D-voting
backend
testing

=PrL

Plan

e Introduction & Goals

e Quick overview of the current system
e Specifications and Test framework

e Results & Evaluation

e Proposed solutions

e Conclusion and future works

Speaker N

=PFL Introduction

Goal: Providing a production-ready d-voting system
We need:

e Complete the prototype

e Define specifications of system

e Create testing framework and protocol
e Find limitations and propose solutions.

Speaker

=L System overview

o DKG

e Shuffle

e Smart contract
e Election step

Smart contract DKG

l
l
l
| \
DK1:Init

\

v
DK2:Setup

|

|

|

|

|

| \
| v
|

|

v

DK3: DKG get info

SC3:0pen
SC4:Cast
SC5:Close

\
\
|
\
[
[
[
v [
[
I
[
I
[

v

SC6:CombineShares

v

SC2:ElectionGetInfo

Neff shuffle

NS1:Init (on startup)

v
NS2:Shuffle

DK4:ComputePubshares

H

Speaker

L. DKG

/
DKG

w0 wee]

wil v

Public Secret
- J

Credit image: Auguste Baum and Emilien Duc

L &

Speaker

=L Shuffle

— A —
l g | . D:IiffIzZe

=PFL - Election steps

Shuffle

o

=PFL - Specifications

= Correctness
* Voter privacy
* Decryption correctness

= Scalability: ~ 10 000 voters and dozens of nodes

= Performance: setup + shuffle + decrypt = O(day)

= Resilience to node failure: theoretically supports 7z - 1 nodes down
* continue to work / resume after nodes back

Spe

=PFL - Testing framework

= Consistent results by launching tests a large number of times
= Store all log files and analyse them
= Deployment platform: locally or on docker containers

Why docker containers?

slower (so more realistic) network communication

ease to shut down and restart a node

need less resources to deploy than VM

industrial standard deployment tool, close to production environment

=L Testing framework

Test entrypoint: Scenario Test

simultaneous elections

nodes

votes

Node failure

Node restart

Time measure

Log generation

Votes content comparaison

10

=PrL

Result and Evaluation

Correctness
Scalability
Resilience
Performance

11

Spe

=PrL

Correctness and scalability

e Increase number of nodes: from 3 to 25
e Increase number of ballots : from 3 to 200

— What is the system behavior ?

12

Spe

The evolution of scenario test success rate with the number of nodes (local)

TABLE 3.1

TABLE 3.2

[] []
=L Correctness and scalability

Number of nodes Success rate test Time (in seconds) I Number of nodes Success rate test Time (in seconds) I
- 15 attemplts n 15 attempts
3 100% 59.93s 3 100% 62.80s
4 100% 66.02s 4 100% 66.70s
5 100% 73.37s 5 100% 76.18s
6 100% 92.81 6 100% 77.19s
7 100% 98.78 7 100% 88.89s
8 100% 115.97s 8 100% 86.52s
9 100% 135.77s 9 100% 1 13.185
10 100% 127.89s o 100% 116.285
12 100% 169.73s - i 123.48s

15 100 % 147.98s
= . e 198.19 20 FAIL timeout test == 10m 600s
2 sk it A e 600e 25 FAIL timeout test == 10m 600s
25 FAIL timeout test == 10m % 600s

The evolution of scenario test success rate with the number of nodes (on docker)

-
w

Speaker

=PFL - Correctness and scalability

cosipbft/proc.go:165 > view message refused error="invalid view:
mismatch leader 9 = 13" addr=172.18.0.4:2001

— “invalid view: mismatch leader”

14

Spe

=PrL

Correctness and scalability

e Increase number of nodes: from 3 to 25
e Increase number of ballots : from 3 to 200

— What is the system behavior ?

15

Spe

[]]
=L Correctness and scalability
ballots | Success rate test /Time (in seconds) | Success rate test /Time (in seconds) | Success rate test /Time (in seconds)
n 3 nodes 5 nodes 10 nodes
3 100% / 47.63s 100% / 59.93s 100% / 90.93s
10 100% / 67.91s 100% / 78.87 100% / 100.22s
23 100% / 86.95s 100% / 112.91s 100% / 183.29s
50 100% / 104.06s 100% / 154.64s 100% /213.768854116
100 100% / 223.95s 100% / 303.51s FAIL timeout test == 10m / 600s
150 100% / 360.40s FAIL timeout test == 10m / 600s FAIL timeout test == 10m / 600s
200 FAIL timeout test == 10m / 600s FAIL timeout test == 10m / 600s FAIL timeout test == 10m / 600s
ballots | Success rate test /Time (in seconds) | Success rate test /Time (in seconds) | Success rate test /Time (in seconds)
n 3 nodes 5 nodes 10 nodes
3 100%/ 71.72s 100% / 74.26s 100% / 154 .91s
10 100% / 65.48s 100% / 95.88s 100% / 191.17s
25 100% / 107.63s 100% / 160.25s 100%/ 197.15s
50 100% / 178.39s 100% / 294.92s FAIL timeout test == 10m /600s
100 100% / 331.22s FAIL timeout test == 10m /600s FAIL timeout test == 10m /600s
150 100% / 367.62s FAIL timeout test == 10m /600s FAIL timeout test == 10m /600s
200 FAIL timeout test == 10m / 600s FAIL timeout test == 10m / 600s FAIL timeout test == 10m / 600s

TABLE 3.4

The evolution of scenario test success rate with the number of ballots (on docker)

[y
N

Speaker

=PrL

Performance test

Goal: can election be run in a reasonable time?

Critical step: Shuffling

Extrapolation: 10 000
votes on 14 nodes on
docker takes 16.6 hours

160

150 -
140 4
130 -
120 -
110 -
100 -

Shuffle execution time (in seconds)

coB8EEB588

- 3 ballots g
10 ballots -

~— 25 ballots >

— 50 ballots e

o ——
. . —— —
® . — — —— —
. —— — — —
. ———

o G 8 T

-
-
—
-
.

3 4 5 6 7
Number of node

=PrL

Resilience test

Goal: verify theoretical tolerant threshold 7z - 1 node failure

Critical steps:

1. setup / voting
2. shuffling
3. decryption

= kill nodes before shuffling

18

=PFL Resilience test

19

Number of nodes

Shuffle success rate
15 attempts

Test success rate
15 attempts

Number of nodes
n

Success rate shuffle
15 attempts

Success rate test
15 attempts

n
4 100% 100% 7 100% 100%
5 100% 100% 8 100% 100%
6 100% 100% 9 100% 100%
7 100% 100% 10 100% 100%
8 100% 100% 11 100% 100%
9 100% 100% 12 100% 100%
10 100% 100% 13 100% 100%
11 100% 100% 14 100% 100%
12 100% 100% 15 100% 100%
13 100% 100% 16 100% 100%

locally, kill 1 node before shuffling

locally, kill 2 nodes before shuffling

=PrL

Resilience test

Number of node

Success rate shuffle

Success rate test

n 15 attempts 15 attempts
3 0% 0%
5 66.7% (10/15) 60% (9/15)
6 60% (9/15) 63.3% (8/15)
7 86,7% (13/15) 80 % (12/15)
8 66.7% (10/15) 66.7% (10/15)
9 60% (9/15) 60% (9/15)
10 53.3% (8/15) 60% (9/15)
11 46.7% (7/15) 53.3% (8/15)
12 33.3% (5/15) 33.3% (5/15)
13 33.3%(5/15) 33.3% (5/15)

Number of node | Shuffle step success rate
n 5 attempts

7 (0/5)

8 (0/5)

9 (0/5)

10 (0/5)

11 (0/5)

12 (0/5)

13 (0/5)

14 (0/5)

Docker, kill 1 node before shuffling

Docker, kill 2 nodes before shuffling

20

Success rate (%)

=P

L Resilience test

21

2

8

=

EEm est success rate

Emm Shuffle success rate

< 10
Number of nodes

PrL

Resilience test

Number of node | Election success rate
n 5 attempts

7 (5/5)

8 (5/5)

9 (5/5)

10 (5/5)

11 (5/5)

12 (5/5)

13 (5/5)

14 (5/5)

Docker, kill 2 nodes and restart those nodes

22

=PrL

Proposed solutions

Targeted problems:

1. Connection refused error
2. Threshold not reached error
3. View change error

=

Solutions

1. Shuffling retry: function of node number
2. Timeout elect new leader: function of node number

Exact hyperparameters: to be found by grid search

23

EPFL Conclusion and
Future works

D-voting system is partially validated in production environment

Able to be deployed on a dozen of nodes
Fault tolerant not validated in a close to production environment

...but election terminates correctly when failed nodes are back

Able to handle large number of votes in a reasonable time
N

Further steps:

1.

2.
3.
4

Find the right hyper parameters of waiting times for shuffling and

leader election

Find other efficient ways to handle communication overhead
Deploy on multiple machines

Compare our system performance with other e-voting systems

24

