one person. Each attendee has to be able to verify
that this list is consistent, meaning their key is on the list and the list contains
at most as many keys as there are people at the event. This makes sure that
if fraud occurs, it can be detected.

One way of achieving such a roll call event is by having an organizer that is
in charge of running the event and a delimited area. All people who want
to attend the roll call can then enter this area until the event starts. After
the event starts, it must be ensured that nobody can enter the area anymore.
Attendees can then, one after another, leave this restricted area through the
official exit where the organizer waits for them and takes note of their public
key by, for example, scanning a qr code. After doing so, a big, publicly
visible counter that was initialized to 0 increases by one. It keeps track of
the number of real people attending the roll call. All attendees in the room
have to be able to witness this process, i.e. be able to verify that the counter
increases only if the organizer just scanned the public key of one attendee.

After the room is empty, the organizer publishes the list of public keys and all
attendees can by themselves verify that the number displayed on the counter
matches the number of public keys. If they do, then the length of the list
of public keys corresponds to the number of real people who were scanned
(Remember, each attendee was able to verify that the counter only increased if
one real person left the room). Moreover each attendee can verify their public
key is on the published list. Both together ensure that fraud is detectable if it
happens. In any case, each attendee was able to verify that the length of the

2

1.2. The Project

published list corresponds to the number of real people without trusting the
organizer of the event, thus satisfying the above described requirements.

For a more comprehensive description we refer to B. Ford [7].

1.2 The Project

The PoPStellar project was started by previous students in earlier semesters
and includes sample use cases and applications leveraging a proof of per-
sonhood based on the example described in Section 1.1.1. In addition to roll
calls, PoPStellar makes use of the concept of local autonomous organizations
(LAOs). LAOs are run by an organizer (the same responsible for running
the roll calls as previously described) and can be joined by people who want
to attend a roll call. The system consists of a standard front- and back-end
setup where the back-end is run by the already mentioned organizer. For an
attendee to join a LAO, they need to know the the address of the back-end’s
server and the LAO’s id (this allows a single server to host multiple LAOs).

After joining the LAO, attendees can attend roll calls to prove their person-
hood. Public keys of attendees (as described in Section 1.1.1), that are part of
the published list after a successful roll call, are called PoP Tokens.

PoPStellar supports different features such as e-voting or social media that
make use of these PoP tokens. In e-voting, attendees have to sign their votes
using the PoP token to make sure each vote was cast by an actual person.
Similarly in the social media feature, posts and reactions are signed using
PoP tokens.

The project this report is about builds on the work of previous students.
Each student working on the project was assigned a technology stack and a
feature they are mainly supposed to work on. From the start, PoPStellar was
developed using n-version programming where multiple version of the same
software are implemented by different teams. This requires the interoperabil-
ity of the systems and thus makes it necessary to have a clear specification of
the communication protocols used. In PoPStellar there are four subsystems:
two front-ends and two back-ends. One back-end is implemented in Go, one
in Scala and for the front-ends there is a version written in Java (for Android)
and one written in TypeScript using react-native.

Regarding the features there was a team, this semester, that worked on secret
ballot elections (e-voting), a team working on a new feature, digital cash, and
lastly a team working on the production-readiness of the whole system.

3

1.3. System Architecture

1.3 System Architecture

As hinted at in Section 1.2, the system is built on a client-server architecture
with the clients being called front-ends and the servers back-ends. In the next
two Sections we describe how they communicate and what also what kind of
roles the users can have.

1.3.1 Communication

The front-ends communicate with back-ends using the websocket protocol
which is a message based protocol abstraction on top of TCP. On top of the
websocket protocol, the system uses JSON RPC to implement the publish-
subscribe pattern for messages. This pattern groups messages into channels
where messages are broadcasted to all subscribers of that channel. The
back-ends keep track of what clients subscribed to what channels and of
broadcasting the corresponding published messages in the respective channels.
In addition to publish, broadcast, subscribe and unsubscribe, the system supports
catchup messages that request the back-end to send the list of all messages
previously sent in a given channel. This is very useful as it allows new
subscribers to catch up on previous communication in a channel.

The just described communication layer is called the low-level communication
layer. Built on top of this layer is the mid-level communication layer which
ensures authenticity of messages by including the public key of the sender
and a signature of the message content. Moreover all messages include an
identifier that is the result of a hash function computed on the message
content. As long as the used hash function is collision-resistant, this identifier
is unique. The message content is the last layer, the high-level communication
layer. Since signatures are computed on binary data and JSON representations
of data are not unique, a trivial approach would result in signatures that
are hard to verify. Thus the message content is encoded in Base64 and the
resulting UTF-8 string is then signed. Another approach would have been to
restrict the JSON syntax to a subset making the representation unique.

1.3.2 Organizers and Witnessing

The system requires attendees with different special roles to operate. First we
have the organizer of the LAO that runs a back-end and provides the infras-
tructure. In roll calls, the organizer is in charge of creating and publishing
the list of public keys as described in Section 1.1.1. In many other features
such as e-voting, the organizer also has a special role such as setting up the
election and requesting the back-end to tally the votes.

Second there are witnesses that are in charge of observing the whole process
and help detecting fraud when it happens. In the beginning of the semester,
the system did not have functional witnessing even though it is an integral

4

1.3. System Architecture

part of the system design. Thus the remainder of this section will not reflect
what is implemented but rather describe how the system is supposed to
function.

As just mentioned, witnesses should help detecting fraud. One type of fraud
is censorship by the organizer: If all communication goes via the organizer,
a malicious organizer can selectively not forward messages such as votes
from certain attendees. Even though authenticity of the votes is guaranteed by
the proof of personhood, e-voting will not be secure since availability can be
broken. To reduce the likelihood of censorship, witnesses are supposed to run
a back-end analogous to the one of the organizer. The back-ends of witnesses
also keep track of all messages to keep the organizer in check. Attendees
fearing censorship can send their vote to the organizer and to some witnesses
that in turn then forward the message to the organizer. The organizer and
witness are able to de-duplicate the message based on the unique message
identifier. While this does not prevent censorship, the likelihood of it being
detected increases with the number of witnesses.

In addition to forwarding messages, witnesses are supposed to sign all
messages they see and agree with. The resulting signature can then be
broadcasted. The organizer receiving the signature of witnesses is interested
in forwarding it to connected clients as it will increase the trustworthiness of
the message. In contrast, if an attendee connected to the organizer knows
that some trusted witness is part of the LAO but never receives the signature
of this witness, they have good reason to suspect fraud. Assuming the
witness is trusted, they will sign the message when they receive it. Thus not
receiving the signature of the witness indicates that the witness probably
never obtained the message which is exactly what happens if the organizer
censors the witness.

5

Chapter 2

E-Voting

2.1 Introduction

The E-Voting feature uses PoP tokens issued in a roll call (see Section 1.1.1)
to facilitate elections where each real person can vote at most once following
the principle one person, one vote [15].

2.2 Previous Work

This Section describes the work done by previous students working on the
project. This will be later be used to highlight the changes made this semester.

2.2.1 Functionality

In previous work on the project, support for open ballot elections has been
implemented. In open ballot elections votes are cast in public which means
that all attendees can see what other attendees voted. To guarantee that a
given vote was cast by a real person, attendees sign their vote using a PoP
token they have previously received in a roll call. In this setup, each attendee
can easily compute the outcome of the election by themselves: 1) Collect all
casted votes, 2) Filter for votes signed by a valid PoP token, i.e. one that was
part of the list published after a roll call, 3) Add up the votes. The result of
this computation can then be compared to the officially published result in
order to detect potential fraud.

2.2.2 Design

The functionality described in Section 2.2.1 is achieved by running a proto-
col after having performed a successful roll call. The protocol consists of
four messages: election#setup, election#cast vote, election#end and
election#result.

6

2.2. Previous Work

All messages except for election#result are sent by a front-end then broad-
cast by a back-end as usual. The message election#result is sent by a
back-end after having received an election#end message. A back-end then
performs the computation of the election result as described in Section 2.2.1
and broadcasts it afterwards.

The other three messages, election#setup, election#cast vote, election-
#end, accomplish what their name suggests: election#setup is sent by the
LAO’s organizer and creates a new election in the LAO, election#cast vote

is sent by any LAO attendee in possession of a valid PoP token to cast their
vote and election#end is again sent by the LAO’s organizer to terminate the
election.

An election object had the following properties:

• id - The unique identifier of an election. It is computed by running
a hash function on a constant, the unique identifier of the associated
LAO and the properties created at and name.

• lao - The unique identifier of LAO this election is associated to

• version - Set to 1.0.0. Added to support versioning at a later point.

• created at - Unix timestamp of the time the election is created

• start time - Unix timestamp of the time the election starts

• end time - Unix timestamp of the time the election ends

• questions - An array of questions, each having a unique identifier
and a set of options. The unique message identifier is the result of
computing the hash over a constant, the unique election identifier as
well as the question string.

The start time and start end times are hard limits meaning only votes cast
in between are valid. The different subsystems keep track of time individually
and do not run a time synchronization protocol.

2.2.3 Security Considerations

E-Voting applications without security requirements are trivial to implement.
To have an application usable in real word scenarios we at least require
authenticity and integrity of the cast votes and the election result as well as
availability guaranteeing to attendees the ability to cast votes. For open ballot
elections, confidentiality is not required.

Authenticity and Integrity

Authenticity and integrity of the cast votes is ensured by requiring attendees
to sign a hash of the message containing their vote using a previously

7

2.3. Goals

obtained PoP token as described in Section 1.1. This certifies that a given
vote is cast by a real person and if the contents of the message were changed,
it would invalidate the signature on the hash. If a given person casts multiple
votes, only the last vote is considered valid.

Each vote in the election#cast vote message possesses a unique identifier
that is the result of computing a hash function over the election and question
identifier as well as the selected option. Assuming the hash function is
collision resistant, this hash binds the vote to a given election. Thus the
computation of this identifier must be verified by all receiving parties in
order to guarantee the binding and to prevent replay attacks.

The validity of the election#result message could only be checked by
counting the cast votes by all attendees since the public key of the organizer’s
back-end is not known and thus the signature cannot be verified.

Availability

With the given architecture (see Section 1.3) it is hard to guarantee availability
but it is possible to rely on witnesses as described in Section 1.3.2. While
this does not guarantee availability, it makes fraud detectable as long as a
given attendee sends its vote to at least one honest witness. Unfortunately
the ability to connect to a LAO via a witness server was not implemented yet.
This makes it possible for malicious organizers to prevent different attendees
from voting without anybody noticing.

2.3 Goals

First the primary goal of this semester is described on a high level and
afterwards the approach to achieve the goal will be outlined.

2.3.1 Primary goal

The primary goal of the E-Voting project this semester was to enable secret
ballot elections where attendees can cast their votes in private meaning en-
crypted. This comes with new problems: First it is not clear who should be
in charge of decrypting the votes and second it is no longer straight-forward
how attendees can verify the published result of an election if the votes are
encrypted. The security properties authenticity, integrity and availability as
described in Section 2.2.3 should be maintained while additionally providing
confidentiality of the cast vote.

It might not be straight-forward why confidentiality of the votes is necessary
if the PoP tokens are not linked to an identity as this provides a form of
pseudonymity. The problem is that this pseudonym does not change between
votes which means votes from different elections as well as other actions

8

2.4. Design

inside the LAO that make use of the PoP token are linkable. Depending on
how long public keys are valid, this might allow attackers to uncover the
identity of certain public keys.

There are alternative cryptographic primitives that provide unlinkable sig-
natures. Unfortunately a trivial use of them would make it impossible to
prevent attendees from voting twice since it is by definition not possible to
link the two votes. What would be required is a scheme that has signatures
that are linkable within an election but unlinkable between two different
elections. A simple solution is to use a different public/private key pair for
every election. Unfortunately this solution makes it harder to guarantee that
the different keys owned by a single person are not linkable while at the
same time guaranteeing that the number of key sets at a roll call matches the
number of people or how do you prevent attendees from using two different
keys in an election.

Solving these problems seems to be doable but would come with a high
engineering effort whereas allowing attendees to cast their vote in private
circumvents these problems and is in comparison easy to implement.

2.3.2 Approach

It was decided that in order to support secret ballot elections, ElGamal
elliptic curve (Curve25519) public key cryptography is used. All organizers
and witnesses derive a shared election key for a given secret ballot elections.
Attendees can then use this public key to encrypt vote and send this as
the vote value instead of the plaintext value. After the election ends, all
organizers and witnesses must collaborate to decrypt the votes using Neff
shuffles [10] which distributes the trust among the set of all organizers and
witnesses.

Since at the beginning of the semester server-to-server communication was
only supported in a limited way, there was not enough time to fully imple-
ment to described approach and in the current state of the projects there is
only one organizer and no witnesses which means that the single organizer
of the LAO can decrypt the messages by themselves. Security-wise this is
far from ideal but unfortunately we did not manage to accomplish more
during the semester. In the following sections we will restrict ourselves to
this simplified version where there is only one organizer and no witnesses.

2.4 Design

The protocol design for secret ballot elections is simple. It consists of
one additional message called election#key and some changes to the
election#setup and election#cast vote messages. In the following Sec-

9

2.4. Design

tions the changes to the existing messages as well as the specification for the
new election#key are described.

2.4.1 election#setup

The election#setup message needs to contain information to differentiate
between open and secret ballot elections. Since the message already contained
the unused version field (see Section 2.2.2), it was decided to change the type
of this field to an enumeration of the values OPEN BALLOT and SECRET BALLOT.

2.4.2 election#key

As soon as the LAO organizer’s back-end receives election#setup message
for a secret ballot election, it generates an ephemeral public key and sends
an election#key message telling attendees what keys they should use for
the just created election. It is important to include the unique identifier of
the election in this message as this is only way to bind the key to a given
election.

2.4.3 election#cast vote

After having received the public key for a given election, attendees can cast
their vote in a confidential way. They convert the integer index of the ballot
option to a 2 byte big-endian value and use ElGamal to encrypt this byte
value using the provided election key. The resulting binary is encoded in
Base64 and sent instead of the plaintext ballot option index.

2.4.4 Security Considerations

Assuming a trusted LAO organizer, the described implementation provides
confidentiality of the votes since the organizer is the only party knowing the
secret key and thus being able to decrypt the votes. As described in Section
2.3.2, the goal is to later extend this to a system where all organizers and
witnesses only know a share of the key and no single party can decrypt the
votes by themselves. In this setup, confidentiality will then be provided as
long as at least one party is honest.

For availability, this implementation once again relies on witnesses as already
described in Section 2.2.3. Different subsystems worked on providing support
for witnesses this semester but unfortunately full support was not achieved
yet.

One major issue the just described implementation has is that if in the future
an attendee connects to a LAO via the server of a witness as described in
Section 1.3.2, it is impossible for attendees to verify the authenticity of the
election#key message. Thus a malicious witness could simply spoof an

10

2.5. Other Changes

election#key with a public key where the malicious witness knows the
corresponding private key. Thus the need for verifying the authenticity of
the election#key message arises.

The underlying issue is that for organizers and witnesses, there is no binding
between their front- and back-ends. To solve this problem, the additional
lao#greet message was introduced which is sent by a back-end right after
the creation of the LAO. back-ends use this message to advertise their public
key, the public key of the corresponding front-end. Of course this message
alone does not suffice since this is only a one-sided claim and would allow
back-ends to arbitrarily claim to be the back-end corresponding to a given
front-end. To make this binding sound, we need a bidirectional claim. An
easy way to achieve this without introducing more complexity is to rely on
witness signatures: Attendees should only treat a lao#greet message as
valid as soon as it is signed by the corresponding front-end (by using witness
signatures). The high-level idea is that the back-end claims to be the back-end
corresponding to some front-end and the front-end agrees to this binding by
adding its witness signature.

2.5 Other Changes

In addition to secret ballot elections, there are a few other things in the
e-voting project that changed during this semester. First and foremost the
election state progression was changed by removing reliance on time for
starting and closing it. Instead of elections automatically starting at their
start time and requiring them to stay open at least until their end time, the
opening and ending of elections now exclusively relies on messages. For
ending elections, the election#end message already existed and only the
comparison between the election end time and the current time had to be
removed. For opening an election, an election#open message analogous to
election#end was introduced. Both can only be sent by the LAO organizer.

By changing this, election start and end time become more of a “this is
when an election is supposed to start and end” rather than a strict timing.
This removes the necessity of time synchronization that would otherwise
be required to make the system robust. Instead it introduced a critical
problem: organizers could behave arbitrarily and close elections as soon
as their favorite option is winning. This should in the future be solved by
adding consensus to these messages. (Students last semester implemented
consensus for a subset of messages)

Furthermore we simplified the e-voting protocol by disabling and changing
certain parameters. For instance we changed to protocol to require the
write-in option to be set to false since support for it was never implemented.

11

2.6. Future Work

Should this feature be implemented in a future semester, the option is still in
the protocol and can be changed back to any boolean value.

Analogous to this, multiple-choice voting was never supported either. Given
that it additionally would have caused issues with the implementation of
secret ballot elections, we decided to remove this feature from the protocol
completely. In order to support multiple-choice voting in secret ballot elec-
tions, we would have been required to decide between 1) encrypting each
option individually, 2) encrypting all options together. Option 1) would have
leaked the number of selected options and option 2) would have resulted in
problems with the encryption algorithm since without a limit on the num-
ber of options the input size becomes unbounded but the used encryption
algorithm only supports messages up to certain size.

2.6 Future Work

This section describes the work that needs to be achieved in the near future
concerning the E-voting part, especially the secret-ballots implementation.

2.6.1 Shuffling and Partial Decryption

The initial goal was to implement secret ballot elections in two steps. The first
step consists of implementing encryption and decryption function with the
help of the DEDIS library kyber, and simply let the LAO’s organizer decrypt
the votes. As described above this step has been implemented, there are just
a few bugs that need to be fixed before the presentation. The second step
would decentralize the trust from the organizer to the set of all organizers
and witnesses but unfortunately this has not been implemented yet. More
concretely, the second step would have been to implement Neff Shuffles [10].
Each shuffling step that is performed by each organizer and witness consists
of reordering the list of votes and then multiplying the encrypted votes with
some random, hidden secret to unlink the in- and output ciphertexts while
maintaining integrity of the votes. After that, the votes must be decrypted
to determine the winner. Since now each party that participated in the
shuffle knows a secret they used to unlink the ciphertext, they must also all
participate in the decryption process.

2.6.2 Consensus

Following what is stated above, Consensus is an important part for the E-
voting project. It enables the organizer and witnesses of a LAO to agree on a
shared viewpoint, such as the deadline of casting votes. In the near future,
it should be a priority to implement consensus for opening and closing
elections to prevent the organizer from interfering with the result.

12

2.6. Future Work

2.6.3 Multiple Voting Methods

As stated above, we decided to focus on the plurality voting method. The voters
can only vote one time per question. If desired, future work should be able
to add other voting methods without any major issues. The version field for
elections probably has to be changed once more and the en- and decryption
methods probably have to be adjusted to, for example, account for allowing
the selection of multiple options.

13

Chapter 3

Digital Cash

3.1 Introduction

The Digital Cash feature allows LAOs to create their own virtual currency to
enable members to participate in a local autonomous economy built around
the LAO. Proof-of-personhood can be used to implement a form of so-called
basic income, where every attendee receives a set allowance from the LAO,
anonymously.

3.2 Previous Work

The digital cash functionality is new for this semester. Hence, this section
will briefly outline the already existing generic features of the system that
are used to implement digital cash.

As mentioned previously, PoP tokens are public keys where the owner knows
the corresponding private key. This allows LAO members to produce digital
signatures that can be attributed to the PoP token. This forms the basis of
how members hold and spend coins. They can sign a message to show their
intent to send someone money.

To communicate, we use the existing publish-subscribe (pubsub) channel
infrastructure. All transactions are published on a new dedicated channel so
that attendees can keep up with them.

Finally, to allow controlled issuance of new currency, we use the personhood
property. The organizer knows that each token represents a distinct person,
hence, if the policy is that each person receives a certain amount of currency,
it suffices to send that amount to all valid PoP tokens.

14

3.3. Goals

3.3 Goals

The main goal of the semester is to enable the organizer to issue money, and
LAO members to send this money around using transactions. The second
goal is to allow for transactions in an environment where the sender or both
parties, the sender and the receiver, do not have access to the organizer’s
server through the network. The third goal is to enable organizers and
witnesses to bundle together past transactions in such a way that participants
can catch up with the system without going through every message individ-
ually. In parallel, the security aspects of the system should also be taken into
account.

3.3.1 Approach

The LAOCoin design is based on b-money[6], although we dispense of
the requirement that money creation be backed by solving computational
problems and omit contract functionality. Instead, money is issued by the
organizer according to LAO by-laws. The accounting model is based on an
implementation of b-money called Bitcoin[9].

In a LAO where digital cash is used, each PoP token can hold a balance of
LAOCoins. As is the case in b-money and Bitcoin, LAO members can transfer
money by signing a message describing the transfer with their PoP token.
Such a message is called a transaction. Transactions must be broadcast on a
designated LAO pubsub channel. This allows participants to reconstruct the
ledger by processing all messages on this channel in order. The transaction is
a complex object containing several pieces of information about the receiver
and the sender. It is attached to a notion of partial order since it points to
transactions that have occurred before.

Figure 3.1 shows how the representation of money through transaction. At
time 0, the organizer issues 10 coin to 3 members, A, B and C. The transaction
output correspond to the amount of LAO coins A, B and C have. At time 1,
we see that A and B are sending money. Member A sends 4 coins to B and
C. Additionally, they send the 2 remaining coins to themselves (the sender
is also the receiver). Similarly, B sends 6 coins to A and the remaining 4 to
themselves. Finally, at time 3, A sends money to C. To send money, they
have to refer to all the last transaction where he was in the output.

3.4 Design

Multiple design choices had to be made, the first and most important part
being the transaction object to be sent across subsystems. When designing it,
we kept in mind the fact that we wanted the digital cash system to stay as
compatible as possible with the Bitcoin network.

15

3.4. Design

Figure 3.1: Transaction lifetime

As a matter of fact, the Bitcoin network uses the UTXO (unspent transaction
output) model to account for account balances.[9, section 9] This means that
each transaction is linked to other past and unspent transactions that are
used as its inputs. The spending of those coins is represented by outputs,
also present in the transaction.

3.4.1 Basic Transaction Design

We will now describe more specifically the design of a transaction accord-
ing to the defined digital cash scheme. A transaction object will have the
following properties:

• inputs: An array of transaction inputs, each input will contain:

– tx out hash: the id of the transaction we are using as input

– tx out index: the index of the output we are spending within the
transaction

– script: unlocks the output by responding to its script

* type: A defined type that specifies the interpretation of this
script, in this case we are using Pay-to-pubkey-hash

* pubkey: The owner ’s public key of the output we are referring
to

* sig: The signature over the inputs and outputs by the owner

16

3.4. Design

• outputs: An array of transaction outputs, each output will contain:

– value: The value of this output

– script: locks this output by specifying the conditions under which
it can be unlocked

* type: Pay-to-pubkey-hash
* pubkey hash: The destination’s public key hash

• version: The version of the transaction inputs, not used for now

• locktime: A timestamp, not used for now

The message object that we will be sending over the network will also contain
the transaction id, which is defined as the hash over all leaf values of the
transaction object, with all values being concatenated in lexicographic order
and using the PoPStellar HashLen[8] hash function. Assuming the function
is collision-resistant, the id will be unique for each transaction and we can,
without ambiguity, refer to a transaction by mentioning its id.

In our Bitcoin-like odyssey, we also decided to hash and truncate the destina-
tion’s public key in our outputs, this way we are reducing the message length.
The specification for inputs signature was also inspired from the Bitcoin
convention: we concatenate all tx out hash and tx out index from each
inputs, to which we add the concatenated string of all value, script.type
and script.pubkey hash fields of each outputs, and we sign over this entire
concatenated string.

Finally, the value field is an integer that is counted as miniLAO, with 108

miniLAO = 1 LAOCoin. The maximum supply is 253 − 1 miniLAO, which
reflects the maximum value for which we are able to use native integer types
in all of our sub-systems. We also enforce that, for any given transaction, the
total sum of money across all inputs does not exceed the maximum supply.
Also, the sum of the money in the outputs must be exactly equal to that in
the inputs.

3.4.2 Coinbase Transaction Design

Also, there is the need to find a way for an organizer of a LAO to emit some
LAOCoins to attendees. This is implemented as a special case of the digital
cash transactions called a coinbase transaction.

As you can imagine, a coinbase transaction does not need any inputs as its
goal is to create coins out of thin air. To ease its integration into the existing
model, we designed a specific input format that indicates that a transaction
is a coinbase transaction and that respects the initial specification.

Here we describe the input format for a coinbase transaction:

17

3.4. Design

• tx out hash: an all-zero transaction id, which has to be encoded in
base64url

• tx out index: 0

• script: The usual input script, except that the private key to sign
should be the LAO organizer’s

When receiving a coinbase transaction, each sub-system will then need to
verify that the signer is the organizer of the LAO related to the received
message and only then accept the coin issuance.

3.4.3 Specific Implementation Details

In our implementation, the back-ends remain stateless, this means that most
logic and security checks will happen in the front-ends.

We also decided that when using an unspent transaction output with a given
PoP token, every output available will be spent in the transaction. This
means that when sending less than the entire balance available, the rest of
the balance will be sent back to the PoP token.

3.4.4 Security Considerations

Security Model

To be considered secure, a cash system like the LAOCoin system must not
allow an adversary to spend others’ money, freeze or destroy others’ money,
or create money outside of the agreed-upon issuance process.

For the adversarial model, we support the organizer being a covert adver-
sary — an adversary that will only do bad things if they can avoid being
exposed as the culprit —, and all other attendees being active adversaries to
each other. This particular model of covert adversary fits within the LAO
framework since we can use accountability of the organizers to ensure good
circumstances.

In terms of adversarial capabilities, We assume that adversaries cannot break
our cryptographic schemes or compromise attendees’ or organizers’ devices
remotely. It is beyond the scope of our work to design cryptographic primi-
tives or discuss software security. Instead, we rely on commonly available
existing solutions referenced throughout this document. We also assume
that attendees are not being coerced or threatened into revealing or using
their private keys. This is of course something that can happen in real life
scenarios, but it cannot be mitigated in the general case with system design.

Since we will require that certain transactions are deemed invalid and dis-
carded by the system, we should define where this policy should be enforced.

18

3.4. Design

The front-end component of each participant is responsible for performing
these checks. Since not every participant runs their own back-end, this en-
sures that they don’t rely on another participant being honest and instead
have their device perform these checks to protect them. Back-ends may
perform some or all of these checks, but it is not strictly necessary.

Discussion

To ensure only the owner of the funds can control them, we rely on the
security of the signature scheme. Since transactions are only considered valid
if unlock scripts provide authentic signatures from the rightful owners, and
since the signature scheme guarantees that signatures cannot be forged, no
adversary can create a valid transaction that spends other people’s funds.
Signatures sign over the core characteristics of transaction inputs and outputs,
so reusing signatures is not possible. Replay attacks are also ineffective since
transaction outputs cannot be spent twice.

There is no message that an attacker could publish that would affect funds
they do not control. Even the organizer does not have the power to seize
funds in the current system. In the current model however, the organizer
controls the pubsub channels. Hence, they could filter certain transactions
out, effectively freezing funds. This should be addressed with the planned
censorship resistance features described in Section 1.3.2, which defend against
this as long as at least one witness is honest. Under the assumption that the
organizer cannot filter the channels, the system would be secure.

What about funds that an attacker used to control? It is possible to sign
two contradicting transactions that spend the same output. In the current
architecture, this would simply result in one of the being clearly invalid
since the pubsub channel enforces an order. But when offline payments are
supported or when the channels become decentralized, care should be taken
to evaluate the consequences for the security model. In particular, thanks to
the UTXO model, double-spending can be attributed clearly to a specific PoP
token, so it might make sense to use accountability in this case.

We prevent unauthorized creation of money by discarding invalid coinbase
transactions, and by checking that the sum of input values of any transaction
is equal to the sum of output values. We also guard against arithmetic tricks
that could be used to craft transactions that bypass this check by strictly
defining the range and overflow rules for transaction amounts in section
3.4.1. This will stop any attendee from unduly creating money since they do
not have the keys allowed to do that. As for the organizer, any creation is
attributable to them due to the non-repudiation property of the signature
scheme, hence, if they do not follow the agreed upon rules, this will be
apparent. Since the adversarial organizer is covert, they are not able to do
that.

19

3.5. Future Work

3.5 Future Work

3.5.1 Offline Payments

Having seen the current state of the project, we can now think of future im-
plementation. The first following step will be to implement offline payments.
Indeed the infrastructure will be already done for the back-end, the only
thing that should be updated will be the front-end. The idea behind offline
payment is that when you don’t have any internet connection, the message
is signed by the sender and scanned by the receiver. Then the first among
those that sent it on the network will publicise the transaction on the network.
There is no repudiation from the sender possible as he signed the message
with its private key.

3.5.2 Censorship Resistance

Another step could be censorship resistance with the help of multi-server
and witnessing. Currently the organiser has complete power. Indeed there
is no way to control coin issuance, therefore the organizer can issue himself
infinitely many coins. To have a more trustworthy system, there should be
witnessing implemented to control organizer power.

3.5.3 Addresses

We also briefly discussed human-friendly references to PoP tokens. The
current de facto practice across PoPStellar is to use base64url-encoded public
keys. This results in a string of 44 characters that has mixed case, dashes and
underscores, and always ends in an equal sign. This is difficult to say out
loud, write down, compare, recognize, or remember.

One idea that could be tested within the digital cash project and outside
of it is, once again, based on Bitcoin. In Bitcoin, addresses are encoded in
bech32[12]. This produces a case insensitive string that avoids visually similar
characters and has an integrated checksum to catch human errors. Addresses
derived from a Bitcoin public key hash are 42 characters long. It is also easy
to adopt since LAO public key hashes are the same length. Compared to the
current base64 method, bech32 strings would have comparable length, but
feature checksums and a much nicer character set. We should note that it is
not possible to derive the true public key from the address since it is hashed,
but if this limitation is acceptable, this could be beneficial.

Another idea could be to use a randomly-generated image with the PoP token
as a seed. Indeed we are already using a similar implementation in the Chirp
project where we use the Ethereum Blockies[5], which look like figure 3.2.
We could imagine generalizing that to the whole project to help the users
verifying if they are communicating with the desired person. Working with

20

3.5. Future Work

Figure 3.2: Blockies Example in Front-End 1

strings of arbitrary characters may be very error prone to communicate, two
addresses may look more or less the same. Having these image may help to
check by giving a color or a shape that may totally differ even if the key is
mostly the same. It should be used as a verification tool.

3.5.4 Privacy Enhancements

In its current form, all transactions are revealed to all participants. This
allows for users to validate these transactions and ensure no one is cheating,
but as a side effect, users have to reveal information about their spending
habits and balance. It might be desirable to prevent this leak and provide
users more privacy for various reasons, including the risk for users to be
targeted for robbery, fear of judgement based on spending habits, etc.

Fortunately, the existing cryptocurrency industry also tries to create schemes
for private payments. One such scheme is RingCT[11] which is used by the
popular Monero currency. It allows obfuscating the amounts, origins, and
destinations of transactions, while still allowing participants to know that
they are well-formed. This protocol works with a transaction structure that
is similar to the one in Bitcoin and LAOCoin, with the difference that it isn’t
compatible with our current address scheme. Instead, users must publish
two Ed25519 points as their payment address.[13, p. 6] They must be in plain:
public key hashes are not possible.

Another option is to adopt the ZeroCash[2] protocol used by Zcash. It was
originally designed to operate on top of Bitcoin, which suggests it is suitable
for LAOCoin. Unlike RingCT, it requires using a trusted setup, which is an
one-time process where a trusted party generates public parameters for the
whole system. Ideally, the trusted party should exist through multi-party
computation so that multiple parties can be involved. The system remains
secure as long as one of these parties is honest[3]. In the LAO framework,
it would be acceptable to run such a setup either solely on the organizer’s
machine, or with multi-party computation in collaboration with witnesses
and/or attendees. Noether[11, p.6] also notes that in Zerocash, the power
to create money comes from the trusted party, whereas in RingCT money

21

3.5. Future Work

creation is independent from the privacy features and can be performed via
proof-of-work. Since we do not use proof-of-work, this is not a concern for
LAOCoin.

22

Chapter 4

Engineering a Production-Ready
System

4.1 Introduction

The purpose of this sub-project is to bring the system closer to a state where
it is said to be production ready meaning that it can be out in the field. There
are several reasons why this is not the case already during development. It
is totally different paradigm to have developers run software they built in a
safe, isolated demo environment and to have it running in the field where
many unpredictable things can happen. For instance, unfamiliar users will
use the app in a different fashion than the developers if the user experience
(UX) and user interface (UI) are not carefully designed.

The PoPStellar app for all of its existence has been very far from being
production ready. Nevertheless we did not at all start from scratch because
last semester’s students had already work on the same sub-project. We will
detail it in Section 4.2.

Of course bringing the whole system to actual production readiness was
a wholly unrealistic objective and we therefore set our goal to make true
improvements about the robustness and quality of the software. This of
course is not straightforward as many factors need to be weigh in to make
engineering decisions about the direction of this sub-project. This is detailed
in Section 4.3.

4.2 Previous Work

Previous students did great work to improve the overall quality of the system.
The documentation was greatly improved, as well as the consistency with
which protocols are defined and implemented.

23

4.3. Strategy

Moreover, at the start of the semester the Unit Test code coverage ranged
from good to great :

• Be1 - Go : 70.3%

• Be2 - Scala : 42.2%

• Fe1 - Web : 53.5%

• Fe2 - Android : 52.4%

A CI/CD run of those unit tests with coverage feedback and SonarCloud
static analysis were already in place. Finally, a great tool called Karate was
incorporated which enables integration testing. Integration tests for LAO
creation were already added for both back-ends and front-ends.

4.3 Strategy

Given the resource constraints, both in time and in number of people involved
in this sub-project, to make true improvements to the system quality, we
had to devise a strategy as to what we would do during the semester. We
decided that we would work on four fronts. First we would be collecting and
solving bugs that arise during weekly PoP parties which is akin to end to end
manual testing. On top of that, we would provide integration tests to have
guarantees as to how large blocks of our subsystems behave. Then, with the
sole exception of the social media part, the user interface of both front-end
were problematic. Not only did they not provide a nice experience to the
user but were the source of avoidable problems. We therefore set ourselves
to make improvements in that regard as well. Lastly, we wanted to increase
coverage with unit-tests. Advantages are multiple including early detection
of bugs and prevention of regression bugs.

Our rationale behind this strategy was to build on the previous semester’s
work. In particular, we wanted the project to truly benefit from the integration
testing framework they set up to have good confidence about the quality
of some of the more important features for this semester. Indeed, by lack
of time almost no integration tests were present at the start of the semester,
so we identified their addition as crucial and as a central part of our code
quality strategy.

Moreover, efforts we already made last semester to have a UI/UX following
best practices last semester for the social media feature. It was restricted to
this sole feature by lack of resources.

4.3.1 PoP Parties

PoP parties take place during the weekly global meeting and are testing
events where most if not all people present take part. They amount to

24

4.3. Strategy

manual end-to-end tests. Each week we would test a mix of android and
web front-ends with one of the back-ends, both if time permitted, alternating
between back-ends each week. One of the people would be the organizer and
others attendees. Most of the tests were connecting all people to a LAO and
conducting roll-calls and elections. We took note of bugs and interface design
flaw with significant adverse impact. As much as possible we would fix
bugs before the next PoP party such that new bugs could be found. Though
unfortunately sometimes due to the severity of the problem, it took several
weeks to fix it. There were a lot of design problems ranking from benign to
harmful. Given the limited resources, we had to decide on whether to handle
them given the cost to fix (the complexity) and what risk the flaw incurred
for our system.

We note that this method of testing is extremely costly in term of developers’
time. PoP party duration would be between 20 to 40 minutes, which for 10
students, amount to 200 to 400 minutes each week, i.e from 3h20 to 6h40
which is considerable. Of course, automating it would thus be time sparing
but several concerns make it difficult to fit for this project. First, it would not
be trivial to make multiple front-ends and back-end work together over an
internet connection in an automated fashion. This requires infrastructure,
maintenance. This implies problems since most students start the project
with no previous experience with anything remotely similar in term of
scale. Getting into the project is already challenging enough without having
complex end-to-end tests to handle.

4.3.2 Integration Tests

Integration testing is the practice to test components together and verify
their compliance to the specifications[14]. This is the intermediary ground
between testing components individually i.e. unit testing and the whole
system i.e. end to end testing. Conceptually, what is done is that we consider
each subsystem, be it a back-end or a front-end, as a monolithic block, a
black box. We gain insurances about the compliance of the system by putting
in action or messages in the sub-system and checking that its output is what
we expect.

As previously stated, we use Karate to that end. As mentioned in Section
4.2, the framework was already set up in the project by previous students. It
allows us to test each subsystem separately by mocking either the front-end
or back-end and then testing the respective counterpart by sending mocked
messages. This allows us to craft mock network messages which makes it
possible to test many cases that were completely untouched before such as
invalid ids for example. Considering that the PoP project is at its 4th iteration
there are now many features. Therefore we had to make once again decision
as to what should be done and what should be left for future work.

25

4.3. Strategy

Provided that LAO creation and all roll-call features are used by each and
every other feature of our system, we decided that without any doubt they
should have integration tests by the end of the semester. Moreover we also
considered that election features tests were an appropriate addition. Indeed
they had the particularity of being already implemented at the beginning of
the semester but being extended during the semester by a sub-project.

4.3.3 Unit Testing

Thanks to the advice and impulse of Mr. Borsò, the code coverage minimum
for new code was raised to 55% at the beginning of the semester. We were
very fortunate with the receptiveness and testing ethics of other students
because the vast majority of the PRs had coverage on new code over 65%
even regularly hitting over 80%. We decided that having a coverage on all
code of at least 65% was a realistic goal for the systems that at the time were
below that.

At the beginning of May, we decided to raise the coverage limits to 60% on
new code to be merged. We made the decision because out of the open PRs,
none was affected so we would not disrupt the immediate development flow.
Furthermore, students had time to get familiar with their sub-systems and
projects and the vast majority of them had already merged at least one PR.
This decision was to ensure that efforts to raise the coverage would not be
too affected by less tested new features. Of course, exceptions were possible
and have been granted by the teaching staff when it was justified.

Unfortunately we have not reached our coverage goal at the time of the
writing of the report but we fully expect to achieve the goal of 65% by the
end of the project. The current code coverage is as follow :

• Be1 - Go : 78.1%

• Be2 - Scala : 56.0%

• Fe1 - Web : 76.3%

• Fe2 - Android : 62.2%

4.3.4 UI/UX Refactoring

Most of the features developed on both front-ends were done so with little
regard for UI/UX principles. Moreover it let the user bring the application
in a state that can cause errors whose source would be hard to understand.

26

4.4. Execution

4.4 Execution

4.4.1 Integration Tests

Front-End

Last semester the framework was set up for both web and android and a
simple test was implemented, probably as a proof of concept.

Beyond a Simple Use Case The first challenge was to decide on a way
to appropriately to add mocked behaviour from the back-end. Indeed by
reacting accordingly based only on messages sent by our front-end under test,
we would end up creating a mock back-end of ever increasing complexity
- i.e. a back-end. This is obviously a very bad idea as this would not scale,
would be error prone and would also offer lesser guarantees about our
front-end under tests. To remedy that we extended the Reply Producer set up
last semester. During each test we specify what behaviour from the mock
back-end we expect for example LAO creation. This indicates to the mock
back-end which behaviour to adopt. This is a major improvement to the
aforementioned as we only need to care about the correctness of a few lines
of code for each feature instead of the complexity of a mock ever closer to a
real back-end.

Current State Unfortunately, at the time of writing this report, only the
previously mentioned mocked behaviour pattern and a basic test for roll call
creation from the organizer are implemented. Nevertheless we fully expect -
as a must have - to have a set of tests covering roll calls and election features
by the end of the project.

Back-End

Last semester we had some tests but the environment for back-end integration
testing was not fully complete. Thus we needed to apply changes to it’s
implementation. Karate already has it’s own implementation of web-sockets
that was the perfect fit last semester to test lao#create message since we
only needed a valid or invalid sample of such a message to be sent to the
back-end and wait for it’s reply. Then all we had to do is to test whether the
answer was the expected one. However, to test more complex features as the
creation of roll calls we needed the ability to send multiple messages to the
back-end and receive all the answers for each of the messages. Unfortunately
this was not offered by the Karate API. Last semester, some work was done to
create a multi message web socket that would be able to store all the answers
in a buffer. To get those efforts to a working state, only a few tweaks were
needed. With this we had the tool for creating a mock front-end that could
send multiple messages that we crafted and receive responses for each of

27

4.4. Execution

them. For each feature, we test the handling of valid messages and invalid
messages. The latter are detailed in their respective entries.

Simple Scenarios To avoid complex issues with interdependence of tests,
we restart the back-end at the beginning of each test. Therefore in order to
test LAO related features, we always first need to send a valid lao#create

message to the back-end, followed by a subscribe and a catch up message.
To avoid code duplication, we introduce a black box abstraction that will put
the back-end in a desired state and test only the feature that should be tested
on top of it. Those we call ”Simple Scenarios”. For each feature, once tested
we add it to the simple scenarios. For example once LAO creation is tested,
we add a Simple Scenario for LAO creation.

Roll Call The roll call implementations are tested for different properties
they must have. First, valid ones should be accepted without unexpected
behaviour in the form of additional messages sent. Moreover for different
kind of invalid messages, back-ends must respond with the appropriate error
code and description.

roll call#create The invalid fields we tested are: having a non organizer
as sender, empty name for the roll call, sending a valid request on the root
channel, having proposed start later than the proposed end, negative creation
time, a creation time before the proposed start and invalid roll call ids.

roll call#open The invalid messages we tested are: invalid roll call update
id, sending a valid roll call open without creating a roll call before but having
a LAO setup.

roll call#close As for the invalid messages we tested the following condi-
tions: a message containing an invalid roll call close id, valid roll call close
request but without a previously opened roll call.

Election Having added a complete and valid roll call process to Simple
Scenarios, we were ready to test election features.

election#setup The invalid conditions we tested are: invalid election ids,
invalid question ids, an election containing a question with empty ballot
options and an election containing some unsupported voting method.

election#open Invalid messages tested: sending an election#open before an
election#setup, sending an election#open that has opening time before elec-
tion#setup creation time, non-organizer sending a legitimate election#open,
message with wrong election id

election#cast vote The election protocol was slightly changed during the
semester so testing a cast vote needed to adapt to certain changes. At first,

28

4.4. Execution

we could cast a vote within time bounds set by election#setup. We therefore
tested if a cast vote cast before start time or after end time was properly
handled as invalid. However by the introduction of election open, start and
end fields where no longer required and we only needed to cast a vote after
a valid election#open message. The invalid messages we tested: sending
a valid cast vote on a LAO channel, sending a cast vote on a non-existent
election, casting a vote with a wrong vote id, non-attendee casting a vote.

election#end The invalid election end messages as well: wrong election id,
election ends containing different invalid registered votes.

With this message we conclude the testing phase of the open election features
for the back-end.

All the invalid messages contain mostly invalid message fields so we check
if the error code for these messages is -4, and a few messages that have a
non-organizer as sender are considered as messages with access denied and
should contain an error code -5.

Self Contained Tests

We initially followed how the tests where written last semester and adapted
them to our needs. The recurring structure was 1) putting the back-end in
a certain state (that we modularized by using Simple Scenarios), 2) reading
a prepared file that contains the base64 representation of some message
data with all the fields filled in manually, 3) sending this message with the
mock front-end and finally 4) checking if the response received is the correct
one. This approach could be improved. It raised a lot of questions on the
programmer’s side as to what is the data sent. Manually filling base64 data
has many flaws, such as poor maintainability, unreadability, inflexibility and
it is time consuming to debug. For example to reuse a message but adapt one
field, we would have to manually decode the data to see message data fields,
change it, encode it once again to base64 and place it in a file. This is a very
tedious approach. This approach would also not scale to a bigger project.
Indeed, the person writing the test should be able to use utility functions to
obtain value that are the results of complex computations such as hashes.
Otherwise each tester has to have a perfect understanding of how each and
every field is computed. It is a waste of time and is thus costly. In order to
address this problem, we decided to add one layer of abstraction between
karate tests and the functionality. In order to achieve this, we decided that
karate tests should be self contained, meaning that someone who did not
write a karate test before should be able to write one easily without needing
to read a ton of exterior files and documentation. Rather it should be possible
to construct the data of a message and fill in the fields without needing to
know how to compute them. We therefore added utility functions that form

29

4.4. Execution

an API for the computation of every field. This way of writing tests makes
them more maintainable and easier to read.

Nonetheless, we did find some slight limitations in the way we implemented
this abstraction. We therefore extended our API with standard valid non-
computed values for example name or specified time that are user input. We
added standard valid and invalid values for each field so that they do not
have to be written by the programmer for each test.

4.4.2 UI

Front-End 1 - Web

Given the bad user experience (UX) the user interface (UI) of the previous
semester (see Figures A.1 to A.15) provided, we decided that we must do
something about this.

First and foremost, it happened numerous times during PoP parties that roll
calls did not work because somebody did not setup their wallet. And this
is totally understandable, the UI never told the user that they are required
to first setup their wallet. The wallet setup screen was not even the initial
screen of the user interface. Moreover the screen offered two options, one
for generating a new seed for the wallet and one for entering an old seed for
restoring the wallet.

In the new UI these three screens were condensed down to two: One wel-
coming the user, showing them information about the application and some
newly generated seed. If they use the application for the first time, they can
simply press one button and can start using the application without ever
worrying again about setting up the wallet.

If they want to restore the wallet using a previous seed, they can do so by
pressing the corresponding button in the new UI. This new UI forces the user
to setup the wallet and has a similar setup to standard login / register screens
with a prioritization for new users since they do not know the application. A
side-by-side comparison can be found in the appendix in Figure A.1c.

Next, throughout the whole application, centered texts were replaced by ones
aligned to the left of the screen. Moreover all screens were wrapped in a
common component to ensure every screen has the same padding to all sides
and allows scrolling if there is too much content (visible in all Figures A.1c
to A.15b).

Input fields were standardized throughout the application and we now
properly use labels and placeholders (see Figures A.7b, A.10b, A.11b, A.12b.

A consistent color scheme was defined and applied to the whole application:
All buttons have the accent color blue (see Figures A.6b, A.12b, A.14b) if

30

4.4. Execution

they can be clicked and gray if they are disabled (see Figures A.10b, A.11b,
A.12b. The navigation bar was switched from a top to a more standard
bottom navigation bar and now also uses this same accent color (see Figures
A.10b, A.11b, A.12b). The accent color is also used as the background for the
introductory screens for setting up a wallet (see Figures A.1c, A.2b). This
differentiates these two setup screens from the rest of the application. In
these two screens, the buttons and input fields have the accent color as their
background and a white border surrounding them.

Spacing was standardized by defining a basic spacing unit and then using
different multiples for all spacing throughout the screens. A general list
style was defined and used throughout the application making many views
look similar and boring which is exactly what a good user experience should
partially result in: The user should not be required to think too much when
using the application (See Figures A.5b, A.8b, A.14b, A.15b).

The many buttons that were previously scattered throughout many screens
were collected in an action sheet menu (see Figure A.9b) that shows up when
pressing the either the three horizontal dots in top right of the navigation bar
(see Figures A.3b, A.14b) or the pen on a paper icon on the event screen that
is often used to denote create or add (see Figure A.8).

Modals were also standardized by having the same spacing to the side, a
modal header and a button to close it (see Figures A.6b, A.6c).

With the changes to the user interface, we would expect an iOS user to feel
right at home since the styling of the UI elements is in a large part inspired by
iOS. Given that front-end 2 already provides a native android user experience,
it was a natural decision to make front-end 1 look like an iOS application.
That said, react-native supports platform-dependent styling which means
it is totally possible to extend the UI further in the future and make Android
users feel as welcome as iOS users.

Front-End 2 - Android

Having noticed during a PoP party that we had to heavily insist that people
initialize their wallet before participating in a roll call, we decided that it
should be impossible for the user to access a roll call before said initialization.
We further considered that all LAO based feature needs a valid roll call
token. Therefore, we decided to extend the restriction on users who have no
uninitialised wallet. They now can only access the wallet and the settings.

The second aspect covered was navigation. At the start, there were top
buttons, aesthetically unpleasing, and they lacked robustness to screen size,
with buttons easily only displaying part of text. We replaced them with a
bottom navigation bar (see Figure A.16).

31

4.4. Execution

The work with navigation continued on the event lists. The same buttons with
the same downsides were used (see Figure A.16). The show/hide properties
button was replaced with a QR code icon next to the title that expand a layout
to show the LAO QR code (see Figure A.19). Navigation slots are precious,
especially with the addition of digital cash, and this allowed to free one.

Though witnessing is not supported system wide, some previous implemen-
tations exist. Though it was badly designed as the witness list and witness
addition were deeply buried within the event list view screen (see Figure
A.20a). Moreover the messages for witnesses to sign were in a different
view thus giving a very counter-intuitive behaviour (see Figure A.21). We
refactored by creating a fragment for witnessing with a top tab for easy and
intuitive navigation between first the addition and display of witnesses, and
second the witness messages to sign. By lack of time, and since this part is
low priority for the project at this state, the message list for signing is not
refactored at the time of writing of the report and suffer from many flaws
common of the previous UI/UX. It may be by the final presentation though
it is considered a stretch goal once again because of low priority. See a whole
side by side comparison with Figures A.20 and A.21.

The third aspect was the list of elements displayed such as LAOs or events,
be it roll calls or elections. The android widget used, ListView, is old (since
API 1) and is considered legacy on Android Studio. We therefore replaced it
with RecyclerView because per Android developers[1] is a more modern and
flexible widget. Moreover, we updated the element of list to be displayed in
a more airy fashion, the previous cranked up version being unpleasant to
select (see FigureA.16).

A subsequent major problem was that the action and management buttons of
an event were displayed directly on each event entries. This lead to several
problems:

• There was a lot of duplication of identical buttons on one of the main
screens of the app

• The layout for event list elements was badly designed thus making only
half a button out of two displayed on a ”normal” phone screen size

• The list entry was displaying all information such as start and end date,
and name on top of the previously mentioned buttons. This resulted in
a very crowded display that is contrary to UX/UI principles.

• The logic behind was extremely complex. Partly because of the use
of ListView, but also because having a list of views with dynamically
changed display is intrinsically complex and error prone. This resulted
in multiple bugs such as non updated content and homogeneous change
of display when only one element should have been affected.

32

4.5. Findings

Fortunately addressing exhaustively those issues proved to be convenient
and efficient. We removed the buttons from the list elements and instead
added a forward arrow indicating to users they may enter each event. There,
both buttons are displayed and event information as well. The event detail
can be seen in FiguresA.22 and A.23

4.5 Findings

Mostly during karate testing we found there where some badly implemented
parts of features, whenever we found something we proceed in the following
way: 1) try to reproduce the error to see if it is deterministic and easily
reproducible, 2) note the error down, than try to identify to which sub-
project it can be related to, 3) notify the subsystem that we found a bug or
inconsistency, 4) open an issue with detailed explanation of how it can be
reproduced or describe what the problem is, and 5) try to solve it ourselves
if possible or leave it to the respective team to deal with it otherwise.

4.5.1 Idempotency

Idempotency is the property of having the same behaviour for the same
request no matter how many times it is submitted. Valid messages should
always receive a valid response, not matter how many times they are sub-
mitted. Conversely, error messages are split into temporary and permanent
categories. Permanent errors must be responded consistently on each iden-
tical request. For temporary errors response, they may become valid (or
permanent error) if the cause of error is fixed. Permanent errors can be
invalid message field for example. Temporary may be a lack of memory on
the server that will be later fixed.

Having idempotency brings us a lot of benefits, making the system very
robust and prevents some exploits that can be leveraged by an attacker. For
instance, if the back-end does not consider a permanently bogus message as
faulty, a form of replay attack would allow the attacker to eventually obtain
a valid response to a buggy message which can be a major vulnerability.
Nonetheless, achieving idempotency is not an easy task and requires work
on all subsystems, especially the back-ends. Moreover it should be carefully
tested. As an intermediary step, we decided that permanent errors should
always result in an error message from the back-end. We fixed this by not
storing the error messages on the server side so that even if a replay occurs
the server will have to recheck the validity of the message on every request.
The check will therefore always fail and the same error message will be sent
as a response from the back-end.

33

4.5. Findings

4.5.2 Bugs

In this paragraph we lay out the bugs that PoP parties and integration
testing detected. We omit unit testing because those bugs were solved before
merging into the codebase. Due to the sheer quantity of bugs, many of them
benign, we only share a relevant subset here. If not indicated otherwise, all
those bug were fixed.

Fe1 - Web

Many smaller issues were fixed throughout the semester such as vague
protocol specifications or incorrect implementation and of course UI bugs.
As we consider none of those major, we will not go into detail into them

Fe2 - Android

The application we received at the start of the semester had several major
bugs that rendered it unusable. The first and most severe one, was the
impossibility to connect to another LAO.

Another was a buggy implementation of error utility functions that caused a
crash whenever an error was to be logged and displayed to the user, as well
as another when a generic error was handled.

Finally, handling of error message from the back-ends was inadequate which
resulted in crashes in many different situations.

Back-ends

The addition of Karate tests lead us to the discovery of major bugs that
completely undermined the security properties that our system is supposed
to hold. These bugs were mostly due to the lack of checks of the validity of
various id fields by the back-end. Some invalid requests were treated as valid
which broke the integrity and authenticity properties.

The most serious vulnerability on both back-ends was that the signature of
sender on data sent and the message id were never checked. The first is
the most severe since it breaks both integrity and authenticity. Indeed the
signature allows the sender to prove that the data field was filled with the
sender’s private key. The message id relies on the validity of the signature. It
provides a uniqueness property to each message. Breaking it allows replay
attacks.

Furthermore, we discovered some bugs that were not common for both
back-ends but could still be the root for certain vulnerabilities. For starters,
the Go back-end accepted that a non-organizer can create an LAO, create,
open and close a roll call, setup, open and end an election. This defeats the

34

4.6. Future Work

purpose of the organizer entirely since if everyone is free to do whatever in
the system.

Next, we discovered that the timestamp present in election messages was
sometimes taken for granted. It was never checked whether the election
setup creation time is before the election open time.

We also discovered that the registered votes field was not checked for the
election end message. it is a hash over all received valid votes by the end of
the election. Not checking them could allow an attacker to finish an election
earlier and have a biased outcome.

Finally there were a few smaller bugs like not checking the whether the roll
call name is empty, sending an error message twice whenever the invalid
message is sent on the root channel, some unit tests not being exhaustive, etc.

Like for Go, we had some bugs that were only present in the scala back-end.
The major scala specific issue was allowing roll calls to open before they were
created, allowing roll calls to be closed before they open. Moreover it was
possible to close an already closed Roll Call and to open an already opened
roll call. These bugs made us realize that the server lacked some form of roll
call state which would allow to identify relationships between the messages
more easily.

Some ids were also not checked properly like vote id and question id for
election messages, which broke the integrity property as already explained
before.

Scala also did not check that only the organizer should be allowed to perform
certain actions such as creating, opening or closing roll calls which once
again would defeat the purpose of the organizer. And some bugs with lesser
impacts were also present like allowing empty LAO names.

4.6 Future Work

By the time of writing the report, not all goals that we had set for ourselves
are met, but some remain in progress and we will give our best to achieve
them in the upcoming weeks.

4.6.1 Karate

Currently the error codes sent by the 2 back-ends are more or less the same
for all the invalid requests sent to them, however the description of the error
is not the same, they remain similar but an attentive user could potentially
distinguish on which back-end it is connected, which leaks some information
and can cause some issues if one back-end is ore vulnerable to attacks.

35

4.6. Future Work

Another crucial part of Karate tests is to ensure that the system remains
correct even when adding new features or improving old ones, one way to
achieve this is to run karate tests on the CI, this way feature implementers
can check that they did not break preexisting functionalities.

Line coverage for Karate tests should be added.

Integration tests should be extended to all messages. The untreated ones are:
LAO greet, LAO state, LAO update, Secret Ballot cast#vote message and the
whole social media part.

The test set Digital cash features should be completed.

4.6.2 Network Resilience

Almost all functionalities of our systems need resilient communication in
order to function. The PoP app is designed to withstand internet connection
losses and reordering but no true testing has be done in that regard. We
tried using a basic script early on that randomly rearranged and dropped
packets. The app still worked the same and we soon realised that we were
effectively testing TCP (spoiler alert: our very basic script did not find any
flaw in TCP surprisingly). A possible idea would be to implement a pass
through server for testing. It would receive messages first and subsequently
drop and reorder messages before delivering them to the actual server. This
is quite heavy a testing tool to develop.

36

Chapter 5

Subsytems

5.1 Back-End 1 - Go

In this section, the architecture and changes specific to the Go back-end are
described. A detailed description of the subsystem specific implementation
of the different features of the E-Voting (Chapter 2) and Digital Cash (Chapter
3) projects are largely omitted as the specification is already described in the
respective chapters. Interesting implementation parts of specific features are
highlighted.

We will first begin with a general description of the implementation of
Back-End 1 , then we will focus on the changes done during the semester.

5.1.1 System Architecture

The back-end Go will accept web-sockets connections from front-ends and
messages will be exchanged through these connections. The incoming mes-
sages are handled in the hub of the server which will then redirect them to
their corresponding channel. Most of the features are in their own separate
channel that handles the processing of their respective messages.

5.1.2 E-Voting

At the beginning of the semester, the Go back-end already supported the
whole election pipeline, including the election setup, the ability to cast votes,
to end elections and to compute and broadcast the results. All of this means
that at the start of the semester we could run open ballot elections.

Addition to the election pipeline

During the semester we made a few additions to the election pipeline.

37

5.1. Back-End 1 - Go

By symmetry to the election#end message, we added an election#open

message to open the election. We allowed it to open elections regardless of
start and end times set during setup. With the new registry it was a matter
of creating the new message in election open.go, verifying its contents in
election/verification.go and change the state of the election from closed
to open in election/mod.go.

To implement secret ballot elections we need a key pair that is unique to
each election. The key pair is created at the setup of the election and then
a message election#key is created by the server and broadcasted to the
subscribers of the election channel as well as stored in the inbox for the
new subscribers to find. The new message is defined in election key.go,
new fields were added to the election.Channel struct for the keys and the
type of election and a function createAndSendElectionKey() was defined
to perform the creation and broadcasting of the new message.

Encryption and Decryption

Before being able to decrypt the votes coming from the front-ends, we had
to make changes to the election#cast vote message in vote cast vote.go

to comply with the new specifications. Vote.Vote was changed from []int

to interface{} so that we can accept votes both in int and string format.
Due to this change we had to redefine the umarshalling function to ensure
that Vote.Vote either contained an int or a string. The verification of the
election#cast vote messages was changed in election/verification.go

for the same reason.

Given the above it was possible to implement the decryption algorithm in
the function decryptVote() in election/mod.go based of the specification.
Moreover the the encryption algorithm was also implemented so that we
could properly test the decryption of the votes.

Other changes

To verify the authenticity of messages sent by the organizer’s server or
witnesses’ servers, we added a new message called lao#greet that is sent
when a LAO is created. The creation, broadcasting and inboxing of the new
message is handled the same way as for the election#key message from
before, this time in the function createAndSendLAOGreet().

5.1.3 Digital Cash

At the beginning of the semester, as it was a new project, we had a lot
of discussion concerning how to implement this huge JSON Schema in
Go . Even though it contains multiple similar structures with only minor

38

5.1. Back-End 1 - Go

differences, we decided to create a separate struct for each of them. We have
separated them in order to make the code easier to understand.

Implementation of the channel

The implementation of the new channel was reached in multiple steps.
We first implemented the generic channel interface which contains the
Subscribe, Unsubscribe, Publish, Catchup and Broadcast method. Then
we implemented the channel creation and the registry to handle the mes-
sages. Currently there is only one message for the digital cash project:
coin#post transaction, but for the sake of coherence, we stuck to the same
structure used everywhere else. Finally we implemented the processing of
the message which is achieved by first unmarshalling the received message,
checking that it fits in the message structure, then verifying its message id,
storing it into the inbox and finally broadcasting it to all the clients subscribed
to the channel.

Testing the implementation

The final part concerning the Go back-end implementation of digital cash
was the testing. We based our test on the protocol example messages that
were created for this purpose. We reached a coverage of around 80%.

5.1.4 Other Changes

Implementation of Registry

At the beginning of the semester, we started with some channel refactoring.
We improved the implementation by completing a registry to handle the
different message in each channel. That registry allows us to remove multiple
switch statements that were calling different actions according to the message.
This helped to reduce the complexity of the overall codebase and significantly
improved readability. It reduces the code duplication associated with the
aforementioned switch statements as well.

Checking the Organizer Key

Despite the obligation to provide a public key at the command line when
starting a go server, it was never used in any way. The public key of the
organizer’s front-end is sent with the LAO create message. In a first step,
we added a check to ensure the public key contained in the LAO create
message equals the key specified on the server’s start and returned an error
when it did not match. Subsequently, we decided to make the provision of a
public key on the command line an option with the back-end only checking
LAO create messages’ sender when the option was used. This serves two
purposes.

39

5.1. Back-End 1 - Go

• The owner of the back-end should be able to decide if they want their
server to accept only LAOs created by them or also LAOs created by
others. The second case could arise in many occasions such as EPFL
kindly providing a server for students to create LAOs for example. Of
course, we would have to deal with spam possibly resulting in DoS but
this is a concern for another time and another report or paper.

• The current implementation of the scala back-end does not ask a public
key on start and therefore never checks the authenticity of the LAO
create message. While having supplementary feature is okay, having
divergent behaviour should be avoided as it contradicts the N-Version
programming principle of this project (with N=2 in our case).

Refactoring and Testing

In addition to the refactoring done on the registries, further work was done
on the structure of the channels. Due to the fact that multiple people worked
on multiple channels they ended up being structured differently despite all
of them being similar in many ways. We defined a structure and organized
the channels accordingly. This change makes channels more readable and
easier to understand.

The hub folder was also refactored, some comments were corrected and parts
of the code that did not use the dedicated function for hashing now do. Also
other small bugs found during the PoP parties were fixed.

A database feature was also in the process of being implemented before the
semester, but it was never used and more complicated that necessary. With
the refactoring of the channels, the feature was rendered useless and could
be implemented in a more efficient way if we had to do it again. The feature
was also not tested and thus we decided to remove it from the Go codebase.

At the start of the semester, the Go subsystem was the lead in test coverage
across all subsystems. We increased the coverage with each of our PRs by
testing features and new functions as thoroughly as we could. We encoun-
tered some problems with some parts of the codebase that weren’t tested
enough or at all. And that is why some of the future work will be spent
improving the test coverage even more.

Error handling

Error propagation was not consistent across the back-end, the server did not
always return the correct error code when an invalid request was received. To
fix this we needed to take a step back and observe what happens when a bad
request arrived. We found that in some cases an error was returned followed
immediately by a valid response, which could be observed only with karate
tests when checking if some additional messages were sent by the server. The

40

5.1. Back-End 1 - Go

bug was not easily identifiable but easy to fix, it was a simple missing return.
This problem could have been the root of a silent vulnerability since the first
response was the one expected.

Furthermore, we tried to enforce a certain error core on a high level to be
consistent with the other back-end. The system is easier to use if we can
categorize the errors based on their type. The error categories were already
defined at the start of the semester but the rule was not respected everywhere
and it was not uncommon for the back-end to send the same error code for
every error. We refactored the error handling so that all possible custom error
codes can be returned and give more indication on the nature of the error.

More checks

The back-end had some checks missing which would allow some invalid
messages to be accepted, and thanks to karate tests we identified a lot of
checks that should be added as not to create more vulnerabilities. Like
mentioned in bugs paragraph , we found some bugs which allowed us
to locate where the lack of checks was present, and where we needed to
add them and create some unit tests on top of the karate tests that helped
identified the flaw and prevent it from occurring again.
We introduced the most important checks for signatures and for message id.
The remaining fixes had not major impact or are self explanatory with the
bug description since they were edge cases of some features, nonetheless
we wanted to secure the application as much as possible so the fixes were
applied and correspond to one of the test cases of the overall karate tests that
we implemented.

5.1.5 Future Work

E-Voting

For the e-voting sub-project, the next steps will be to implement server-to-
server communication, finalize and thoroughly test the witnessing feature,
implementing the Neff-shuffling and finally partial decryption so that the
secret ballot elections are complete.

Digital Cash

Concerning the Digital Cash sub-project, the next step will be the implemen-
tation of witnessing and consensus into the project making the system more
trustworthy.

41

5.2. Back-End 2 - Scala

Other work

Our test coverage is already good but it could always be better and some parts
of the codebase are still untested from previous semesters. So improving the
test coverage is also one of the key points of future work.

The Go codebase also has the highest code duplication percentage mainly
because the channels, after refactoring the registry, are very similar. Reducing
these duplications is also something that the Go sub-system should strive
for.

5.2 Back-End 2 - Scala

In this section, the architecture and changes specific to the Scala back-end
are described. A description of the subsystem specific implementation of
the features of the E-Voting (Chapter 2) and Digital Cash (Chapter 3) are
briefly described. We focus on interesting implementation that are specific to
the Scala subsystem. We will first begin with the interesting features of the
e-voting part, notably the encryption and decryption process, and then we
will focus on the improvements and code consolidation of the initial code.

5.2.1 E-Voting

Initial state

Initially, the state of the Back-End 2 only supported the election#setup

message. Therefore, we could only display an election. The verification of
the SetupElection messages was implemented in the validators.

Support for the other messages was not implemented.

Modified components

The main work on the Back-End 2 was to support election#cast vote and
election#end messages, and further, to send the result election#result to
the front-ends.

Computing the results of an election requires a lot of interactions with
the database. That is why we created a new helper class ElectionChannel
containing shared functions to avoid code duplication. The class for instance
contains the function extractMessage that helps extracting all messages of
given types. Each channel can this way obtain the set of messages it is
concerned with.

The steps to compute the results of an election can be summarized as:

42

5.2. Back-End 2 - Scala

1. Extract election information, such as question ids and available ballot
options for each question. For this purpose we created the function
getSetupMessage in ElectionChannel.scala.

2. Only keep the last election#cast vote message per attendee. This is
what the getLastVotes function does in ElectionChannel.scala.

3. For each ballot of each question, we count the number of cast votes
with the function createElectionQuestionResults in ElectionHandler.scala.

4. Create the ElectionQuestionResult objects from the previous results also
done in createElectionQuestionResults in ElectionHandler.scala.

5. Create the election#result data, convert it to a message and broadcast
it in the function handleEndElection.

To support the greet#lao described in Chapter 2, we needed to find a way
to store the address of the server. In the Back-End 2 , the address was stored
in a simple value in the Server.scala file. The simplest way to get access to this
value was to use the same value in the handlers of the LAO, and to store it
in the object LaoData. Therefore, we added a new field to it, and updated the
updateWith function. For the future it would be wise to find a better way to
obtain access to the address of the server.

Encryption and Decryption

We included the whole DEDIS cothority library project in the Scala side as
a dependency, because we decided to use the Kyber library and the crypto-
graphic primitives it provides since there exist compatible implementations
for all four subsystems.

We implemented a new class KeyPair containing a PublicKey and a PrivateKey.
The two classes PublicKey and PrivateKey implement a encrypt and decrypt
function, respectively. With a KeyPair object it is also possible to access the
encrypt and decrypt functions.

After generating the keypairs and sending the election#key message to
the front-end, we had to find a way to store the private key safely, so that
we can use it again for the decryption. We decided to create a new object
ElectionData, which is stored in a new private channel. The object stores
simply the id of the election concerned and the corresponding private key of
the pair of keys generated. We decided to create a completely new channel
so that no Client gets access to the private key.

To store the ElectionData and, successively, the private key in the database, we
had to implement two functions in the DbActor.scala, which are the following:

1. createElectionData that creates the object and stores the private key. It is
only used in the election#setup message, when we need to send the

43

5.2. Back-End 2 - Scala

election#key message. It creates a new channel which has the path
root/private/electionId.

2. readElectionData that is used when we compute the election#result

message with encrypted votes. We retrieve the private key, and can
decrypt the votes to compute the result.

The decryption of election#cast vote messages become pretty easy once
all this is done. We first changed the signature of the class VoteElection to
take an Option[Either[Int, Base64Data]], for open ballot or secret ballot
versions. We obviously needed to modify the MessageDataProtocol to support
those changes.

Verification

Currently, the validators of the Election are fully complete. We check
thoroughly all the attributes of each messageData when receiving it from
the front-end. We point out particularly the checks for the vote ids, question
ids and the election id. Moreover to verify the validity of election#open
and election#end messages we needed to use the extractMessage function to
check its current state.

The extractMessage function is also very useful to compute the registe-

red votes field of the EndElection message. We need to retrieve all the
votes of the previous election#cast vote messages. We want to ensure the
integrity of the message. We created a function compareResults, in the file
ElectionValidator.scala, that computes the expected hash accordingly to the
protocol and compares it with the received hash in the registered votes

field of the election#end message.

Apart from that we needed to apply also some refactoring, for instance some
roll call messages were accepted when they shouldn’t have been. By adding
some roll call state and refactoring the validator made the server more aware
of the relationships between different messages and thus less error prone.

Furthermore we added basic checks to complete the full verification of the
message including checking the staleness of the timestamp of the messages as
well as the signature and message id which as mentioned in Bugs introduced
a massive vulnerability in the system.

5.2.2 Digital Cash

In the digital cash subsystem, back-ends are less involved than front-ends.
They need to relay published transactions on the appropriate channel and
optionally validate them. The only message type is postTransaction. The
first step was to make sure it could be serialized and deserialized from and
to JSON. This also required creating case classes for all the components of a

44

5.2. Back-End 2 - Scala

transaction. Since transaction amounts are specified as values of the range
[0; 253[, we represent them with scala.Long, which is a built-in signed 64-bit
integer type.

Additionally, we implemented many validation steps including checking
the transaction hash, verifying the signatures and checking transactions for
overflows. We also made sure this code was covered by tests.

5.2.3 Code consolidation

In this section, we focus on bugs found and fixed during this semester. We
also describe new features added and explain why they are relevant.

Features and Fixes

As a first task, we needed to fix a JSON schema bug. The server disconnected
when receiving a wrongly formatted JSON message. We modified it to
gracefully handle the exception and reply with an error message instead of
simply disconnecting.

During the semester, we particularly focused on the fixes in the Rollcall

implementation. We needed it to fully work, since the E-voting part depended
on the correct implementation of the RollCall. Here are the main fixes:

1. First, the update of the attendees in the LaoData was not correctly done.
We modified the function handleCloseRollCall consequently, by adding
an interaction function with the database by using the WriteLaoData
function.

2. We needed to modify the handlers such that we cannot open and close a
RollCall message when it was already opened or closed, respectively.

3. The creation of the same RollCall several times was also possible.
We decided to create a dedicated channel for each create#rollcall

message. If the channel already exists in the database, this means that
the RollCall was already created and the back-end then returns an
error indicating this.

4. Initially, only basic verifications were made in the function validators
of the RollCallValidators.scala file. We focused on checking the ids con-
tained in the opens and closes fields. Since those ids are linked to
previous RollCall messages, we needed to retrieve or store the previ-
ous open#rollcall, reopen#rollcall or close#rollcall. A first idea
was to use the extractMessage function from ElectionChannel.scala but this
turned out to be a bad idea. All RollCall messages are stored in the
main channel, so by trying to filter for these messages, all messages had
to be checked. Therefore, we created a new object RollCallData in a

45

5.2. Back-End 2 - Scala

new channel which has the path root/rollcall/laoId. RollCallData
has two attributes, the state of the previous message (i.e. CREATE,
OPEN, REOPEN or CLOSE), and its id (the update id field, the roll call
ids change during the lifetime of a roll call) of the latest message. We
also implemented two new functions in the DbActor.scala, respectively
writeRollCallData and readRollCallData. For each message, we use the
writeRollCallData, which updates the state and the update id field to
match the new message. The readRollCallData is used in the validators
of the Finally, the readRollCallData is used in theRollCall. In fact, it
helps checking the validity of the opens and closed ids, by retrieving
the RollCallData with the updated fields. The consecutive updates
were necessary, since we can close and open/reopen a roll call several
times. For instance, a roll call can only be opened after a close or a
creation action, and can be closed only after a open/reopen action.

5. The function updateWith in LaoData.scala was fixed. This function up-
dates the corresponding fields after the lao#create and rollcall-

#close messages. After a rollcall#close message, the list of atten-
dees did not include the PoP token of the LAO organizer. It threw
an exception when a second rollcall#close message was sent after
reopening the roll call.

Currently, the Scala back-end can handle the witness#message messages.
To do so, we needed to implement the handler and validator of the object
WitnessMessage. We also needed to implement the function AddWitnessMes-
sage in the file DbActor.scala. This function adds the witnessSignaturePair

to the message we want to witness. It takes the message id of the concerned
message and the signature to add. Of course, those two fields need to be
correct and consistent. This is checked in the validator.

Tests and coverage

We improved the coverage of the Back-End 2 back-end by adding several tests
to the Election and RollCall. In fact, initially, the tests for the Election were
only testing the election#setup messages. By implementing the handlers
and validators of the entire Election, we added unit tests that were verifying
the integrity of the messages, and also the corner cases. The big part con-
cerned to test the handlers, notably the computation of the election#result

message. Therefore, a lot of tests concerning the handleEndElection method
were added. To do so, we used several Mocked Databases that reproduce
the behavior we want to test.

We also added tests to the RollCallHandlerSuite.scala file, which test the
rollcall#open, rollcall#reopen and rollcall#close messages. Previ-
ously, only the rollcall#create messages was tested. We also created a
whole new file RollCallValidatorSuite.scala which tests the validators of the

46

5.2. Back-End 2 - Scala

RollCall. Consequently, we created tests in the DbActorSuite.scala for the
new function created for RollCallData and for ElectionData.

After the implementation of the handler and validator of witness#message,
we also created new files HandleWitnessMessageSuite and ValidateWitnessMes-
sageSuite containing the tests for the handling and verifying of the corre-
sponding messages. The verification of a witness#message should currently
test fully the integrity of the message.

5.2.4 Future work

There are several things in Back-End 2 that need to be taken care of in the
near future.

Test coverage

More tests for other, previously untested features should be added. The
handlers and validators of LAO have very few tests. Moreover concerning
the DbActorSuite.scala file, the written tests currently do not verify the corner
cases. This would certainly increase the coverage of the Scala back end,
which was, initially, the subsystem with the lowest coverage.

Server communication

As stated in the e-voting description, to achieve all goals of the secret-ballots
elections, we need to have server to server communication but at the time
of writing Back-End 2 only supports one server at a time. Even though the
support for witness#message has been implemented, future work needs to
be done to include support for witness servers as described in Section 1.3.2.

Code quality

There are a number of weaknesses in the maintainability and readability of
the code that need to be taken care of.

Firstly, the message pipeline uses scala.util.Either backwards with re-
gards to the convention. It puts error in the Right constructor for Either

and results in Left. Although this is completely functional because Either

is symmetric, this can be confusing for readers since it flips the convention.
Taking a moment to reverse this would therefore do good.

The message pipeline also seems to prefer hiding scala.concurrent.Future

objects inside methods, making sure to block the thread to wait for them
before returning. This isn’t the way futures are designed to be used. They
can be returned from functions and passed around to represent the result of
asynchronous operations, and waiting on them synchronously is discouraged.

47

5.3. Front-End 1- React/Typescript

Therefore, some work has been done to switch to the intended usage pattern,
but it is not yet complete.

The project uses Scala 2.13. A new major version of Scala called Scala 3 is
now available. Migrating the codebase can be mostly automated. It would
be good to do so since future students will likely learn Scala 3: in particular,
CS-210 “Functional Programming” at EPFL, which some future students will
have taken, has already switched.

Adopting automated code formatting and styling could reduce friction. There
is currently no such mechanism in Back-End 2.

5.3 Front-End 1- React/Typescript

In this section, the architecture and changes specific to the React/Typescript
front-end are described. A detailed description of the subsystem specific
implementation of the different features of the E-Voting (Chapter 2) and
Digital Cash (Chapter 3) projects are largely omitted as the specification is
already described in the respective chapters. Interesting implementation
parts of specific features are highlighted.

The first section will describe the the architecture of the subsystem set up by
other students in previous work and the remaining sections will highlight
changes in the architecture and other interesting changes.

5.3.1 System Architecture

Framework and Programming Language

Front-End 1 is developed using react-native which is a user-interface (UI)
framework on top of react, a Javascript library for building web UIs. It uses
the same syntax as react but provides many general components which
allows it to compile to either native iOS or Android applications as well as
web applications. The main purpose is building mobile applications which
means that while the web application will still run on a desktop machine, it
is hard to make it responsive (adapt to different screen sizes) compared to
standard CSS styling.

The main concept of react is that of so called components which make up
the whole UI. There is one root component that then embeds all other
components of the applications, possibly dependent on the application state
and arguments passed to it. The UI consists of a tree of these components
where a component can have zero to multiple children. A component is
nothing more than a function that returns its children in the UI tree when it
is being rendered. Components can accept a set of arguments called properties
(props for short) that allows it to return a UI dependent on these properties.

48

5.3. Front-End 1- React/Typescript

A simple example is a button component that displays a certain text and
performs a given action if the text is touched, can be defined as follows:

type Props = { text: string , onPress: () => void; };

const Button = ({ text , onPress }: Props) => {

return (

<TouchableOpacity onPress ={ onPress}>

<Text >{text}</Text >

</TouchableOpacity >

);

}

In the above example, TouchableOpacity is another component that handles
touches and shows visible feedback to the user.

Even though react-native and react are Javascript libraries, the majority
of the code is written in Typescript, a superset of Javascript . Javascript
is a weakly, dynamically typed language which allows the detection of
type errors during compile time (Typescript is compiled to Javascript). In
contrast to that, Typescript is statically typed which allows type-checks to
be performed by the compiler (and also the linter). Moreover, react extends
both, Javascript and Typescript with an XML-like syntax that allows an easier
to read representation of the UI as visible in the above example, especially if
the reader is already accustomed to HTML.

In the following we will only refer to Javascript even if the implementation is
done in Typescript unless it is something very specific to Typescript.

State Management

For state management, Front-End 1 relies on another Javascript library called
redux. It works by splitting state management functionality into two pieces:
actions that are dispatched by the UI to request a state change and reducers

that receive these actions and based on the action and the current state
compute the updated state. The actions act as an abstract interface to the
underlying state storage and state updates allowing reducers to change
without requiring changes in all places actions are dispatched.

A reducer is simply a function accepting an action and the current state that
then returns the new state. So a reducer can be as simple as in the following
example.

const countReducer = (

state = 0,

action: AnyAction

) => {

49

5.3. Front-End 1- React/Typescript

switch(action.type){

case "INCREASE":

return state + (action as IncAction). value;

case "DECREASE":

return state - (action as DecAction). value;

default:

return state;

}

};

There are some subtleties that have to be taken into account when writing
reducers, for example redux requires reducer states to be immutable. Fortu-
nately there are libraries such as @reduxjs/toolkit that enforce this property
and make writing reducers as well as actions even easier by removing a lot
of the boilerplate code that is required otherwise.

Data Flow

Given the communication architecture described in Section 1.3.1, we know
that every message in the system is broadcasted to all attendees, including
messages sent by ourselves. This allows Front-End 1 to solely rely on in-
coming messages for state updates making it very trivial to keep the state
consistent with the back-ends.

In a bit more detail, after connecting to a back-end, Front-End 1 maintains
a websocket connection and listens for incoming messages. As soon as the
network module receives a message, it dispatches a redux action resulting
in it being stored in the corresponding reducer. The so-called ingestion
module maintains a watcher on this reducer state and starts processing added
messages by calling the corresponding message handlers. These in turn then
again dispatch redux actions to change the corresponding application state.
The user interface maintains watchers on the reducers relevant for the UI and
triggers a re-render as soon as the data in the respective reducers changed.

This indirection via the redux store decouples the UI from the message
ingestion and the message ingestion from the networking module making
them easier to maintain and test in isolation of each other.

As mentioned in the beginning of this Section, attendees also receive a
broadcast of messages they sent themselves. This means it suffices to send
out the corresponding network message after an interaction with the UI and
at some point this message will then be received by the network module
and the previously described process starts. In short, the communication
architecture allows the same UI update logic to be used for state updates
caused by any attendee and no special cases are needed for the user that

50

5.3. Front-End 1- React/Typescript

Figure 5.1: Data Flow Architecture of Front-End 1

interacted with the UI. Figure 5.1 graphically depicts the just described data
flow architecture.

5.3.2 E-Voting

An interesting aspect during the implementation of the e-voting functionality
was the realization that previously it was never checked by the front-end
whether an election#result was sent by the organizer. This did not really
matter since it was in any case only possible to connect to the organizer’s
back-end which means this check was performed implicitly. Now since
the lao#greet message was introduced (see Chapter 2) it is finally pos-
sible to properly verify the authenticity of this message analogous to the
election#key message.

Unfortunately there is the problem that the current implementation of the
lao#greet message is still not fully sound since the back-ends do not both
support witness signatures including the special case where the organizer
front-end signs the lao#greet message. Thus at the time of writing, Front-
End 1 accepts any lao#greet message as valid. This has to be fixed at latest
before there is server-to-server communication and the front-end will be
able to connect to a LAO via a witness or a second organizer’s back-end.
The corresponding check was already implemented in Front-End 1 but it is
disabled with and marked with a //FIXME comment.

For the implementation of the vote encryption, the npm package @dedis/-

kyber provided by the DEDIS lab was used as it is compatible with the kyber
libraries used on the back-ends. Unfortunately the library does not directly
export a key generation or en- and decryption functions which thus had to
be implemented manually based on a provided Go code sample. The hardest

51

5.3. Front-End 1- React/Typescript

part in the implementation was getting the encoding of the encrypted data
correctly aligned with the back-ends.

Other than these points, the implementation of the e-voting feature in Front-
End 1 was rather straight-forward.

5.3.3 Inter-Feature Dependencies

Until the end of last semester, the project was structured by functionality
and not by feature making it harder to realize which files belong to what
feature and to see what the dependencies between features are. In between
the two semesters, the DEDIS lab changed the structure to be feature based
which made it much easier for us to get started. Now since the features
previously were all intertwined and there was not a lot of time between the
two semesters, simply restructuring where files are stored resulted in a lot of
inter-feature dependencies such as the evoting feature importing functionality
from the lao feature. Since it is in feature-based architectures preferable to
have the features as independent as possible to, for example, allow disabling
some of them, we put quite some effort into separating them. Now of
course, completely separating them is simply impossible as for example
most features simply depend on the lao feature. Thus we decided to go for
dependency injection which is a design pattern in which the dependencies
are explicitly passed at runtime. More specifically, we modeled each feature
as having some in- and some output. The input consists of a configuration
containing all dependencies and the output consisting of an interface that
the feature exposes to other features. Each feature then exports a configure

function accepting the configuration, initializing the feature and returning
the exposed interface. The example below shows a simple example of how
this could look like.

interface MyFeatureConfiguration {

getCurrentLaoId: () => Hash;

}

interface MyFeatureInterface {

getEvent: (eventId: Hash) => Event;

}

const configure = (

config: MyFeatureConfiguration

): MyFeatureInterface => {

initMyFeature(config);

return {

getEvent: (eventId: Hash) =>

52

5.3. Front-End 1- React/Typescript

EventStore.get(

config.getCurrentLaoId (),

eventId

);

};

}

After having decoupled features this way, there is a point where each feature’s
configure function has to be called with the proper dependencies. This then
puts everything together and initializes all desired features.

const configureFeatures = () => {

const laoInterface = laoFeature.configure ();

const eventInterface = eventFeature.configure ({

getCurrentLaoId: laoInterface.getCurrentLaoId

});

};

In case of circular dependencies, this gets slightly more complicated. One
way to resolve them, is to add a second configure function, e.g. configure2,
which then allows a feature to be initialized in multiple steps: First configure
is called, the returned interface is used to initialize a second feature and
the interface exported by this second feature is then in turn used to call
configure2 on the first.

To enable react components to access this feature configuration object, we
leverage a react feature called context. A context allows passing properties
from one component to all children component, no matter how deeply nested
they are. By wrapping the whole application in a feature context where
each feature adds its own configuration, react components of all features can
access their respective configuration object and this ways access the injected
dependencies.

At the time of writing all inter-feature dependencies have been replaced by
dependency injection except with the exception of the social media feature.

5.3.4 Client to Multiple Servers Communication

In the future clients will need to be able to connect to multiple servers in
order to enable the protection against censorship described in Section 1.3.2.
The networking module already partially supported multiple connections by
the front-end but the support for it was not implemented all the way. During
this semester we changed the LAO state to use a list of server addresses
rather than a single address, we added the possibility to manually add a
second server while being connected to a LAO and we made sure that when
writing the lao#greet specification, it included a peers field that contains

53

5.3. Front-End 1- React/Typescript

the list of other servers hosting the same LAO. This field in the message
solves bootstrapping for the front-end in cases of honest back-ends.

5.3.5 Properly Typed Navigation

In the beginning of the semester, the type checking for navigation was
disabled by using the Typescript any type which prevented the linter from
checking whether all issued navigation events are correct. This issue was
resolved by statically defining the list of all navigation screens and the
arguments they accept. Unfortunately it was not possible to do this in the
different features since this type needs to be statically known and dependency
injection only happens at runtime. Thus the options we came up with were
to either 1) have this types global, i.e. in the core of the application, 2) to
have it in the features requiring inter-feature imports (which is something we
wanted to remove, see Section 5.3.3) or 3) to keep it the way it was. Given this
choice, we decided for option one which seemed to be the least bad option.

5.3.6 Code Conventions

In the process of working on the project, we realized that enforcing additional
conventions on the code will be helpful. In the following we list the linter
rules we added and changed.

Import Order

Previously imports were in no particular order. To keep things more readable
we added a linter rule enforcing an order on the imports by grouping different
types of imports, requiring a newline between the groups and requiring
alphabetical order within the groups.

Color Literals

In general only a small set of different colors should be used throughout an
application so that the user gets a consistent experience across features and
screens. We try to force developers to use colors of the existing color palette
by forbidding inline color literals. Unfortunately we did not find a linter
rule enforcing the same rule for numeric literals as spacing, border with etc.
should as well be consistent throughout the application.

Inline Styles

Inline styles were already discouraged before, i.e. the linter printed warnings.
During this semester we were able to remove all inline styles and change the
linter rule to report errors instead of just warnings.

54

5.3. Front-End 1- React/Typescript

5.3.7 Witnessing

Support for the basic message#witness message (see Section 1.3.2) was
already implemented in Front-End 1 but there was no UI built for it. There
are three different cases for messages: Either they 1) have to be witnesses
manually, i.e. the content of the message has to be verified by the witness,
2) they can be witnessed automatically because the content of the message
is not of our concern, for example cast votes and 3) they do not have to be
witnessed at all.

Supporting 3) only required adding a map telling the application which
messages have to be witnessed and which do not. In order to support 2) we
also need to differentiate between active and passive witnessing but the same
map can be used for this. Automatically sending the already implemented
message in cases of messages that can be witnessed passively was straight-
forward to implement.

Supporting 1), i.e. messages whose content should be manually checked by
the witness before approving, is the hardest to support as it is not trivial to
design a user interface for this.

Showing a popup every time the front-end receives a message results in a very
bad user experience (UX) and thus we decided for an implementation that
allows for delayed choices. To do so, we implemented a general notification
feature that can in the future be used by other features as well. If the front-end
receives a message that should be witnessed manually, it adds a notification
to the list allowing the user to decide on it as soon as they have time for it.
Since there are a ton of different messages in the protocol and time during
the semester was limited, we did not yet design a proper way to display
messages to the user and the current screen displaying the decoded json
message mostly acts as a proof-of-concept (PoC).

5.3.8 User Interface

The user interface of Front-End 1 has been completely overhauled, the details
can be found in the Engineering a Production-Ready System chapter in Section
4.4.2.

5.3.9 Future Work

There are several things in Front-End 1 that in the (near) future should be
taken care of:

• Inter-Feature Dependencies
It would be great to remove the remaining inter-feature dependencies
from the social media feature. Given the already done work this should
not be a very time-consuming task and is planned for the time between

55

5.3. Front-End 1- React/Typescript

the report submission and the presentation. After doing so, depcruise,
a tool for detecting inter-feature dependencies, should be set to report
errors instead of just warnings.

• Re-Subscription Bug
There is an issue where Front-End 1 is no longer subscribed to sub-
channels of the LAO after it is reloaded or the connection breaks. This
is due to the fact that both back-ends for each channel directly store
the set of TCP sockets that have previously subscribed rather then the
set of public keys of the corresponding users. At the time of writing
it was not decided what the best option is to resolve this issue. Either
the back-ends switch their implementation to public keys or Front-End
1 must add changes that make it re-subscribe to all relevant channels
after a connection breaks.

• Native Builds
At the time of writing building native applications is impossible. This
is because several react dependencies are used that are only web-
compatible and not with native applications. Among them are the
date picker and the QR code scanner. For both, alternatives exists
which support native applications, in the case of the QR code scanner
it will require some additional work though since it either requires
updating our dependencies (the newest version of expo has a QR code
scanner supporting both, native applications and the web) or loading
the old expo QR code scanner only for native applications and a web-
specific scanner for the web since it only supports native applications.
Obviously all css imports also need to be made conditional to the web
as it is not supported in native applications.

• Literal Strings and Constants
At the moment there are still quite a lot of literal strings in the UI
code even though they should all be placed in strings.ts as by the
current convention. The reason for it is supporting translation in the
future. It might be worth considering react-intl / Format.JS, a
library that takes care of translation and does not require storing them
all in one central location. It can generate this global list of all strings
automatically from the source code where messages are defined in their
corresponding features. At the same time it should be taken care of
separating UI strings from application constants, at the moment they
are partially mixed.

• UI and UX
Even though a lot of progress has been made on that front, ensuring
user experience is a continuous task and never finished. Therefore it
is almost certain that there are also issues with the new user interface.
Moreover there are also parts of the UI that were mostly untouched

56

5.4. Front-End 2 - Android

(due to the limited time) but would also need a brush up.

5.4 Front-End 2 - Android

In this section, the architecture and changes specific to the Java front-end
are described. A description of the subsystem specific implementation of
the features of the E-Voting (Chapter 2) and Digital Cash (Chapter 3) are
briefly described. We focus on interesting implementation that are specific to
the Java subsystem. We will first begin with the interesting features of the
E-Voting part, notably the encryption and decryption process. Then we will
discuss about all the changes that have been made regarding the digital cash
team. Finally, we won’t discuss here the code consolidation that has already
been described in Production-Ready.

5.4.1 E-Voting

Initial state

The original state of the E-Voting was pretty complete: message handling
was well written and most importantly, it was possible to do an election
successfully (at least with the Back-End 1 back-end). Some tests were created,
but it was not complete. Furthermore, the current implementation relied
heavily on time events. Consensus was also implemented for the process of
opening an election. On top of this, user interface design was pretty simple
and not very user friendly.

Modified components

The main goal of Front-End 2 was firstly to remove time dependency for
opening and ending an election.

The handler of election#end message was already implemented, we had
to only enable a button for the organizer to end the election. For opening
an election, the work to be done with election#open was more consistent,
since the message had not been implemented yet. In the same way as for the
election#end, a button was introduced for the organizer to open the election
whenever he wanted. The appropriate handler handleElectionOpen had to be
implemented too, so the election could actually begin upon receiving the
election#open broadcast.

Concerning the greet#LAO, we needed to find a way to store the address of
the server. The simplest way to do it was to introduce a new global repository
ServerRepository. The new repository stores the address given a LAOId in a
HashMap, after a successful handling of the greet#LAO by the handleGreetLao
function.

57

5.4. Front-End 2 - Android

Encryption and Decryption

Prior to actually encrypting the vote and casting it, a modification of the Elec-
tion object had to be done to introduce two new fields. Firstly, ElectionVersion
which indicates if the election should be encrypted or not, and electionKey
parameter which stores the value of the public key sent by the back-end
in the election#key message. Appropriate handling and tests for the new
election#key message and the new version of the election#setup had to
be written. Finally, the user could now choose, on the setup screen, choose
the version of the election he wanted, respectively open-ballot or secret-ballot.

Concerning encryption, we included the whole DEDIS cothority library
project in the Java side as a dependency, because we wanted the Kyber library
and the cryptographic primitives.

The encryption was done by the encrypt function in the ElectionPublicKey
class. ElectionKeyPair and ElectionPrivateKey classes were also added, so that
we could encrypt and decrypt, and also generate public and private key sets.

The new version of the election#cast vote required a bit more of work
because of the oneOf field of the Json message. Thus, an appropriate deserial-
izer had to be coded to correctly deserialize the vote object into the correct
type (either ElectionVote or ElectionEncryptedVote). Furthermore, we made the
appropriate changes so that only one vote could be selected. The appropriate
type changes and signatures were done inside the code base.

Finally, some checks needed to be implemented to compute the hash of
the voteId for the election#cast vote and the hash of the voteId’s for the
election#end message.

5.4.2 Digital Cash

The Figure 5.2 shows the process behind the digital cash feature. In fact,
before using this feature, it is necessary to create a LAO, then to create a roll
call, to enter it, and finally close it. [1] The user can use the interface in two
ways: by issuing first money when acting as the organizer of the LAO, or by
sending money when acting as a member of the roll call. Users also have the
possibility to see their last received money on the interface. [2] The sending
information on the user interface (send/issue fragment) is passed to the view
model which transforms it into a transaction message. Then, it publishes
the json message according to the postTransactioncoin.json and sends
it to the coin channel that had been set up with creation of the LAO. [3]
The message is handled by the back ends.[4] The TransactionCoinHandler

gets the message from the channel [5]. Then the TransactionCoinHandler

calls the LAO which updates the state of the application. It keeps in memory
the last transaction per user, that is a dictionary which indicates the current

58

5.4. Front-End 2 - Android

Figure 5.2: Steps for the digital cash feature

amount of money available per user public key. In the same way, there is an
overall transaction history per user public key.

Further detail on the user interface

Let us now detail the topic of the [2] user interface of the application. Under
the current Beta-Version, it shows the main activity
DigitalCashMain.java and several fragments for the menu options such as
”home”, ”send”, ”receive”, ”history” and ”issue” which are all wired and
handled by a view model.

As pointed out previously, the digital cash feature can only be used after
creating a LAO and entering/closing a Roll Call. A button on the LAO menu
authorizes the access to the digital cash feature. Figure 5.3 displays the user
experience using the extension. First, we have a home environment which
displays address and amount for the user of the current user device. Below,
the menu displays each digital cash option. In case, the user is the LAO
organizer, he/her can click the issue menu button in order to send money
to any member of the last closed roll call or to all the members of LAO. For
the moment, the witness option is not implemented yet. In case the user is
just a member that has enough money and entered the roll call, he/she can
use the send fragment to send an amount to another user. Once the send
button is pressed, a receipt for the transaction is produced with on it the

59

5.4. Front-End 2 - Android

sender and the amount. Finally, by using the receive option a user sees the
last transaction that concerned him or her. Amount, sender ID, QR code and
elapsed time are also displayed.

Further detail on the communication

The digital cash communication [3] follows the JSON schema agreed upon
throughout the semester 3. To be able to communicate with the back ends, a
java android front-end was required to create special classes which are linked
to the communication objects and sub-objects. Therefore we have created
the PostTransactionCoin, Transaction, Input, Output, ScriptOutput and
ScriptIntput classes. The view model is the one which publishes the
network message on the coin channel with the preexisting message handler
and communication classes that were already available in the code.

The information about the transaction is then broadcasted to all devices and
handled by the TransactionCoinHandler which creates a TransactionOb-

ject. Then the LAO of each device is updated with the state of transaction for
the application according to public key mapping. The names for the dictio-
naries used are transactionPerUser and transactionHistory representing
the last transactions per public key, giving the current state of money of the
user with the output as well as the history of all transactions per user.

5.4.3 Production Ready

During the refactoring of the event list UI we implemented a significant
change as to how event state are handled. Previously, there was a hybrid
(and quite buggy) implementation of both event and (poorly handled) time.
Handing time is messy and therefore from the start the PoPStellar app was
never intended to be solely based on time for crucial elements like the closing
of an event. Nevertheless the hybridism resided that the opening of election
was time based, or rather was a poor attempt at that because the refresher
was not working at all and the only option left was to leave the view and
come back to it to have it updated. The closing was a mix of both where
the closing button was enable only when the time of election was passed. It
suffered of the same updating issues as the opening.

We fix most of the problem by having the state be purely event driven
and time only be a suggestion and has therefore no impact whatsoever on
state. It is nevertheless displayed as organising real life event would require
indicating start and end times. There subsists a bug for elections where the
event might jump to the right section of the list (i.e. previous, current and
upcoming events) though we hope it will be fixed by the final presentation.
We don’t provide a higher confidence of fixing it because initial analysis of
the bug seems to indicate a non-trivial issue.

60

5.4. Front-End 2 - Android

5.4.4 Future work

Test coverage

Some tests still need to be added to fully cover all cases of the handling of
the different message for the election. At this stage, even though a lot of tests
have already been written and some UI tests still need to be added for the
digital cash and E-votin as well.

Server communication

Future attempts to implement multiple server communication could use the
newly added ServerRepository to connect to multiple back-ends. However,
during the elapsed semester, nothing in particular has been implemented in
this field.

Code maintainability

As for the code maintainability, we believe that the code will be a lot easier
to maintain after the changes done by the production ready team. Indeed,
new code pushed this semester had good coverage minimizing the need for
additional testing.

Suggested front end development for the Digital Cash feature

A suggestion for further improvement of the front end would be to add a
history fragment which should display the entire LAO transaction history
per user as shown on the figure 5.4, some scanning possibilities for the QR
code in the send/issue fragments as well as a witness option.

61

5.4. Front-End 2 - Android

Figure 5.3: Digital Cash User Interface

Figure 5.4: History of Transaction. (currently filled with static value but we’re confident that It
will not be the case at the end of the semester)

62

Chapter 6

Conclusions

During most of the semester, we were behind the schedule across all three
projects and subsystems, and it mostly was the case that the builds deployed
for PoP parties broke because of trivial issues that could have been resolved
before if somebody had tested it earlier. In general, communication during
the first half of the semester was lacking and we did not do a lot of progress.
What did not help this is the fact that the specification of the different features
was not finished until quite late in the semester.

Unfortunately, at the time of writing, not all primary goals of each of the
three projects, E-Voting, Digital Cash and Engineering a Production-Ready
System are already met and the system is not bug-free. Given this state, the
DEDIS team allows us to work for an additional four weeks on the project to
finish what we started.

But not all is bad, especially given that the state of certain subsystems was
certainly not ideal at the beginning of the semester: Front-end 2 (Android)
simply crashed when trying to connect to a LAO, back-end 2 (Scala) did not
support elections at all, back-end 1 (Go) did not check any hashes at all and
front-end 1 had a questionable user interface with text and buttons all over
the screen. And this is just the beginning.

So even though a lot could have gone better, especially in the beginning of
the semester, still a lot has been achieved. The system as a whole is now
much more stable, there are not 10 undocumented tricks you have to know
to get the system running and the e-voting team even managed to merge
the secret ballot elections into the master branch right before the last global
meeting. There are some small bugs that have been discovered but nothing
that cannot be fixed until the presentation.

The digital cash project has taken up pace since the team finished tweaking
the specification and we are confident to be able to deliver a working proto-
type by the date of the presentation. At the time of writing, the back-ends

63

support the required messages and for the front-ends there are open PRs that
just need some polishing before they can be merged.

And last but most definitely not least, there has been a lot of progress on
the production-readiness of the system. As already mentioned before, the
system is able to run in a much more stable state than in the beginning of the
semester which is, in a big part, thanks to the production-ready system team
that continuously kept pushing for a higher test coverage, convinced the
whole team to document all discovered bugs to keep track of them, and kept
pointing out outstanding bugs. And not only that, by writing integration
tests, they were able to discover a big range of critical bugs which would
have completely undermined many of the security guarantees in the system
if they were not discovered. On the front-end side, a lot has improved for
the users of the systems. Both front-ends overhauled the user interface to
provide a better user experience and making the system easier to use.

All in all, the project definitely did not go flawlessly but still a lot of progress
has been made and we think the project is on the right track for the future.

We would like to thank all our supervisors for their great assistance through-
out the semester!

64

Appendix A

Appendix

A.1 Front-end 1 UI comparisons

A.2 Front-end 2 UI comparisons

(a) Old UI for non-initialized
wallets

(b) Old UI for setting up a
new wallet

(c) New, combined UI

Figure A.1: A side-by-side comparison for the wallet setup screen in front-end 1

65

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.2: A side-by-side comparison of the screen for restoring a wallet in front-end 1

(a) Old UI (b) New UI

Figure A.3: A side-by-side comparison of the screen for a setup wallet in front-end 1

66

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.4: A side-by-side comparison of the home screen in front-end 1

(a) Old UI (b) New UI

Figure A.5: A side-by-side comparison of the list of LAOs in front-end 1

67

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI (c) New UI

Figure A.6: A side-by-side comparison of the screens showing LAO properties in front-end 1

(a) Old UI (b) New UI

Figure A.7: A side-by-side comparison of the LAO identity screen in front-end 1

68

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.8: A side-by-side comparison of the LAO event screen in front-end 1

(a) Old UI (b) New UI

Figure A.9: A side-by-side comparison of the LAO screen for adding events in front-end 1

69

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.10: A side-by-side comparison of the LAO screen for adding meetings in front-end 1

(a) Old UI (b) New UI

Figure A.11: A side-by-side comparison of the LAO screen for adding roll calls in front-end 1

70

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.12: A side-by-side comparison of the LAO screen for adding elections in front-end 1

(a) Old UI (b) New UI

Figure A.13: A side-by-side comparison of the LAO screen for adding roll call attendees in
front-end 1

71

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.14: A side-by-side comparison of the LAO screen for open elections in front-end 1

(a) Old UI (b) New UI

Figure A.15: A side-by-side comparison of the LAO screen for election results in front-end 1

72

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.16: A side-by-side comparison of the screen for LAO list on front-end 2

(a) Old UI (b) New UI

Figure A.17: A side-by-side comparison of the screen for event list on front-end 2

73

A.2. Front-end 2 UI comparisons

(a) Old UI (b) New UI

Figure A.18: A side-by-side comparison of the screen for event addition on front-end 2

(a) Old UI (b) New UI

Figure A.19: A side-by-side comparison of the screen for LAO QR code display front-end 2

74

A.2. Front-end 2 UI comparisons

(a) Old UI where the mid
screen + button is for adding
witnesses

(b) New UI to display wit-
nesses and add them

Figure A.20: A side-by-side comparison of the witness addition

75

A.2. Front-end 2 UI comparisons

(a) Old UI, on a separate
screen

(b) Hybrid UI with old mes-
sage layout and new contain-
ers

Figure A.21: A side-by-side comparison of the witness addition

76

A.2. Front-end 2 UI comparisons

Figure A.22: New UI for roll call details

77

A.2. Front-end 2 UI comparisons

(a) Opened state (b) Closed state (c) Finished State

Figure A.23: New election detail UI

78

Bibliography

[1] Android Developers. Listview. https://developer.android.com/

reference/android/widget/ListView, 2022. [Online; accessed 09-June-
2022].

[2] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474, 2014.

[3] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In 2015 IEEE Symposium on Security and Privacy, pages
287–304, 2015.

[4] Lucy Bernholz, Hélène Landemore, and Rob Reich. Digital Technology
and democratic theory, chapter 2. University of Chicago Press, 2021.

[5] Erin Dachtler and Alex Van de Sande. Ethereum blockies. https:

//github.com/ethereum/blockies.

[6] Wei Dai. b-money. http://www.weidai.com/bmoney.txt, 1998.

[7] Bryan Ford. Identity and personhood in digital democracy: Evaluating
inclusion, equality, security, and privacy in pseudonym parties and other
proofs of personhood, 2020.

[8] PopStellar Lab. Hashlen function. https://github.

com/dedis/popstellar/blob/master/docs/protocol.md#

concatenation-for-hashing.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

79

https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/ListView
https://github.com/ethereum/blockies
https://github.com/ethereum/blockies
http://www.weidai.com/bmoney.txt
https://github.com/dedis/popstellar/blob/master/docs/protocol.md#concatenation-for-hashing
https://github.com/dedis/popstellar/blob/master/docs/protocol.md#concatenation-for-hashing
https://github.com/dedis/popstellar/blob/master/docs/protocol.md#concatenation-for-hashing
https://bitcoin.org/bitcoin.pdf

Bibliography

[10] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
Proceedings of the 8th ACM conference on Computer and Communications
Security - CCS ’01, 2001.

[11] Shen Noether. Ring signature confidential transactions for monero.
Cryptology ePrint Archive, Paper 2015/1098, 2015. https://eprint.

iacr.org/2015/1098.

[12] Pieter Wuille and Greg Maxwell. Bip 0173. https://en.bitcoin.it/

wiki/BIP_0173. [Online; accessed 08-June-2022].

[13] Nicolas van Saberhagen. Cryptonote v 2.0. https://www.bytecoin.

org/old/whitepaper.pdf, 2013.

[14] Wikipedia contributors. Integration testing — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/wiki/Integration_testing,
2021. [Online; accessed 07-June-2022].

[15] Wikipedia contributors. One man, one vote — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=One_

man,_one_vote&oldid=1082021501, 2022. [Online; accessed 20-May-
2022].

80

https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://en.bitcoin.it/wiki/BIP_0173
https://en.bitcoin.it/wiki/BIP_0173
https://www.bytecoin.org/old/whitepaper.pdf
https://www.bytecoin.org/old/whitepaper.pdf
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/w/index.php?title=One_man,_one_vote&oldid=1082021501
https://en.wikipedia.org/w/index.php?title=One_man,_one_vote&oldid=1082021501

	Contents
	Introduction
	Proof of Personhood (PoP)
	Roll Calls

	The Project
	System Architecture
	Communication
	Organizers and Witnessing

	E-Voting
	Introduction
	Previous Work
	Functionality
	Design
	Security Considerations

	Goals
	Primary goal
	Approach

	Design
	election#setup
	election#key
	election#cast_vote
	Security Considerations

	Other Changes
	Future Work
	Shuffling and Partial Decryption
	Consensus
	Multiple Voting Methods

	Digital Cash
	Introduction
	Previous Work
	Goals
	Approach

	Design
	Basic Transaction Design
	Coinbase Transaction Design
	Specific Implementation Details
	Security Considerations

	Future Work
	Offline Payments
	Censorship Resistance
	Addresses
	Privacy Enhancements

	Engineering a Production-Ready System
	Introduction
	Previous Work
	Strategy
	PoP Parties
	Integration Tests
	Unit Testing
	UI/UX Refactoring

	Execution
	Integration Tests
	UI

	Findings
	Idempotency
	Bugs

	Future Work
	Karate
	Network Resilience

	Subsytems
	Back-End 1 - Go
	System Architecture
	E-Voting
	Digital Cash
	Other Changes
	Future Work

	Back-End 2 - Scala
	E-Voting
	Digital Cash
	Code consolidation
	Future work

	Front-End 1- React/Typescript
	System Architecture
	E-Voting
	Inter-Feature Dependencies
	Client to Multiple Servers Communication
	Properly Typed Navigation
	Code Conventions
	Witnessing
	User Interface
	Future Work

	Front-End 2 - Android
	E-Voting
	Digital Cash
	Production Ready
	Future work

	Conclusions
	Appendix
	Front-end 1 UI comparisons
	Front-end 2 UI comparisons

	Bibliography

