
Numerically Intensive Deterministic
Smart Contracts

Alexis Schlomer

School of Computer and Communication Sciences

Decentralized and Distributed Systems Lab

BSc Semester Project

10 June 2022

Responsible

Prof. Bryan Ford

EPFL / DEDIS

Supervisor

Enis Ceyhun Alp

EPFL / DEDIS

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Goals . 2

2 Background 3
2.1 Current Environment . 3

2.1.1 Smart Contracts . 3
2.1.2 Ethereum Virtual Machine 3

2.2 Alternative Environments . 5
2.2.1 Disclaimer . 5
2.2.2 Java Virtual Machine 5
2.2.3 WebAssembly . 6

3 Designs & Implementations 7
3.1 Methodology . 7

3.1.1 Benchmarking . 7
3.2 Revenue Distribution . 9

3.2.1 Design . 9
3.2.2 Implementation . 10
3.2.3 Evaluation . 15

3.3 Neural Networks . 17
3.3.1 Design . 17
3.3.2 Implementation . 18
3.3.3 Evaluation . 20

4 Conclusion 24
4.1 Lessons learned . 24
4.2 Next steps . 25
4.3 Acknowledgments . 26

1

Chapter 1

Introduction

1.1 Motivation

Seven years ago, Ethereum was launched and the world saw its first decen-
tralized smart contract platform in operation. It held the promise of replac-
ing what we now consider indispensable centralized intermediaries, such as
banks, insurance companies and various governance structures, on a massive
scale. However, there is still a significant gap between its ultimate goals and
what is technically feasible today.

The reasons for this discrepancy are numerous, ranging from Ethereum’s
consensus model to its underlying smart contract execution platform: the
Ethereum Virtual Machine (EVM). While offering crucial deterministic ex-
ecution, the EVM and its associated programming language, Solidity, have
specific issues that not only hinder contract execution time but also burden
the development process.

1.2 Goals

The goal of this semester project is to find other deterministic alternatives
to the EVM and compare them in terms of efficiency and ease of program-
ming. The platforms of particular interest to us are the Java Virtual Machine
(JVM) and WebAssembly (WASM).

Our analysis will be supported by two numerically intensive applications,
which are frequently encountered and encompass a wide range of common
problems. Particular interest will be given to floating points, since their de-
terministic support on the JVM and WASM is one of the current working
points of the DEDIS lab at EPFL.[2]

2

Chapter 2

Background

This chapter presents the theoretical background of our project. We first
present how smart contracts are currently executed deterministically, before
proposing two more efficient and developer-friendly alternatives.

2.1 Current Environment

2.1.1 Smart Contracts

Smart contracts are a stream of arbitrary user-defined code. These instruc-
tions enforce the rules of an immutable software agreement. When executed,
contracts change the state of the blockchain, which is itself a distributed
append-only data structure.[1]

They are an effective way to establish trusted transactions between disparate
parties. For this architecture to work well, consensus must be reached. All
nodes must agree on the same outcome when these smart contracts finish
execution. This emphasizes the importance of code determinism.

2.1.2 Ethereum Virtual Machine

This section succinctly explains at a high level how Ethereum, the most
popular decentralized smart contract platform, executes its contract code
deterministically on the EVM, along with its associated limitations.

Source of Determinism

The Ethereum protocol defines a specialized virtual machine called the EVM
to run its smart contract code. The opcodes available on this virtual machine
are restricted. A higher-level operating system cannot be accessed because
it is not designed for generic purpose programming. An EVM opcode merely
defines a transition between two states on the blockchain. As such, every

3

transaction can simply be viewed as a sequence of transitions that move the
blockchain from its starting to destination state. Each opcode has a specific
behavior and associated cost defined in detail in the Ethereum Yellow Paper.
[3]

Since the EVM works at the granularity of an opcode, the smart contract
code must be precompiled when deployed on the network. An interpreter is
then responsible for executing this sequence of instructions. The code can
be converted into machine binaries by a rudimentary Just-In-Time (JIT)
compilation mechanism, at the cost of some security risks. This simplicity of
design is what allows secure deterministic contract execution.[4]

Limitations

Aside from the obvious slowness of an interpreter, the EVM comes with other
limitations and caveats. We decided to include the restrictions of Solidity,
EVM’s de facto standard programming language, since both are intrinsically
linked and together constitute the entire development experience.

Some of the following issues will be illustrated in more depth later, during
the implementation of our two numerically intensive target applications.

1. Solidity is not a generic purpose programming language. Although
Turing Complete, it does not support I/O operations, does not allow
you to fork your code into different processes or threads, and most im-
portantly, does not allow you to schedule automatic executions. This
is because every change in Ethereum must come from a manual trans-
action from an arbitrary address.

2. All operations on the EVM are executed on 256 bits, and the memory
is 256 bit addressable. This creates an unusual memory management
experience. In addition, this peculiar design choice creates poor in-
teroperability with existing hardware today that typically runs on 64
bits.[2]

3. There are almost no standard libraries available, and the built-in data
structures are very limited. Indeed, maps and arrays are the only
defined complex data structures. Yet, their API is very limited because
it depends on the underlying implementation. These two problems

4

create situations where the developer has to reinvent the wheel several
times.

4. At a lower level, we are confronted with the lack of very useful opcodes
on the EVM, especially with regard to floating points as well as crypto-
graphic operations. Our modern hardware is equipped with specialized
units that perform these operations very efficiently.[14] Therefore, these
behaviors have to be emulated on the EVM, which results in a signifi-
cant efficiency overhead. The reasons being that floating points do not
have a fully deterministic behavior.[2]

2.2 Alternative Environments

This section explores what alternatives exist to move away from the EVM
and adopt a different yet deterministic execution environment.

2.2.1 Disclaimer

At the time of writing, we are fully aware that neither the JVM nor WASM
are inherently deterministic. While a subset of operations can be extracted
which are, work is still in progress to allow a larger subset of operations to
be deterministic, including a floating point support.

We are also fully conscious that if these were to be implemented as smart
contract execution environments, it would be necessary to adapt the infras-
tructure to allow appropriate state transitions and to include a gas metering.
In addition, the JIT compilation of these two platforms should be restricted
to avoid potential vectors of attack. This will certainly impact the final effi-
ciency and programming experience.[5]

However, these previous points are outside the scope of our work. Our anal-
ysis will be done under the assumption that these problems have been solved
and what can consequently be gained.

2.2.2 Java Virtual Machine

The Java Virtual Machine (JVM) offers a well-established high-performance
alternative. Its main underlying language, Java, is very popular and has

5

many existing libraries and implementations ready for use. Java is a generic
purpose object-oriented programming language with which most developers
are familiar.

2.2.3 WebAssembly

WebAssembly (WASM) is our second proposal since it is increasingly popu-
lar for web applications and has near-native code execution efficiency. It also
offers the developer the advantage of choosing its preferred generic purpose
programming language, such as C, C++ or Go.[5]

In this project we decided to opt for C, to enable more powerful low-level
features. C is also historically one of the first languages supported on WASM.
WASM bytecode can be generated from C source files using the Emscripten
compiler and linker. The Node.js runtime environment can then execute the
produced output.

6

Chapter 3

Designs & Implementations

This chapter presents the design and implementation of two numerically in-
tensive applications that both represent practical and promising showcases,
but that are currently unable to scale properly on the EVM.

3.1 Methodology

The next two sections are each devoted to one application. Each section will
briefly introduce the application motivations and use cases, before diving into
an analysis of runtime and ease of programming across the three previously
introduced platforms: EVM, WASM and JVM.

3.1.1 Benchmarking

Benchmarking was done on a standard computer with the following specifi-
cations.

– CPU: AMD Ryzen 7 2700X Eight-Core Processor

– Memory: 24 GB RAM

The benchmark measures the latency of every transaction in nanoseconds.
To have comparable results, the benchmark on every environment is directly
embedded inside the source code of the executed contract. Our complete
setup can be found online on our Github repository.[6]

Some specific challenges of various difficulties had to be overcome on every
platform, so we include hereunder a succinct explanation for each environ-
ment.

7

EVM

This environment was by far the most difficult to evaluate, as we cannot
simply invoke the EVM to run our smart contract. We must first launch
a local Ethereum client like Geth and instantiate a local blockchain before
deploying our contract. Only then can we issue a transaction. Fortunately,
we found an online open-source benchmarking tool called bsol that simulates
this entire pipeline and sped up the whole process.[7]

We instrumented Geth’s source code to only benchmark the interpreter ex-
ecution. By doing this, we avoided the unnecessary time spent on other
pipeline stages. We decided to print the total gas cost and breakdown for all
instructions to emphasize where most of the time was spent. The execution
time for each sample was averaged over 10 iterations.

However, we encountered many problems in achieving this. First, we should
mention that each block on Ethereum has a maximum capacity of 30 mil-
lion gas.[3] As we pushed the EVM up to its limits, this artificial boundary
had to be removed. While this was not problematic at first, it had a ma-
jor and unexpected repercussion. Indeed, before broadcasting a transaction,
the Geth client pre-executes it several times locally to estimate the ideal gas
cost. This is done by a binary search whose upper bound is the maximum gas
capacity per block mentioned above. Thus, by increasing the upper bound,
the pipeline remained stuck in the gas estimation phase. As a solution, we
suppressed this estimation in the Geth pipeline.

Despite all of this instrumentation, we still experienced some process crashes
and errors when approaching transactions with gas costs in the billions that
took several seconds to execute. This is most likely due to other limitations
such as the maximum stack call depth of 1024.[3] We have left these problems
as they are, since they can be equated to another limitation of the EVM.

JVM

We decided to use the Java Microbenchmark Harness (JMH) framework to
measure the efficiency of our code. We set up one warm-up iteration of the
JVM before sampling the results. We took the average execution time over
10 iterations, equally split over two forks.[8]

8

WASM

A customized benchmark framework has been implemented which includes
one warm-up iteration. We used the wall clock time to measure elapsed time
for consistency with other environments. As with Solidity and Java, we took
the average execution time over 10 iterations.

3.2 Revenue Distribution

3.2.1 Design

The first application concerns a revenue distribution protocol. Revenues are
to be distributed to users based on their participation in an asset pool. We
illustrate this with the following non-exhaustive real-world applications.

⋄ Decentralized lending platforms

This notorious Decentralized Finance (DeFi) application can be viewed
as follows: some people lend assets and represent the stakeholders in
our framework, while other people borrow assets and are generating an
income stream for the lenders through the interests they pay.

⋄ Liquidity pools for decentralized exchanges

Another well-known use case on DeFi is decentralized exchanges based
on liquidity pools instead of order books. Users deposit both assets of
an exchange pair in a pool and collect revenue in the form of a trading
fee when a swap is initiated.

⋄ Decentralized prediction markets

Although more hypothetical than the previous use cases, it is nev-
ertheless presented to show the potential scope of a generic revenue
distribution protocol. Decentralized prediction markets are currently
primarily focused on solving discrete case outcomes and distributing
rewards on a winner-takes-all basis. However, when considering con-
tinuous outcomes, we introduce the notion of outcome proximity. This
leads to more refined distribution functions, where we have to take
into account the prediction of all participants and perform a weighted
redistribution of bets.

9

In fact, revenue distribution is already occurring in several situations and
can often be deployed with a scalable and efficient solution. However, these
implementations are very specific and can hardly be generalized to equivalent
use cases.[9]

Thus, our proposed protocol has very loose assumptions in order to be as
modular as possible. In particular, we allow the following configurations.

– The revenue and stake asset may not be the same. In the case of a
lending application, this means that interests can be paid in another
currency than the loan.

– The user stakes and the total stake can both be dynamic, so no as-
sumptions can be made on the constancy of a user stake ratio.

For this project, we provide two approaches to tackle this problem: one naive
and one optimized.[9]

1. Naive Version

The naive approach can simply be seen as an iteration over every user
when revenue is being distributed. However, this incurs a complexity
cost of O(users), since the implementation boils down to a simple loop.

2. Optimized Version

The optimized approach we developed uses a lazy calculation technique
combined with storing a well chosen global state and well chosen user
states. This achieves a O(1) complexity, but requires more complex
floating-point arithmetic.[9]

3.2.2 Implementation

This subsection reviews the ease of programming of the optimized and
naive implementation we encountered on Solidity, before comparing it with
its equivalent version on Java and C. The code of each implementation can
be found online, on our Github repository.[6]

10

Solidity

We will focus on three major non trivial implementation particularities we
had to overcome on Solidity for this application.

1. The absence of floating points

The EVM has no support of floating points. Often these can be em-
ulated by fixed point arithmetic on integers up to 256 bits wide. The
developer must identify the ideal number of bits to allocate to the frac-
tional part. In our case, we determined that allocating 60 bits to the
fractional part was ideal, since around 60 bits are needed to represent
the fractional part of a standardized ERC20 token. This left us with
only 196 bits for the integer part. While this may seem like a lot, this
only translates into a maximum representable number of 1059, as op-
posed to the usual IEEE-754 standard maximum number of 10308.

As a result, we often experienced overflows when multiplying two large
numbers. Therefore, we had to introduce a new auxiliary function
which temporarily extends the multiplication to 512 bits using two 256
bit integers. A division by a large number would then bring the number
back into the 256 bit range. We recall that it would have been impossi-
ble to start with the division before multiplying to avoid overflow, since
this would have resulted in a significant loss of precision.

This highlights the classic problem that can be encountered when work-
ing with fixed point numbers. By keeping a fixed space between each
representable number, we not only reduce our maximum range, but we
also lose the ability to represent extremely small numbers. Although
this solution is feasible for small applications, it represents an additional
workload for the programmer since it is very easy to make mistakes.

// Our aforementioned function signature (optimized version)

function mulDiv(uint256 a, uint256 b, uint256 denominator)

private pure returns (uint256 result)

11

2. 256 bits arithmetic

All the arithmetic on the EVM is done on 256 bits. As an example, the
bool type, which should theoretically take one bit, also takes 256 bits.
This turns out to be a significant problem, especially when it comes
to storing in the expensive persistent memory. As a solution, Solidity
offers the possibility to store numerous fields inside a C-like structure,
whose size will be capped to the upper 256 bit multiple. While this
technique brings significant performance gains, it moves a big burden
to the programmer. Indeed, the developer must determine what the
most fitting bit width of each field is.

A related issue concerns the poor interoperability between operands of
different widths. Indeed, an explicit cast to uniformize the operands
width must be performed at every operation to avoid any potential
overflows. Additionally, similar casts must be done when composing
signed and unsigned types.

// This structure packs together fields of different widths

// Each field encapsulates a part of a user’s state

// These fields can be used to find the revenue lazily

struct UserState {

uint144 ownStake;

uint144 lastTotalStake;

uint144 lastIncrementPerRevenue;

uint112 ownAccumulatedTotal;

uint256 lastIndex;

}

// Here is a code snippet that illustrates the aforementioned

// bad type interoperability

function changeShare(int256 _amount) public {

// [...]

userState.ownStake =

uint144(uint256(int256(uint256(userState.ownStake)) +

_amount));

}

12

3. Limited data structures

The only complex data types available in Solidity are lists and maps.
Having a limited API, we had to overcome the fact that maps do not
provide a contain method, nor a size attribute. Also, there is no way
to iterate over all keys and values in the map. While this is due to
implementation constraints on Patricia Merkle Trees, it definitely com-
plicates the developer’s task who must add counterintuitive redundant
data structures to mitigate this problem.[10]

// Code snippet available in the naive implementation

uint public totalHolders;

mapping(uint => address) public users;

mapping(address => UserState) public usersStateMap;

Java

All of the fore mentioned problems with Solidity do not appear in the Java
implementation. This is mostly due to the presence of a floating point sup-
port. In addition, Java has no problem composing different types together.

// As a comparison, this is the equivalent valid code in Java

public void changeShare(String dest, double change) {

// [...]

userData.ownStake += change;

}

We can note the presence of an additional parameter dest in the function to
compensate for the absence of a msg.sender in the global API. If a true Java-
based smart contract development framework were to emerge, we believe this
value would be available as an attribute of a super class. See section 4.2
for more details.

Java also offers rich and efficient standard libraries to the developer. This
turned out to be of particular relevance when it came to choosing a fitting
map implementation which would suit our requirements. In our case, we

13

identified that a HashMap would best suit our needs, since it offers an effi-
cient random access for user stake changes as well as an efficient iterator to
loop over the values of the map when distributing.

// Thus, our code gets reduced as follows

// A string can be viewed as an alias to an address

private final Map<String, UserData> userDataMap;

C

In our situation, C offered the same advantages as Java over Solidity. We
could use floating points and did not have to worry about type interoperabil-
ity. Although C offers better memory control than Java, this proved to be
more of a burden than an advantage in these implementations.

Like Solidity, C does not have an extensive standard library that the devel-
oper can use. This had a considerable impact on our work, since we had
to find an equivalent and efficient hashmap implementation in C. Therefore,
we decided to use an existing, open-source hashmap implementation found
online.[11] Although this implementation is optimized for random access, its
iterator over values was found to strongly underperform Java’s by a factor
of 5x. After careful analysis, we realized that this was due to poor cache
locality when iterating over all the values in the map, since each key had to
be hashed before accessing the underlying value, creating a sporadic random
access sequence. We solved this problem by adding a redundant linked-list
data structure optimized for iteration over the set of values.

Unlike Java, we had to compile and link the code manually using a tool called
Emscripten to generate WASM bytecode. Fortunately, this was straightfor-
ward to do, since our application does not employ any external libraries that
would require prior translation into WASM bytecode.

14

3.2.3 Evaluation

Results

Following the configuration of section 3.1.1, we get the following results for
the optimized version (labeled O) and the naive version (labeled NO) on our
three different execution environments.

First, we can observe that the optimized versions across all platforms take
time O(1) as opposed to the naive version which takes time O(users).

As expected, both the JVM and WASM heavily outperform the EVM. The
slowdown ranges from a factor of circa 2,000x for the naive approach, 250x
for the optimized approach assuming WASM and 10,000x assuming the
JVM.

We include the following tables that breakdowns the total gas cost of a dis-
tribution transaction involving 1,000 users on both versions. For the naive
approach, we excluded opcodes with a total gas cost of less than 5,000.

15

OPCODE OCCURRENCES TOTAL GAS
ADD 3,000 9,000
DIV 1,000 5,000
DUP1 2,007 6,021
DUP2 7,002 21,006
DUP4 3,000 9,000
JUMP 1,006 8,048
JUMPI 2,009 20,090

MSTORE 4,001 12,012
MUL 1,000 5,000
PUSH1 10,008 30,024
PUSH2 3,015 9,045
SHA3 2,000 84,000
SHL 1,000 3,000

SLOAD 5,001 4,000,800
SSTORE 1,000 800,000
SWAP1 6,000 18,000
SWAP2 3,000 9,000
SWAP3 2,000 6,000
TOTAL 64,083 5,072,117

Table 3.1: Gas for 1, 000 users (NO)

OPCODE OCCURRENCES TOTAL GAS
ADD 1 3
DIV 0 0
DUP1 6 18
DUP2 1 3
JUMP 6 48
JUMPI 6 60

MSTORE 1 12
MUL 1 5
PUSH1 11 33
PUSH2 12 36
SHA3 0 0
SHL 1 3
SHR 1 3

SLOAD 2 1,600
SSTORE 1 20,000
SWAP1 3 9
SWAP2 0 0
SWAP3 2 6
TOTAL 80 21,889

Table 3.2: Gas for 1, 000 users (O)

As we can observe, more than 95% of the total gas cost originates from per-
sistent memory loads (SLOAD) and stores (SSTORE). These accesses act as
the bottleneck of the execution.

JVM and WASM performance are almost equivalent for the naive version,
the slight variations can be explained by the different rehashing thresholds
of the two hashmap implementations.

The factor 50x between the optimized JVM version and WASM can be
explained by different benchmarking implementations. Indeed, our custom
WASM benchmarking framework has a higher constant time overhead than
JMH. This difference gets noticeable when dealing with small values. Thus,
the execution time overhead of the EVM compared to WASM is likely to be
greater than 250x for the optimized version.

16

3.3 Neural Networks

3.3.1 Design

The second application tackles an important field in machine learning: Deep
Neural Networks (DNNs). Although completely unrealizable as of today
due to the infrastructure’s limitations, implementing DNNs on decentralized
blockchains such as Ethereum does have promising applications. We illus-
trate this with the following list of non-exhaustive use cases.

⋄ Finance

In Decentralized Finance (DeFi), we can use DNNs to improve the
liquidity and profits of an Automated Market Maker (AMM) using an
optimal IA-driven strategy.[12].

⋄ Authentication

Publicly verifiable deterministic IA models like DNNs can be used as
an authentication method to link public addresses with real people. We
can imagine a signature or fingerprint recognition algorithm to establish
a proof of personhood.

⋄ Reproducibility

Reproducing the same results on different computers of the same ma-
chine learning algorithm with identical input data is not guaranteed.
Yet, reproducibility is crucial in science. Introducing determinism
would therefore solve this problem.[13]

We made the decision to design a limited deep neural network to stay in the
scope of this project. In particular, we implemented a classification contract
that uses a multilayer perceptron neural network. The rectified linear unit
(ReLu) is used as intermediate activation function. Stochastic gradient de-
scent is applied to train the model.

When deploying the contract, the user specifies the dimensions of the hid-
den layers along with the training and test data. The designed architecture
supports an arbitrary number of features and classes. A special function call
has been integrated to normalize the input data before training.

17

To best fit the scope of this project, data samples are immediately converted
internally to their floating point representation. In the case of Solidity, we
used the ABDK floating point library which emulates deterministic quad
precision floating point numbers.[15] This library was not used in the pre-
vious application, as we could use the more efficient fixed point arithmetic.
However, this application requires a very extensive numerical range since
it involves extensive gradient calculations and matrix multiplications when
backpropagating samples.

3.3.2 Implementation

This subsection reviews the ease of programming of the neural network
implementation on Solidity, before comparing it with its equivalent version
on Java and C. Once again, the code of each implementation can be found
online, on our public Github repository.[6]

Our implementation follows Michael Nielsen’s approach in his online book
Neural Networks and Deep Learning.[16]

Solidity

Implementing a functional neural network on Solidity was not an easy task,
given the complete absence of any existing matrix library. As a consequence,
we not only had to code a matrix library from scratch, but we also had to
mock Java’s pseudo random number generator. The reason being that smart
contracts on Solidity are as hard to test as they are hard to code. Thus,
we started by implementing the neural network on Java and using that as a
control version.

In order to train efficiently, we initialized the model weights to pseudorandom
values. While this can be done easily with the Java Random class, there is no
such support on Solidity. Thus, we implemented Java’s linear congruential
generator to get reproducible results across all platforms. In both cases, the
seed is hard-coded to zero, since generating sources of randomness is orthog-
onal to the notion of determinism.

We opted for a functional programming paradigm to make the code clearer
and more understandable. Thus, every function in our matrix library pro-

18

duces a new object in memory, without ever modifying the input data. So-
lidity references these functions with the special pure keyword.

// The signature of a pure function in out matrix library

// W is thus left unmodified

function dAffineDx(M.Matrix memory W) internal pure returns

(M.Matrix memory)

Although this choice might sound like a good programming practice, this is
a bad idea on Solidity. Indeed, the EVM specifies no garbage collector like
the JVM, and cannot free temporary heap memory. Thus, every allocation
gets appended at the end of a continuous memory strip, only to get freed
when the transaction completes.[3]

We nevertheless took this route, since the other alternatives would have made
the code totally incomprehensible.

Java

Although time-consuming, the Java implementation went without any note-
worthy troubles. We used EJML as linear algebra library, which proved to be
convenient and efficient. Nevertheless, the library still lacks some functions
that had to be coded in a dedicated utility file.[17]

In addition, EJML follows a functional programming paradigm which made
the implementation even more straightforward. Unlike the EVM, the JVM
disposes of a garbage collector that efficiently frees up unreferenced space in
memory.

Finally, we have integrated the MNIST dataset in our implementation for
testing purposes. We coded a custom interface to load a percentile of the
data in the correct format.[19]

C

For this implementation, we used GSL as linear algebra library. Unlike
EJML, this library only offers a limited API to the developer. As a con-
sequence, even more basic functions had to be coded separately.[18]

19

Furthermore, GSL distinguishes vectors from matrices. This made the imple-
mentation more cumbersome as vectors had to be transformed to matrices
and vice-versa. Additionally, GSL is not an immutable library, so before
every call the developer has to allocate the resulting matrix and pass it to
the callee function. This is not a practical design choice, especially when we
have to chain function calls on matrices of different sizes. Thus, the neural
network utility functions built on top of this library adopted our functional
approach.

Similar to Solidity, we mocked Java’s random number generator to obtain
the same results across all platforms.

Finally, the most noteworthy challenge of this part was the Emscripten com-
pilation of C into executable WASM bytecode. In contrast to the revenue
distribution compilation, we had to include the full precompiled GSL library
in WASM during linking. This required to download all the source files of
GSL and build them using the emmake and emconfigure tools of Emscripten.
We then obtained a dynamic library in WASM as a shared object file which
could be used in the linking process. Some extra source files still had to be
included at linking to allow BLAS matrix multiplications.

3.3.3 Evaluation

We evaluated our neural network on the following arbitrary settings.

• 1 hidden layer of size 10

• 5 input features and 2 output classes

• 0.01 learning rate and 1 training epoch

• 90% of samples used for training, 10% for testing

This is a reduced but realistic configuration of a neural network. As we
increased these parameters, we ran into problems when evaluating on the
EVM, as we were reaching the maximum stack call depth of 1024.

20

We used dummy input data that could easily be generated across all plat-
forms with a simple loop, as loading the MNIST dataset on Solidity was too
constraining due to the absence of any I/O support.

Results

Following the configuration of section 3.1.1 and the above mentioned neural
network settings, we get the following results for data normalization, training
and testing on our three different execution environments.

Once again, the EVM reports much worse results than the JVM and WASM.
The slowdown ranges from circa x10,000 to x25,000 when comparing with
the JVM.

This is an unsurprising result, since that in addition to the usual slow persis-
tent memory operations, we also experience a slowdown due to the emulation
of floating points and the continuous memory expansion caused by our im-
mutable matrix library.

21

We illustrate this with a similar gas breakdown of a testing transaction in-
volving 10 samples. We excluded opcodes that had less than a 5,000 total
gas cost.

OPCODE OCCURRENCES TOTAL GAS
ADD 28,019 84,057
AND 15,176 45,528

CALLDATACOPY 110 6,833
DIV 3,021 15,105
DUP1 6,763 20,289
DUP2 25,096 75,288
DUP3 17,487 52,461
DUP4 12,238 36,714
DUP5 11,608 34,824
DUP6 4,823 14,469
DUP7 9,656 28,968
DUP8 3,045 9,135
DUP9 3,124 9,372
EQ 5,350 16,050
EXP 1,510 53,100
GT 3,718 11,154

ISZERO 17,988 53,964
JUMP 14,882 119,056

JUMPDEST 42,838 42,838
JUMPI 27,720 277,200 result
LT 11,430 34,290

MLOAD 12,672 38,016
MSTORE 3,642 30,984

MUL 7,371 36,855
NOT 5,048 15,144
OR 5,047 15,141
POP 34,188 68,376

PUSH1 96,575 289,725
PUSH2 51,061 153,183
SHL 23,760 71,280
SHR 9,751 29,253

SLOAD 1,692 1,353,600
SUB 14,795 44,385

SWAP1 32,502 97,506
SWAP2 8,762 26,286
SWAP3 13,099 39,297
SWAP4 3,177 9,531
TOTAL 598,541 3,390,913

Table 3.3: Gas for testing on 10 samples

We also reported a total of 2.95MBmemory footprint resulting from 16,485
memory expansions on this simulation.

As we can observe, the proportion of persistent memory operations only con-
sists of around only 40% of the total gas cost. The remaining 60% is divided
into about 16% pure arithmetic operations, 12% control flow and the bal-
ance of 32% is volatile memory operations performing on the stack.

22

Thus, we show that a floating point emulation on Solidity, although conve-
nient, comes with a high efficiency overhead. Finally, our memory footprint
is not bounded by any garbage collector, explaining the high number of mem-
ory expansions.

We will end this section by detailing the reason behind the x10 factor sepa-
rating the JVM and WASM implementation. The slowdown is explained by
the underlying inefficient matrix multiplication of the GSL library. Indeed,
there is a distinction between CBLAS and BLAS matrix multiplications. Al-
though BLAS is easier to use from a programming perspective, as it reuses
the GSL matrix structures, CBLAS is the more optimized version that uses
parallel SIMD instructions. Unfortunately, we only realized this problem too
late and decided to keep this discrepancy as an illustration of C’s program-
ming burden.

23

Chapter 4

Conclusion

This chapter presents the general conclusions of our project and discusses its
contribution to possible subsequent work.

4.1 Lessons learned

Overall, the objectives of this project have been met. We hope to have
convinced the reader that the current status of deterministic smart contract
execution on Ethereum remains limited.

We have shown through numerous examples the intrinsic limitations of Solid-
ity and the EVM from a programming perspective on two showcase applica-
tions. We have highlighted a strong contrast between their ease of implemen-
tation on Solidity compared to their counterparts on generic programming
languages such as Java and C.

We have demonstrated on these same numerically intensive applications the
enormous slowdown occurring when running on the EVM, as opposed to
other environments such as the JVM and WASM. While this slowdown can
be explained by a variety of reasons, the absence of a built-in floating point
support as well as an inefficient memory model contribute greatly to the ob-
served slowdown.

On a more personal note, we realized along the way that C was probably not
the ideal language for compiling to WASM.While we maintain that our initial
reasons were laudable, we probably wasted too much time understanding
the details of Emscripten. Unfortunately, this part made only a limited
contribution to our project goal. Also, contrary to our initial belief, the
WASM implementation did not outperform the JVM. We underestimated
the efficiency overhead of translating from C to WASM and did not always
make the right low-level choices to maximize our performance.

24

4.2 Next steps

We propose below a non-exhaustive list of extensions that can be brought to
our work.

⋄ Open Vote Protocol

Originally planned as a third showcase application, we had to scale
down our ambitions due to time constraints. The Open Vote protocol
allows for fully decentralized anonymous elections on public blockchains.
However, this requires extensive cryptographically intensive operations
that are not natively supported by the EVM. Thus, reproducing our
working methodology on this protocol would give us additional insight
into the limitations of the EVM.[14]

⋄ Gas Metering

In this project, we used the author’s personal hardware to evaluate the
differences across the execution platforms. Thus, the times reported
are not universally correct. Ethereum solves this problem by adding a
universal gas cost to each opcode, which reflects the expected execution
time on all computers. If a smart contract platform were to be created
on top of WASM and the JVM, a similar metric should be developed.

⋄ Smart Contract Framework

As we elaborated in section 2.2.1, the current framework to develop
smart contracts in Java and C is nonexistent. Therefore, we simulated
the presence of some essential primitives such as the transaction sender
or user address objects. The introduction of such an API can be done
in parallel with the development of the deterministic environment cur-
rently researched by the DEDIS lab.

25

4.3 Acknowledgments

Firstly, I would like to acknowledge my special gratitude to my supervisor,
Professor Bryan Ford, for allowing me to follow my path and develop this
subject that I proposed personally.

Finally, I would like to thank my supervisor Enis Ceyhun Alp for his precious
help and support throughout this semester.

26

Bibliography

[1] Andreas M. Antonopoulous and Dr. Gavin Wood (2019), Mastering
Ethereum, O’Reilly

[2] Enis Ceyhun Alp, Cristina Băsescu, Pasindu Tennage, Noémien Kocher,
Gaylor Bosson, and Bryan Ford, Efficient Deterministic Execution
of Smart Contracts, Swiss Federal Institute of Technology Lausanne
(EPFL), Switzerland

[3] Dr. Gavin Wood, Ethereum Yellow Paper, https://ethereum.github.
io/yellowpaper/paper.pdf

[4] Vitalik Buterin, Ethereum: Platform Review

[5] Gavin Zheng, Longxiang Gao, Liqun Huang, Jian Guan (2021), Ethereum
Smart Contract Development in Solidity, Springer Nature Singapore Pte
Ltd.

[6] Schlomer Alexis, Project Repository, https://github.com/AlSchlo/

BSc-Semester-Project

[7] Guilio2002, bsol source code, https://github.com/Giulio2002/bsol

[8] Java Microbenchmark Harness (JMH) https://github.com/openjdk/

jmh

[9] Schlomer Alexis (2022), An Efficient Approach to Calculating the Cu-
mulative Variable Revenue of Every Stakeholder in the Context of
a Distributed Financial Application, https://github.com/AlSchlo/

BSc-Semester-Project

[10] Ethereum Official Website, Patricia Merkle Trees, https://ethereum.
org/en/developers/docs/data-structures-and-encoding/

patricia-merkle-trie/

[11] tidwall, hashmap source code, https://github.com/tidwall/

hashmap.c

[12] Zihan Zheng, Peichen Xie, Xian Zhang, Shuo Chen, et al. (2021),
Agatha: Smart Contract for DNN Computation

27

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/AlSchlo/BSc-Semester-Project
https://github.com/AlSchlo/BSc-Semester-Project
https://github.com/Giulio2002/bsol
https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://github.com/AlSchlo/BSc-Semester-Project
https://github.com/AlSchlo/BSc-Semester-Project
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://github.com/tidwall/hashmap.c
https://github.com/tidwall/hashmap.c

[13] Odd Erik Gundersen, Saeid Shamsaliei, Richard Juul Isdahl, Do ma-
chine learning platforms provide out-of-the-box reproducibility?, Future
Generation Computer Systems 126 (2022) 34–47

[14] Patrick McCorry, Siamak F. Shahandashti and Feng Hao, A Smart Con-
tract for Boardroom Voting with Maximum Voter Privacy, School of Com-
puting Science, Newcastle University UK

[15] ABDK-Consulting, quad floating point numbers on Solidity, https://
github.com/abdk-consulting/abdk-libraries-solidity

[16] Michael Nielsen (2019), Neural Networks and Deep Learning, Online
book: http://neuralnetworksanddeeplearning.com/

[17] Efficient Java Matrix Library (EJML), http://ejml.org/wiki/index.
php?title=Main_Page

[18] GSL - GNU Scientific Library (GSL), https://www.gnu.org/

software/gsl/

[19] The MNIST Database of handwritten digits, http://yann.lecun.com/
exdb/mnist/

28

https://github.com/abdk-consulting/abdk-libraries-solidity
https://github.com/abdk-consulting/abdk-libraries-solidity
http://neuralnetworksanddeeplearning.com/
http://ejml.org/wiki/index.php?title=Main_Page
http://ejml.org/wiki/index.php?title=Main_Page
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Motivation
	Goals

	Background
	Current Environment
	Smart Contracts
	Ethereum Virtual Machine

	Alternative Environments
	Disclaimer
	Java Virtual Machine
	WebAssembly

	Designs & Implementations
	Methodology
	Benchmarking

	Revenue Distribution
	Design
	Implementation
	Evaluation

	Neural Networks
	Design
	Implementation
	Evaluation

	Conclusion
	Lessons learned
	Next steps
	Acknowledgments

