Ecole Polytechnique Fédérale de Lausanne

Swiss Post E-Voting

by Ella Kummer

Master Semester Project Report

Prof. Bryan Ford
Project Advisor

Louis-Henri Merino
Project Supervisor

EPFL IC IINFCOM DEIDS
BC 210 (Batiment BC)
Station 14
CH-1015 Lausanne

January 6, 2022

Contents

Introduction

Background
2.1 Timeline e
2.2 Currentfindings

Description of the System

3.1 SecurityObjective
3.1.1 Individual verifiability
3.1.2 Universal verifiability
3.1.3 VOtESECIECY« o i i e e i e e e e e e e e e e
3.2 Partiesofthesystem
321 ACIOIS . . . o o it e e e
3.2.2 BuildingBlocks
3.23 Verifier
3.3 Phases e
3.3.1 Configurationphase
3.3.2 Votingphase
3.33 Tallyphase e
Methodology
4.1 Startingpoint e e
4.2 Wheretolookat
43 Whattolookat.
Analysis
5.1 Cryptography e
5.1.1 Multi-recipient ElGamalscheme
5.1.2 Digital signatures e
5.1.3 Randomnessgeneration
5.1.4 Hashing e
5.2 Configurationphase e
52.1 SetupVoting i i e e e e e

17
17
18
18

522 SetupTally e 29

53 Votingphase 30
5.3.1 Schnorrprotocol 31

5.3.2 Fiat-Shamirtrick 31

5.3.3 CreateConfirmMessage, 31

5.3.4 CreateLlVCCSharej. 32

53.5 ExtractVCC e e 35

54 Tallyphase e e 37
5.4.1 Pedersenscheme 37

5.4.2 Bayer-Grothmixnet e 38

5.4.3 MixDecOnline and MixDecOffline 39

5.4.4 GenVerifiableShuffle o 0. 40

5.4.5 GenVerifiableDecryptions oo 47

5.4.6 VerifyOnlineTally and VerifyOfflineTally 49

54.7 VerifyShuffle 50

5.4.8 VerifyDecryptions e 51

6 Conclusion 52
Bibliography 53

Chapter 1

Introduction

E-voting in Switzerland is currently put in place with a collaboration between the Confederation
and the cantons, established by the Swiss E-Government. At the beginning of 2019, e-voting
was provided in ten cantons out of twenty-six. In some cases it was offered to all resident voters,
however in some cantons it was restricted to voters living abroad. The cantons had the possibility
to select one of the two systems available. The two systems were the system offered by the canton
of Geneva, and the system offered by Swiss Post. In June 2019, it was announced that the system
offered by the canton of Geneva would no longer be offered. Not long after, on July 2019, it was
Swiss Post’s turn to announce that their system would not be available anymore either. As a
result, no e-voting system is currently available in Switzerland!. However, Swiss Post is since
developing a system with complete verifiability?.

Swiss Post has long been a strong proponent of E-Voting. Currently, it is developing an E-
Voting system to be utilized in Swiss elections. As part of their commitment to transparency, Swiss
Post releases their source code as well as documentation and conduct intrusion tests. During
an intrusion test in 2019, researchers discovered an implementation issue that would have
allowed an attacker to change the outcome of an election®. Since then, Swiss Post has rectified
the issue, among others, and made available to the public the source code, specifications and
additional documents. They launched in parallel a bug bounty program to continuously improve
the security of the Swiss Post e-voting system.

The goal of my project was to take part in this bug bounty program and review the documen-
tation as well as the source code. This covers implementation issues or vulnerabilities as well as
possible attacks under different scenarios and threats models. These researches are explained in
more detail in the Methodology chapter 4.

This report first retraces the historical background of the Swiss post e-voting system in the

'https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html
Zhttps://evoting-community.post.ch/en/about-e-voting
Shttps://www.post.ch/en/about-us/news/2019/swiss-post-temporarily-suspends-its-e-voting-system

background section 2 and states where it is now. After this, we give a description of the system
and its properties in chapter 3 to be able to later explain the analysis provided in chapter 5.

Chapter 2

Background

This section gives an overview of the Swiss post e-voting system’s history and what the current
state of the system is.

2.1 Timeline

At the beginning of 2019, e-voting was, under some restrictions, offered in ten cantons of Switzer-
land with the possibility of using the system offered by Swiss Post!.

Swiss Post conducted a public intrusion test on its new, universally verifiable e-voting system
between 25 February and 24 March 2019. In addition to the intrusion test, it published the source
code for its e-voting system on 7 February. Feedback on the published source code revealed
critical errors such as an issue that would have allowed an attacker to change the outcome
of an election. Following this, Swiss Post announced that their individually verifiable system
would no longer be offered to the cantons? and the Federal Chancellery mandated a group of
experts to work on a source code analysis of the e-voting system . As a result on July 2019 they
released a paper called "Analysis of the Cryptographic Implementation of the Swiss Post Voting
Protocol”[10].

Since 2020, Swiss post has been developing its new system with complete verifiability at its
IT site in Neuchatel, providing an e-voting system from Switzerland and for Switzerland.

At the start of 2021, Swiss Post began to publish the components and relevant documentation
from its e-voting system as part of a community program. Following the publication of the
verification software, all significant parts of the beta version of the Swiss Post e-voting system
are now available.

'https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html
Zhttps://www.post.ch/en/about-us/news/2019/swiss-post-temporarily-suspends-its-e-voting-system

Swiss post plans to make this system available to the cantons for the trial operation once
the relevant legal framework conditions are in place and the development and evaluation of the
system has been completed.

2.2 Current findings

Confirmed findings are categorized according to their severity. On 23 December 2021, 117
confirmed findings were reported, of which 3 were qualified as "high severity". An overview of
all reports can be found on the GitLab3.

Shttps://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/- /issues

Chapter 3

Description of the System

In order to understand the analysis, an overview of the swiss post e-voting system is provided in
this section.

3.1 Security Objective

Swiss Post e-voting system must comply with the Federal Chancellery’s Ordinance on Electronic
Voting!. Essentially, it must display three properties: individual verifiability, universal verifiability,
and vote secrecy[15].

3.1.1 Individual verifiability

Individual verifiability allows the voter to check that the vote was correctly transmitted and
registered by the server.

The voter compares a verification code that they receive with their voting documents to the
verification code displayed online when they go to the ballot box. Faithfully executing the two-
round return code scheme guarantees to the voter that the system’s trustworthy part registered
the intended vote. This implies that even a powerful adversary, controlling the voting client and
most of the server infrastructure, cannot alter or drop a vote without being detected by a diligent
voter or auditor.

'https://www.post.ch/en/business-solutions/e-voting/legal-basis

3.1.2 Universal verifiability

Universal verifiability allows voters or auditors to check that the election outcome corresponds
to the registered votes.

Independent auditors verify every step in the counting process, from the registration of the
encrypted voting options to the decryption and tallying process, without compromising vote
secrecy. Advanced cryptographic techniques such as non-interactive zero-knowledge proofs
and verifiable mix-nets allow the Swiss Post Voting System to have the best of both worlds: the
election result is correct beyond doubt, and every single vote remains secret.

3.1.3 Vote secrecy

Vote secrecy preserves the privacy of the voter and does not reveal a voter’s vote to anyone.
By extension, vote secrecy ensures that no component learns the election results before the
final decryption step. The Swiss Post Voting System protects vote secrecy by encrypting votes
end-to-end and splitting the decryption key among multiple entities.

3.2 Parties of the system

The Swiss Post Voting System includes multiple components and involves different parties. We
divide them in two categories: the actors and the building blocks.

3.2.1 Actors

We consider as actors parties of the system that are not part of the implementation[14].

Voter

The Voter authenticates to the voting server, selects voting options, and confirms their vote
by verifying return codes. We assume that the voter can collude with the adversary. For exam-
ple, this can be done by revealing their codes or even trying to impersonate another voter. By
consequence, we assume that a significant part of the voter in untrustworthy.

Print Office

The Print Office combines the Control Component’s contributions, generates the codes, and
prints the code sheets. It runs in a controlled and offline environment on the canton’s premises.
All operations in the print office are subject to strict four-eyes principles and are executed
on hardened laptops with special access rights. Therefore, the print office in considered as
trustworthy.

Electoral Board

The Electoral Board performs the final decryption of the votes. The electoral board’s secret key is
securely stored on a smart card and is distributed to the electoral members. This requires that at
least one of the electoral board members is trustworthy.

Electoral Administrators

Through the Electoral Administrators, the canton sets up the ballot by configuring the e-voting
platform, called Voting Server, with voting options and assigns the authorisations for electronic
voting.

Auditors

The Auditors verify that the parties faithfully executed their operations within the system using
a software called the Verifier which runs various verifications. This requires that at least one
trustworthy auditor with their verifier checks an election event.

3.2.2 Building Blocks

The e-voting solution uses functional decomposition to separate responsibilities. It is composed
of several components which represent applications or services, and libraries which encapsulate
specific functionalities[17]. This decomposition matches the structure of the Gitlab repositories?.

Zhttps://gitlab.com/swisspost-evoting/e-voting/e-voting

10

eVoting solution

-====-=----Vote / Election------t--->{ = Voter Portal Use q Cryptolib JS
,,,,,,,,,, Administration / ___ | __, Secure Data B " Control
Configuration ’ Manager AT R Components
se

Use use

evelopment " v .
Suppor
Swisspost [Cryptolib] [Crypto Primitives] [Domain]

Figure 3.1: Building blocks view - Level 1 - e-voting solution
[17]

Voter Portal

The Voter Portal is a web application to perform the full voting process from the voter’s perspec-
tive.

Voting Server

The Voting Server is a system composed of several microservices where each is responsible for
one part of the voting process and provides an API. Precisely, it authenticates the voter, processes
the votes, and stores them. The Federal Chancellery’s Ordinance on Electronic Voting imposes
the assumption that the Voting Server might be under malicious control and by consequence is
considered untrustworthy.

Control Components

The Control Components compose a system in which they work together as a group. They
generate the return codes, shuffle the encrypted votes, and decrypt them at the end of the
election while guaranteeing the integrity of the voting protocol. There are two types of control
components: the Return Codes Control Component (CCR) and the Mixing Control Component
(CCM). The Return Codes Control Component compute the Choice Return Codes and the Vote
Cast Return Codes in interaction with the setup component (configuration phase) and the voting
server (voting phase). The Mixing Control Component mix and partially decrypt ciphertexts
in the ballot box. The cryptographic part of the system avoids a single point of vulnerability
distributing the server-side cryptographic operations onto four Control Components. The fourth
Distributed Mixing Control Component node is found in the offline Secure Data Manager. It
is assumed at least one of them must be trustworthy while three of them might be under an

11

adversaries’ control.

Secure Data Manager

The Secure Data Manager is a system that provides the necessary cryptographic functionalities to
securely configure and manage an election. It centralizes, in one application, the administration,
configuration, and tallying of an election.

Cryptolib

Cryptolib is a library that provides key sharing and encryption capabilities to the voting protocol
(eg. El Gamal key pair generation and encryption, X509 certificates, etc.). Its goal is to prevent
insecure usage of cryptographic algorithms and providers.

Crypto Primitives

Crypto Primitives is an open-source, server side, robust, and misuse-resistant library which
implements cryptographic algorithms used for the voting protocol. An important part of the
crypto-primitives library focuses on the implementation of the verifiable mix net and the zero
knowledge proof.

Cryptolib JS

Cryptolib JS is a client side javascript library which groups and implements the concepts of
Cryptolib and Crypto Primitives.

Domain

Domain is a library that groups domain objects shared by the different voting system compo-
nents.

Voting Client JS

The voting-client-js builds upon the cryptolib-js and defines a javascript frontend API for the
voter-portal. It provides the authentication of the voter, encrypts the votes, calculates the par-
tial Choice Return Codes and encrypts them. It also provides zero-knowledge proofs for the

12

encrypted vote and the partial Choice Return Codes, the signing of the vote, and the generated
confirmation key. In order to provide vote secrecy, the Swiss Post Voting System assumes that the
attacker is not controlling the voting client. However, no cryptography can prevent an attacker
from spying on the voter’s choices on malicious clients.

3.2.3 Verifier

The Verifier is a technical tool used to check that the vote has been conducted properly.

3.3 Phases

From a user’s point of view, the Swiss Post Voting system is a return code scheme|[15]. Prior to
the election, every voter receives a printed code sheet which contains four types of codes that
are unique for every voter and every election event:

A Start Voting Key to start the voting process

* A Choice Return Code for each voting option

» A Ballot Casting Key to confirm the vote

* A Vote Cast Return Code for successful confirmation from the system

To begin with, the voter enters the Start Voting Key in order to authenticate themself and selects
their vote(s). In turn, the system responds with a Choice Return Code for each selected voting
option. The voter checks that the Choice Return Codes match the ones printed on the voting
card. If the Choice Return Codes match, the submitted vote corresponds to the voter’s intention,
the voter enters the Ballot Casting Key. In the case of the Choice Return Codes not matching, the
voter aborts the process and alerts the election authorities. At the end, the system acknowledges
a successful confirmation by sending back the Vote Cast Return Code.

From a "runtime" point of view, the cryptographic protocol divides the Swiss Post Voting
System’s into three parts: configuration phase, voting phase, and tally phase[16].

3.3.1 Configuration phase

The configuration phase consists of two sub-protocols: SetupVoting and SetupTally.

13

SetupVoting

The voter’s codes are generated in order to be subsequently sent to the voter by postal mail.

Each control component generates a CCRj Choice Return Codes encryption key pair
(pkCCRj, skCCRj) and the print office combines the generated keys’ public part yielding the
Choice Return Codes encryption public key pxCCR.

The print office generates the verification card key pair (K4, k;4) for each voter. It hashes, squares,
and encrypts the partial Choice Return Codes pC'C;; and the Confirmation Key C K;; with the
setup public key pksetup. The print office also sends the ciphertexts to the Return Codes control
components CCR.

The Return Codes control components CCR raise the ciphertexts to the Voter Choice Return
Code Generation secret key k£ ;; and Voter Vote Cast Return Code Generation secret key kc; ;q,
respectively, and return the result to the print office.

The print office generates the short Choice Return Codes cc;; and short Vote Cast Return Code
VCC;q4, encrypts them, and maps them to the long Return Codes in the Return Codes Mapping
table CMtable.

If the auditors verify the configuration phase successfully, each voter receives a Voting Card
VCardid containing the Start Voting Key SV K4, the short Choice Return Codes cc;4, the Ballot
Casting Key BC K ;4 and the short Vote Cast Return Code VCCj,.

SetupTally

During SetupTally, the print office and the mixing control components generate the election
public key used for encrypting the votes. Each control component, except the last one, generates
a CCMj election key pair and sends its CCMj election public key to the print office. The print
office combines the CCM;j election public keys’ public parts to create the election public key and
send it to the voting server. The print office also generates the electoral board key pair for the
electoral board.

3.3.2 Voting phase

The voting phase consists of two interactive protocols SendVote and ConfirmVote, where a voter
sends and confirms their vote with a voting client and their voting card. At the end of the phase,
the auditors execute a verification procedure VerifyVotingPhase to ensure that the ballot box bb
is consistent.

14

SendVote

First, the voter authenticates themself using a Start Voting Key (SVK) and selects their voting
options. Then the voting client creates an encrypted vote based on the voter’s selection and
sends it to the voting server. The Return Codes control components CCR must validate the
encrypted vote. Eventually, the control components verify the ballot, decrypt the partial Choice
Return Codes pCCid and derive the long Choice Return Codes 1CC. Using this long Choice Return
Codes ICC, the voting server extracts the short Choice Return Codes ccid from the Return Codes
Mapping table CMtable. Finally, the voter verifies the short Choice Return Codes ccid.

ConfirmVote

The voter enters the Ballot Casting Key BCKid and the voting client derives the Confirmation
Key CKid to send it to the voting server. Afterwards, the control components derive the long
Vote Cast Return Code IVCCid and using the Return Codes Mapping table CMtable the voting
server extracts the short Vote Cast Return Code VCCid. To finish, voters verify the short Vote Cast
Return Code VCCid.

3.3.3 Tally phase

During the tally phase, the voting server and the mixing control components decrypt the votes
and compute the election result. The goal is to protect vote secrecy and guarantee universal
verifiability. The phase is composed of two protocols, MixOnline and MixOffline. On top of that,
two algorithms, VerifyOnlineTally and VerifyOfflineTally, are used to verify the correcteness of
all operations during the tally phase and ensure that the protocol was executed faithfully in all
parties. The auditors run VerifyOnlineTally after the MixOnline protocol and in case of success
the electoral board releases its key pair to the final CCM to perform MixDecOffline. The auditors
also run VerifyOfflineTally after the MixDecOffline protocol to ensure the correctness of the last
Mixing control component output.

MixOnline

Initially, the voting server strips all information from the encrypted votes except the ciphertext
and discards all unconfirmed votes. The auditors can verify that the voting server did not alter
the votes (include or discard votes) and the cleansing is deterministic and reproducible. Next,
all but the last Mixing control components shuffle and partially decrypt the list of ciphertext
received from the preceding control component, or from the voter server in case of the first
control component. In addition, MixOnline proves correct shuffling and partial decryption.

15

MixOffline

The last mixing and decryption step is executed offline by the cantons and requires the presence
of the electoral board. During this last step, the last Mixing control component shuffles and
decrypts the permuted ballot box received in order to decode and tally the votes. Furthermore,
MixOffline proves correct shuffling and decryption, and returns the election result.

16

Chapter 4

Methodology

This chapter aims to provide explanation on why some specific parts of the system were chosen
to be analyzed. It also describes what is looked for in the analysis.

4.1 Starting point

The strategy was to first read the documentation and understand the whole system and protocol.
The first step was to identify who the actors are and what roles do they play in the system. It was
also important to know who was trustworthy and who was not as this gives different possibilities
to an attacker. Already, this allows us to understand the overall flow of the procedure and how
the system will be decomposed. The second point was to understand what is expected of this
system and precisely what are the main three security objectives. After this, we started doing
research in order to learn the whole architecture of the system and the different components
called building blocks (which slightly differ from the actors). This covers mainly their role, their
place in the architecture and their own architecture. The final research was about the precise
flow of the protocol. The protocol is divided into phases. Each phase uses different components
and involves different actors in order to achieve a different goal, from the authentication of
the voter to the tally. All these steps are covered in chapter 3. To start looking into the code, we
begun by understanding the organisation of the project on Github and then retrieved most of
the used libraries in the different building blocks. The idea was to go over and see if any might
cause issues. This process did not produce any findings as the software purposefully does not
use many outside libraries.

17

4.2 Where to look at

At the beginning, two different directions were considered: focusing on specific building block(s),
or focusing on phases. At first, we decided to focus on building blocks as this approach is more
targeted than looking at phases, which might use many building blocks at the same time. The
strategy was to find which building blocks are the most interesting to focus on, taking into
account what protocol they implement and how widely they are used. This lead us to considering
the Control Components, Voting Server, and cryptolib.

After starting linearly with the functions implemented by the control component during the
configuration phase 5.2, it quickly became evident that this approach would not yield interesting
results. This was because the approach did not target the most interesting functions of a building
block, but instead the functioning of the whole. Instead, our approach should target more specific
parts of each building block.

The Swiss post e-voting system implements its own libraries and cryptographic protocols.
These were considered more useful to look at as these can be tricky to implement and are very
critical as an important part of the system’s security rely on them. These analyses can be found
in section 5.1.

Furthermore, the whole system protocol relies on various Return Choice Codes, which are
specific to this implementation. These are used during the voting phase; their functionality is
crucial to understand. This lead us to consider the second part of the Voting Phase which can be
found in section 5.3.

Finally, during the last phase of the protocol, a lot of different schemes are used during the
Shuffling and decryption part. These scheme are complex and the security of the system relies
on them. Again, as the system implements the majority of these schemes, this is a place where it
would be likely to find implementation errors, breaches, or errors during the combination of
several schemes. This corresponds to section 5.4.

4.3 What to look at

The first focus of this work is on the implementation. To start, some research was conducted
on what are the most common implementation issues in cryptographic protocols 1 2345678,

'https://owasp.org/Top10/A02,021 — Cryptographicrailures/
2https://cwe.mitre.org/top25/archive/2021/2021 . we; 0p25.html

*https://www.sans.org/ top25-software-errors/

*https:/ /waverleysoftware.com/blog/top-software-vulnerabilities/

Shttp:/ /www.cs.umd.edu/ jkatz/security/downloads/kohno.pdf
®https://www.crypteron.com/blog/the-real-problem-with-encryption/
"https://inst.eecs.berkeley.edu/ cs161/sp16/slides/3.8.CryptoMistakes.pdf
8https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

18

In addition, the work mandated by the Federal Chancellery[10] was used. Looking at what the
authors covered gives leads as to what kind of issues there might be and what could be left to be
checked. This resulted in the following list of potential issues to check for:

Verify that the implementation follows the protocol from the documentation
Verify that the implementation follows the source-code best practices:

1. it uses Java best practices for naming conventions
2. the Java doc should associate the Java parameter name with the variable name used
in the pseudo code

Make sure the membership and consistency checks for all algorithm parameters are per-
formed

Enforce group Operations

Make sure that the implementation of the hashing provides collision resistance when
multiple values are hashed

Ensure that there is no import of insecure library

Verify that it does not implement improper restriction of operations within the bounds of a
memory Buffer, or authorizes Out-of-bounds Read and Writes (Buffer, string overflows).
As the implementation uses java, this can not happen®. However, it was important to still
mention it.

Ensure that the system does not encrypt data without signing it or

accepts signed data without authenticating the signer.
As in this work we focus on the functions themselves and not the communication in
between services, these last two point will not actually be used.

For each function, we also verify that it computes what it is designed for, that the result is
correct, and that it provides the security it aims for.

In addition to this, for functions running in untrustworthy environment, we try to examine if
an attacker could mount an attack. We consider as an attack any situation where one can learn
more information than we are supposed to, considering the security properties. We also consider
as an attack any situation where an attacker can influence the outcome of the election.

To finish this chapter, we would like to mention that approaching such a large project is not
simple and one can feel lost. Indeed, to know what to look for, or even where to look, is a whole
process to learn. This section is also here to help the next person that will work on this project.

https://www.baeldung.com/java-overflow-underflow

19

Chapter 5
Analysis

This chapter covers the whole analysis done. It starts with the cryptographic protocols investi-
gated and then proceeds by phases.

5.1 Cryptography

In order to have complete faith in the system and provide robust primitives, the Swiss post
e-voting system implements its own cryptographic protocols inside the Cryptolib! and Cryp-
tomprimitives? libraries.

5.1.1 Multi-recipient ElGamal scheme

The ElGamal encryption scheme is an asymmetric public-key encryption scheme IND-CPA
secure[20]. IND-CPA security implies that it is not feasible to extract any information about the
message from the ciphertext. It also has multiplicative homomorphic properties that can be
used to manipulate encryptions.

The whole El Gamal scheme is implemented inside the Cryptoprimitive library.

Parameters generation

The ElGamal[4] encryption scheme is instantiated over a cyclic group of quadratic residues G|,
of order ¢ with generator g, where the decisional Diffie-Hellman (DDH) problem is believed to

'https://gitlab.com/swisspost-evoting/e-voting/e-voting/ -/ tree/ master/ cryptolib
*https://gitlab.com/swisspost-evoting/crypto-primitives

20

be hard. This last step is ensured by having p and q as large primes, and the quadratic residuosity
implies p = 2¢ + 1.

The Swiss post e-voting system implements a function called Get EncryptionParameters 3
which generates the group modulus p, the group cardinality ¢ such that p = 2¢ + 1, and the group
generator g.

The default generator g is designated as the smallest element in @),,. This is performed by
iterating over [2,4] and taking the first element in G,. This indeed computes the smallest gener-
ator g for the set of quadratic residues modulo p: as p = 2¢ + 1 and ¢ is prime, p is considered
as a safe prime and then every element of the set of quadratic residues modulo p is a gener-
ator for this set. It is not an issue to fix an upper-bound equal to 4 as 4 = 22 and will always
be a quadratic residue considering that p will always be p > 2 due to it security level. In or-
der to make sure that an element i is in G, one can easily verify that i mod p = 1. Indeed,
if i is in the set of quadratic residues modulo p, we have i = 22 mod p for an integer z. Thus,
i mod p = 2?9 mod p = 2P~! mod p = 1 by the Little Fermat theorem.

The group cardinality ¢ is the main computation of the function. It is computed through a loop
iterating over a counter. It starts by creating an output of 2048 bits (2048 bits is the default value
in the e-voting system implementation but it can be extended to 3072) using SHAKE-128 which
uses different inputs one of which is the counter. SHAKE-128 will be later explained. The byte
<0x01> is prepended to the digest’s output and a bitwise right-shift operation is performed to
enforce the initial candidate value for ¢ to be in the interval [2/9!, 214!}, After this, a computation
to ensure that ¢ is odd is performed and finally it checks for the primality of gand p = 2 x ¢ + 1.
If both are prime it jumps to the next parameter generation g, otherwise the loop starts again
incrementing the counter used as part of the input for SHAKE-128.

At the end of each loop trying to derive a prime ¢, a primality test is perform. The implementation
uses the function is Probable Prime from the java class BigInteger?. This function checks that the
probability that the BigInteger is prime exceeds (1 — 1/2¢¢"@"%¥) In the e-voting implementation
the certainty default value is set to 112 but can be extended to 118. Looking at the implementa-
tion of the class %, one can see that the function uses Miller-Rabin primality testing[18] and for
numbers greater than 100 bits, Lucas-Lehmer primality testing[9], two well-known and reliable
primality tests.

Regarding SHAKE-128, it is an extendable-output function (XOF) and has been standardized
by NIST[19] . It is a generalization of a cryptographic hash function: instead of creating a fixed-
length digest, it produces outputs of any desired length. A random function whose output length
is d bits cannot provide more than d/2 bits of security against collision attacks and d bits of
security against preimage and second preimage attacks. In the case of the Swiss post e-voting
system, we reach the upper-bound of 128 bits of security for SHAKE128 as d/2 > 128 in all cases.
It is important to note that XOFs are not approved as hash functions. The implementation uses

Shttps://gitlab.com/swisspost-evoting/ crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/elgamal/EncryptionParameters.java

*https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.htmlisProbablePrime(int)

*https://hg.openjdk.java.net/jdk/jdk/file/274a0bcce99d/src/java.base/share/ classes/java/math/Biglnteger.java

21

the already implemented SHAKEDigest class from the bouncycastle library, with the election
name as the seed.

As efficiency is not a concern in the Swiss post e-voting system, this type of loop with no fixed
end and no stopping conditions in case of a long runtime is not considered as problematic.

p is directly computed from ¢ as p = 2¢ + 1 and verified to be prime during the computation of ¢
which is also prime.

In conclusion, the algorithm works perfectly and provides the security aimed for. Everything
is implemented correctly.

Encryption

The Swiss post e-voting system implements a function called GetCiphertext which computes
an ElGamal ciphertext using randomness.

ElGamal encryption schemel[4] encrypts a vector of message m € Gfl using a vector of public
key pk € GF such that pk; = ¢g** and a random r € Z,. In the implementation, the random
exponent r is pre-computed and given as input.

If the message has less elements than the public key (I < k), the excess public key elements are
multiplied such that pk; = pk; * ... % pky. If the message has more elements than the public key
(I > k) an error is thrown.

The ciphertext is computed as follow : ¢ = (¢o, c1, ..., ¢i—1) = (¢", pk] * m1,...,pk] * my) € qu+1.
The implementation performs the public key compression relative to the message size and the
message is encrypted according to the ElGamal encryption scheme.

All the important checks are made on the input and the scheme is correctly implemented.

Decryption

The Swiss post e-voting system implements a function called Get Message * which retrieves the
message from the ciphertext.

The ElGamal scheme decrypts a ciphertext ¢ € fol using a vector private key sk € Zf JIf
the message has less elements than the public key (I < k), the excess secret key elements are
added such that sk; = sk; + ... + sky, corresponding to the multiplication of the public key using
the sk; as exponents. If (I > k) an error is thrown. Then we decrypt the ciphertext and output a

—sk;

vector of message m € Gf] such that m; = ¢; * ¢y ** = ¢; * g~***". Contrary to the encryption, the
randomness is not needed as input as it is exponentiated in the first element of the ciphertext.

®https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/elgamal/ElGamalMultiRecipientCiphertext.java

"https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/elgamal/ElGamalMultiRecipientMessage.java

22

The implementation performs the secret key compression relative to the ciphertext size and the
ciphertext is decrypted according to the explained ElGamal encryption scheme. The ElGamal
encryption scheme has perfect correctness: for any given pair of keys (sk, pk) generated by
algorithm KeyGen, it holds that Dec(Enc(m, pk), sk) = m for all m € G,.

All the important checks are made on the input and the group operations are corrects. It
implements the correct decryption regarding the encryption, and the naming is consistent and
follows java best practises.

5.1.2 Digital signatures

Digital signatures ensure authenticity and integrity which guarantees that the adversary cannot
modify ciphertexts with no detection. Additionally, the sender signs one-time additional infor-
mation to prevent replay attacks and to allow the receiver to verify the context’s correctness. In
the Swiss post e-voting it is used for a multitude of reasons. For example, to sign the messages
that the parties exchange during the configuration phase, the election public key during the
voting phase or during the tally phase when the auditors must check the signature of each control
component’s message.

The Swiss Post Voting System claims to use the RSA-PSS signature scheme with 2048-bits key
length[16] with SHA-256 as a digest. As for example in 8.

Regarding the security of RSA-PSS, when instantiated with “ordinary” collision-resistant hash
functions, RSA-PSS can be tightly related to the hardness of the RSA inversion problem. The
proof can be found in Bellare-Rogaway’s work[2] and RSA-PSS is standardised in PKCS1 v2.1[8].
Therefore, if one has or wants to use RSA signatures, then RSA-PSS is the right choice of scheme.

The implementation uses the java Signature class which provides applications that
include the functionality of a digital signature algorithm. % In particular, they call
Signature.getInstance(SH A256withRS A). The oracle documentation states that the signature
algorithm with SHA-* and the RSA encryption algorithm are as defined in the OSI Interoperability
Workshop, using the padding conventions described in PKCS 1!, This seems to use RSASSA-PSS
which corresponds to RSA-PSS with appendix.

The implementation correctly uses the java Signature class and by consequence is considered
correct. However, as the system does not implements directly the signature, the security of the
signature relies on the class used.

Nonetheless, it is interesting to question the choice of an RSA based signature scheme. The

®https://gitlab.com/swisspost-evoting/e-voting/e-voting/ - /blob/master/control-components/return-codes-
service/src/main/java/ch/post/it/evoting/controlcomponents/returncodes/securelogger/SecureLogAppender.java

%https://docs.oracle.com/javase/7/docs/api/java/security/Signature.html

%https://docs.oracle.com/javase/7/docs/technotes/guides/security/ StandardNames.htmlSignature

23

whole Swiss post e-voting system relies on the El Gamal scheme for encryption or Schnorr
protocol for zero-knowledge proof which both rely on the discrete logarithm problem. It is
questionable to chose a scheme based on the RSA inversion problem knowing that these schemes
also require bigger security parameters. Schnorr signature could be an option, or some variant
of it.

5.1.3 Randomness generation

High entropy for randomness generation is one of the most complicated goals to achieve in
cryptography. It is essential in our system as if it fails an adversary could for example predict
a secret key and use it to break vote secrecy. Swiss post e-voting system implements its own
randomness service in order to provide different types of output such as integers or string !!.
The randomness generation relies on the java class SecureRandom '2, a class which provides a
cryptographically strong random number generator.

When instantiating a SecurerRandom object, the system calls the default constructor. It does
not give any seed material or provider as input. In this case, the SecureRandom class constructs
a secure random number generator (RNG) implementing the default random number algorithm.
The list of standard RNG algorithms can be found in the Oracle documentation 3. The default
constructor also traverses the list of registered security Providers, starting with the most preferred
Provider. After this, the returned object will be self-seeded. Accepting defaults is usually not the
best java practise as in this case all the security parameters rely on the SecureRandom class in
terms of choices.

It has to be mentioned that randomness generation is implemented in both Cryptoblib and
Cryptoprimitives, sometimes with the exact same code (e.g. for random integer generation).
Code duplication should usually be avoided. However, in this case it is done do separate work
and avoid dependencies in between Cryptoblib and Cryptoprimitives libraries as a trade-off.

Both randomness services and their functions were checked and everything is well imple-
mented regarding the steps explained in the methodology chapter 4.

5.1.4 Hashing

The Swiss post e-voting system uses the SHA-256 hash function when it needs to hash an
input with no other constraint. However, when the system needs to compute the hash value
to a given bit length, the system uses SHAKE-256. The system respectively implements two

"https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/ - /blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/math/RandomService.java

2https://docs.oracle.com/javase/8/docs/api/java/security/ SecureRandom.html

Bhttps://docs.oracle.com/javase/8/docs/technotes/guides/security/ StandardNames.htmlSecureRandom

24

functions called RecursiveHash and RecursiveHashO f Length. SHA-256([5] as well as SHAKE-
256[19] are currently considered as secure and satisfy all current security goals and properties of
hash functions. Hash function collision resistance is ensured by SHA-256 and SHAKE-256, thus
collisions could only come from input collisions: different inputs formatted into equal ones. The
crypto-primitives specification prevents hash-collisions across different domains by using type
separators, however this has not been implemented yet.

Another point is the system hashes the concatenation of multiple inputs. If inputs were of
non-fixed sizes, this could lead to hash-collisions for different inputs which concatenated results
into identical outputs. However, this is not the case as all input parameters will be same same
size inside a same election (e.g. same key sizes, same group parameters, same number of voting
options) and consequently the system is input-collisions safe.

Another thought could be hash replay-attack inside the same elections. Hashing is widely
used in zero-knowledge proof so one might want to re-use a hash output from another vote to
hide an alteration of a vote. However, a hash output alone is useless as it is never used alone but
in functions using other parameters such as plaintext or ciphertexts. In order to be efficiently
used, the hash steal should be combined with these other stolen parameters. These cannot be
collected together as this is not possible given the trust assumptions (mainly that at least one of
the Control Components which proceeds the partial decryption of the votes is trustworthy).

Replay attacks in between elections are also ruled out as non-predictable hashes always
contain at least one input parameter specific to the current election.

The function providing hashing can be found here '*. They were checked and everything was
well implemented with the right checks.

5.2 Configuration phase

We focused on the protocols run by the Control Components. This is due to a choice done at the
beginning which was to focus on a specific building block. Control Components were chosen due
to their important contribution in generating the return codes and participating in the shuffling
of encrypted votes and their decryption. The Control Components were also considered as only
one of them is considered trustworthy and this leads to possibly more attacks.

“https://gitlab.com/swisspost-evoting/crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/hashing/HashService.java

25

5.2.1 SetupVoting

During the SetupVoting phase, two algorithms are run by the Control Components: GenKeysCCRj
and GenEncLongCodeShares.

GenKeysCCRj

Each control component generates a CCRj Choice Return Codes encryption key pair (pkCCRj,
skCCRj) and a CCRj Return Codes Generation secret key. The first pair is used to encrypt the
partial Choice Return Codes during the voting phase. The CCRj Return Codes Generation secret
key is used in the next algorithm GenEncLongCodeShares to generate other pair of keys.

4.1.1 GenKeysCCR

The Return Codes control components CCR generate the CCR; Choice Return Codes
encryption key pair Pk(ICRJ ,skccr; to encrypt the partial Choice Return Codes pCCyy
during the voting phase and the CCR; Return Codes Generation secret key k';.

Algorithm 4.1 GenKeysCCR;

Context:
Group modulus p € P
Group cardinality ¢ € Ps.t. p=2g+ 1
Group generator g € G,
Election Event ID ee € (Apaseis)'™
The CCR’s index j € [1,4]

Maximum number of selectable voting options ¢ € N* > See section 3.4.3
Operation:
L: (Pkecr, skeor;) < GenKeyPair(p, ¢, 9, ¢) > See crypto-primitives specification
2: ¥'; - GenRandomIntegerUpperBounded(q) > See Algorithm 8.5
Output:
ECRj Choice Return Codes encryption public key pkcor,= (Pkccr; 00 - -+ Pkccr,o-1) €
P
q
CCR; Choice Return Codes encryption secret key skccr,= (SKccr, 0, - - - » sKocR,.p-1) € 2§

CCR; Return Codes Generation secret key k'; € Z,

Figure 5.1: GenKeysCCRj algorithm
[16]

GenRandomIntegerUpper Bound is not addressed in this section as it is related to section
5.1.3 concerning the randomness generation.

Regarding GenKeyPair, the function is actually implemented twice: one time directly inside
the e-voting part inside Cryptolib, and one time in the Cryptoprimitive library. This lead to
some confusion as to whether they were really similar and if so, why the code was duplicated.
Additionally, it raised the questions of what each implementation was used for, and why each
implements the same algorithm but differently. After research, no particular reason was found.
We conclude this was in order to separate tasks clearly and limit the calls in between each
library. However, since the beginning of this work this has changed and been made explicit
in the code. It now states that they are equivalent. They also wrote about it and said "Some
cryptographic primitives are implemented both in the crypto-primitives and the cryptolib (for

26

Algorithm 4.2 GenKeyPair: Generate a multi-recipient key pair

Input:
Group modulus p € P
Group cardinality g e P sit. p=2¢+1
Group generator g € G,
Number of key elements N € N*

Operation:

: for i€ [0,N) do

sk; +— GenRandomInteger(q) [> See algorithm 3.1
pk; < ¢°* mod p

1
2
3:
4: end for

Output:
A pair of secret and public keys {(skrl)kl)}?il. sk; € Z,,pk; € G,

In the Swiss Post Voting System, a ciphertext (i.e. an encrypted voter ballot) comprises
the following elements:

e g', the left-hand side part of a standard ElGamal encryption,

o pk{ - my, the encryption of the main message, under the first part of the system’s
public key. The message is the product of the choices of the voter,

. pk; -m; for all 1 < j <[, where m; is the encoding of a write-in chosen by the
voter, or 1.

« When the number of write-ins a voter is eligible to vote for is smaller than the
election configuration allows, the remaining keys are compressed by multiplication,
so that all keys are used in every case.

The algorithms for handling the key-compression mentioned in the last point are
provided below.

Figure 5.2: GenKeyPair algorithm
[16]

instance the ElGamal encryption scheme). The implementations are functionally equivalent. We

are continuously replacing the cryptolib implementation with the more robust crypto-primitives
" 15

one" .

The first implementation is interesting to trace up through the system. It starts in the control
components return codes service, in the middle of the e-voting system, precisely inside the
return code keys repository '6. There is a function called addGenerated K ey which manages the
different CCRj return code keys and the relevant computations as well, such as certification. In
order to create the return code keys, it calls the key manager !/, which in turn calls the generator
18, The generator handles the computation of the CCRj Return Codes Generation secret key,
and the CCRj Choice Return Codes encryption key pair, the actual output of the GenKeysCCRj
function. In order to compute those keys, the generator calls the ElGamal service inside the
Cryptolib library !, which finally calls the ElGamal key pair generator inside the ElGamal service

https://gitlab.com/swisspost-evoting/e-voting/e-voting

'®https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/return-codes-
service/src/main/java/ch/post/it/evoting/controlcomponents/returncodes/service/ ReturnCodesKeyRepository.java

"https://gitlab.com/swisspost-evoting/e-voting/e-voting/ - /blob/master/ control-components/control-
components-commons/src/main/java/ch/post/it/evoting/controlcomponents/commons/keymanagement/KeysManager.java

8https://gitlab.com/swisspost-evoting/e-voting/e-voting/ - /blob/master/ control-components/control-
components-commons/src/main/java/ch/post/it/evoting/controlcomponents/commons/keymanagement/Generator.java

Yhttps://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/cryptolib/src/main/java/ch/post/it/evoting
/cryptolib/elgamal/service/ElGamalService.java

27

inside Cryptolib 2°.

There is a small mismatch in between the documentation and the implementation. The function
generateK eys corresponds to GenKeysCC R but also to the computation of the CCRj Return
Codes Generation public key, computed as the ElGamal public key corresponding to its secret key
and following the Gen K ey Pair algorithm. However, this is not considered as an issue as it is more
practical to generate the key pair together. Otherwise, the function follows exactly the protocol
with the exception that it does not call a function called Gen RandomIntegerU pper Bound to gen-
erate the randomness, but an equivalent function named differently. Not naming the functions in
the code corresponding to their name in the documentation (GenRandomIntegerUpperBound-
>getRandomExponentValue, GenKeysCCR->generateKeys) is not best practise, however this has
no impact on the security of the system and thus can be ignored. In general, in this function
implementation, opposed to the major part of the code, they did not pay attention to the naming
of variables matching the documentation.

The second implementation can be found inside the Cryptoprimitive library, inside the
ElGamal section ?!. The function is called genK eyPair and corresponds to the GenK eyPair
function which implement ElGamal key pairs in the Cryptoprimitive library.

For both implementations, every necessary = membership and consis-
tency check is done correctly; some unnecessary checks are done as well
The implementation implement their own checks (eg. for groups com-
parison) or use com.google.common.base.Preconditions.check Argument and
com.google.common.base. Preconditions.check N ot Null which follow the recommendations 2.
Group operations’ consistency are also correct. Regarding outside libraries they only use java

and springframework which are trustworthy.

GenEncLongCodeShares

GenEncLongCodeShares algorithm is run by each return codes control component CCR; to
create shares of the long return codes. It is composed of three main functions : DeriveKey,
GetCliphertext Exponentiation, Gen ExponentiationProof. The function outputs:

* Vector of Voter Choice Return Code Generation public keys: this key and its corresponding
secret key are used in an algorithm called Create LCC Share during the voting phase in
SendVote. We won't cover this algorithm here or the derivations where this key is used.

* Vector of Voter Vote Cast Return Code Generation public keys: its corresponding se-
cret key will be used for generating the Voter Long Vote Cast Return Code Share in the

ZOhttps://gitlab.com/swisspost-evoting/e-voting/e-voting/ - /blob/master/ cryptolib/src/main/java/ch/post/it/evoting
/cryptolib/elgamal/factory/ CryptoElGamalKeyPairGenerator.java

Hhttps://gitlab.com/swisspost-evoting/ crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/elgamal/ElGamalMultiRecipientKeyPair.java

Zhttps://guava.dev/releases/19.0/api/docs/com/google/ common/base/Preconditions.html

28

CreateLVCCShare 5.3.4 algorithm during the voting phase.
 Vector of exponentiated, encrypted, hashed partial Choice Return Codes received as input.

* Proofs of correct exponentiation of the partial Choice Return Codes: Schnorr protocol
made non-interactive using Fiat-Shamir trick is used zero-knowledge proof (explained in
section 5.3.2). It proves that it knows the derived Voter Choice Return Code Generation
secret key. This key is used to derive the vector of Voter Choice Return Code Generation
public keys and exponentiate the vector of encrypted, hashed partial Choice Return Codes
received as input.

* Vector of exponentiated, encrypted, hashed Confirmation Keys received as input.

* Proofs of correct exponentiation of the Confirmation Keys: zero-knowledge proof is used
to prove that it knows the derived Voter Vote Cast Return Code Generation secret keys. This
key is used to derive the vector of Voter Vote Cast Return Code Generation public keys and
exponentiate the vector of encrypted, hashed Confirmation Keys received as input.

We last looked at the function GenEncLongCodeShares on the 4th of november on 2%. How-
ever since then, the file was removed and the implementation changed. We can no longer double
check what was previously done even though everything was well implemented at the time with
the right checks and group consistency.

Luckily, DeriveKey and GenExponentiationProof are both checked and ex-
plained later in the function CreateLVCCSharej during the voting phase 5.3.4.
GetCiphertext Exponentiation is also checked later on during the shuffling part of the
tally phase, precisely in GenVerifiableShuf fle 5.4.4. This implies that the analysis of the
skeleton of GenEncLongCodeShares was no longer valid but all functions called inside
separately are and are developed later in this report.

5.2.2 SetupTally

During the SetupTally phase, each mixing control component (CCM;) generates a key pair
corresponding to the election public key F'L,; ; € G and election secretkey E'Lg ; € ZV

SetupTallyCCMj

SetupTallyCCMj generates this key pair for each control component.

Shttps://gitlab.com/swisspost-evoting/e-voting/e-voting/ - /blob/master/domain/src/main/java/ch/post/it/evoting
/domain/returncodes/ReturnCodeGenerationOutput.java

29

Theoretically, the algorithm simply calls the previously mentioned GenK ey Pair algorithm
with inputs: p, g, g, 1. As seen before p is group modulus, g is the group cardinality, and g is the
group generator. ;. € N* represents the maximum number of write-in options in the election.

Similarly to the first function GenKeysCCRj, in practise there is no di-
rect SetupTallyCCMj implementation. The mixing control components have a
CemjKeyRepository.java ?* where there is a function called addGeneratedKey. This
function is meant to check whether the CCM;j election keys were already created
or not. If not, it calls keysManager.createCemElectionKey 2°, which in turn calls
generator.generateteCemElectionKey 26, Finally it is generateCemFElectionKey which im-
plements what seems to be SetupTallyCCM j algorithm. It is done by calling the previously
mentioned generate K ey Pair from the ElGamal service and signs it.

Java best practises are followed in these different functions. Membership and consistency
checks for all algorithm parameters are also well performed as well as all the checks on the
parameters inputs.

Inside createCemElection K ey, compared to all other functions seen during this work, a lot
of libraries are imported, mainly from java*, javax*, org.slf4j*, and org.springframework*, but
none of them seem insecure.

This shows a gap that can happen between the documentation and the implementation.
The documentation includes a theoretical implementation of the SetupTallyCC M j function.
In practice, the function is actually implemented by different components and not by this
theoretical function. At the end, the right functions are called to derive and store the keys and
the right checks are performed on the inputs.

5.3 Voting phase

We focused on the second part of the voting phase, called Con firmVote 3.3.2. This second part
is composed of four different algorithms called CreateCon firmMessage, Create LV CC Sharej,
and ExtractVCC, respectively.

In order to understand these algorithms, one must understand the cryptographic protocols
behind them. This section gives a brief overview of these protocols.The system uses the Schnorr
protocol explained in the work by Maurer[11] in order to compute zero-knowledge proof and
combines it with the Fiat-Shamir[3] to make it non-interactive.

*https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/distributed-
mixing-service/src/main/java/ch/post/it/evoting/controlcomponents/mixing/service/ CcmjKeyRepository.java

Bhttps:/ /gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/ control-
components-commons/src/main/java/ch/post/it/evoting/controlcomponents/commons/keymanagement/KeysManager.java

*https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/ control-
components-commons/src/main/java/ch/post/it/evoting/controlcomponents/commons/keymanagement/Generator.java

30

5.3.1 Schnorr protocol

In the Schnorr protocol, Peggy wants to prove that she knows the value of = without revealing it,
to a party having access to h*. The Schnorr protocol can be found on Figure 5.3. Vic can check

Peggy Vie

knows z="h

k €Er Zy

t:=h*

cerCC[0,q-1]

r:=k+ ze (mod q)

check h" £t 2¢

Fig. 1. The Schnorr protocol

Figure 5.3: The Schnorr protocol
[11]

that Peggy knows x by computing h" = ¢ % z¢. Indeed, first = k + x * ¢ can only be computed
with the knowledge of all exponents. Second, h™ = h¥T2*¢ = h¥ x ha x ¢ = h¥ % (h*)¢ which can be
verified with having only the knowledge of »*. The proof can be found in the Maurer work[11].

5.3.2 Fiat-Shamir trick

The Fiat-Shamir trick[3] removes any interactions from the above protocol in order to switch to a
non-interactive setting. Each value sent from the challenger, in this case the value ¢, is replaced
by the output of a cryptographic hash function. The hash function takes as inputs the previously
sent data from the prover (Peggy) to the challenger (Vic). Context variables can also be added in
some cases as well as auxiliary information.

5.3.3 CreateConfirmMessage

The voter enters the Ballot Casting Key in the voting client. The voting client processes the
Ballot Casting Key using the Verification card secret key and yields the confirmation key. The
algorithm can be found on Figure 5.4. In the documentation, the algorithm first hashes and
squares the Ballot casting key and then exponentiates the result with the Verification card secret

31

5.2.1 CreateConfirmMessage

The voter enters the Ballot Casting Key BCKjq4 in the voting client, which executes the
CreateConfirmMessage algorithm.

Algorithm 5.8 CreateConfirmMessage

Context:
Group modulus p € P
Group cardinality ¢ € Ps.t. p=2g+1
Group generator g € G,
Election event ID ee € (Apuseis)'™
Character length of the Ballot Casting Key 1gex =9
Input:
Ballot Casting Key BCKiq € (Aqg)™* > Must contain one non-zero element
Verification Card Secret Key kiq € Z,

Operation:
1: hBCK;4 < HashAndSquare(StringTolnteger(BCKiq)) > See crypto primitives specification
2: CKigq hBCKk-;;f’ mod p

Output:

Confirmation Key CKiq € G,

Figure 5.4: CreateConfirmMessage algorithm
[16]

key. However, in the code 7 the Ballot casting key is not hashed before being squared. This
is a mismatch but is not considered as a security issue. If the Ballot casting key is known, the
computation is feasible with or without the hashing considering that the hash function SHA-256
is public. The threat is the recovery of the Ballot casting key from the Confirmation key. Even if
once an attacker has recovered h BC K4, reversing the hashing to find the corresponding Ballot
Casting key adds difficulty, the exponentiation performed on hBC K;; with the Verification card
secret key modulus p is enough to avoid any inversion.

Otherwise, there is nothing else to report regarding the code or the implementation.

5.3.4 CreateLVCCSharej

The CreatelVCCSharej algorithm is executed by the control components 28, It uses the Voter
Vote Cast Return Code Generation secret key as we want to prevent any adversary from using
the CreateLVCCSharej algorithm as an oracle to learn Choice Return Codes, and allows up to
five executions of CreateLVCCSharej in case the voter entered an invalid ballot casting key. The
algorithm gets as input :

e Confirmation key: derived in the previous step.

e Verification Card id: for each election, the system groups each voter id into a verification
card set vcs and a voting card set veds and assign the voter a verification card id and a
voting card id.

*https:/ /gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/voting-client-
js/src/protocol/confirmation-key.js

Zhttps://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/return-codes-
service/src/main/java/ch/post/it/evoting/controlcomponents/returncodes/service/ CreateLlVCCShareService.java

32

* CCRj Return Codes Generations secret key: computed in the GenKeysCCRj algorithm
during the configuration phase 5.2.1.

The system updates the log with the new confirm vote and outputs:

* Hashed, squared Confirmation Key
* CCRj’s long Vote Cast Return Code share
* Voter Vote Cast Return Code Generation public key

* Exponentiation proof: non-interactive zero-knwoledge proof of the exponentiation. Im-
plicitly, it proves the knowledge of the Voter Vote Cast Return Code Generation secret key
used to generate the corresponding public key and the CCRj’s long Vote Cast Return Code
share.

* Confirmation attempt number: the number of attempts used by the voter to confirm his
vote.

Let’s first understand the key hierarchy. During the configuration phase, the control compo-

nents derive the CCRj Return Codes Generations secret key in the Gen K eysCC Rj algorithm 5.2.1.
This later is used to generate the Voter Choice Return Code Generation key pair and Voter Vote
Cast Return Code Generation key pair in the GenEncLongCodeSharesj algorithm 5.2.1. The
Voter Vote Cast Return Code Generation secret key is then used for generating the Voter Long
Vote Cast Return Code Share which has corresponding entry in the Return Codes Mapping table
CMtable.
The Return Codes Mapping table allows the control components and the voting server to retrieve
the short Choice Return Codes and access yet to be or confirmed votes. The CMtable is ordered
by the hash of the Long Return Codes to break the correlation between the voting option and the
order of insertion.

Let’s focus on what the CreateLV CCSharej does.
In the Create LV CC Sharej algorithm, the voter derives what corresponds to the Voter Vote Cast
Return Code Generation key pair derived in the Gen EncLongCodeShares algorithm. These two
derivations need to match as we later need to retrieve information from the CMtable.
Let’s notice that the derivation of the Voter Vote Cast Return Code Generation secret key differs
in the system specification[16] (Algorithm 4.5) and the Swiss Post Voting Protocol Computational
proof[15] (Algorithm 12.1.1.5) regarding to the string concatenated before the secret key deriva-
tion. As it still matches in both functions Gen EncLongCodeShares and Create LV CCSharej,
this is not an issue and the System specification documentation[16] is followed.
From this last derived key, it computes the CCRj’s long Vote Cast Return Code share which will
be used in the next algorithm in section 5.3.5 and computes the exponentiation proof using the
GenExponentiationProof algorithm explained below.

33

Considering the implementation, there is nothing to report. Every check needed (non-null
inputs, cross group checks, maximum attempts, insurance that the verification card id was
previously used to vote, etc.) are correctly performed and keys are correctly derived. Moreover,
each access to the database is performed java prepared statements for SQL eliminates most risks
of SQL injections.

We worked on this section the first week of December. Since then, the function
CreateLV CC Sharej was removed from the Swiss Post Voting Protocol Computational proof[15],
where there used to be some mismatch with System specification[16] (auxiliary information
missing in some inputs for deriving keys and names not matching).

GenExponentiationProof

The GenExponentiationProof?® shown in Figure 5.5 implements the Schnorr protocol 5.3.1
combined with the Fiat-Shamir trick 5.3.2 to prove the knowledge of the Voter Vote Cast Return
Code Generation secret key.

The witness corresponds to the Voter Vote Cast Return Code Generation secret keys.

Algorithm 6.5 GenExponentiationProof: Generate a proof of validity for the provided
exponentiation
Context:
Group modulus p € P
Group cardinality g € P s.t. p=2¢+1
Input:
A vector of bases g = (9o, .-, gn—1) € G," s.t. n. € N*
The witness — a secret exponent z € Z,
The statement — a vector of exponentiations y = (Y, -, Yn_1) € G;" s.t. y; = g7
An array of optional additional information i,,, € (Aycs®)*

Operation:
1: b+ GenRandomlnteger(q) [> See algorithm 3.1
2: ¢ + ComputePhiExponentiation(b, g) [> See algorithm 6.4
3 £+ (p,¢,8)
4: h,, < ("ExponentiationProof",i,,) > If i,,, is empty, we omit it
5: e < ByteArrayTolnteger(RecursiveHash(f,y,c,h,,)) [> See algorithms 2.8 and 3.6
6: 24 b+ex

Output:
Proof (e,2) € Z, x Z,

Figure 5.5: GenExponentiationProof algorithm
(13]

The base is the generator and the hashed and squared confirmation key.

The statement is composed of the Voter Vote Cast Return Code Generation public key and the
Long Vote Cast Return Code Generation share. These are equal to both elements of the base
exponentiated to the witness. They correspond to the knowledge given to a challenger that
needs to be convinced and does not know the exponent (witness) in the Schnorr algorithm.

https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/zeroknowledgeproofs/ExponentiationProofService.java

34

The Schnorr protocol needs to fulfill some conditions. First, it requires that the challenge
space leans in the subset of [0, ¢1]. This is ensured by the hash generation.
The value ¢ must be prime, which is ensured when it is generated in the Swiss post e-voting.
Maurer work[11] states that "a protocol consisting of s rounds is a proof of knowledge if 1/|C|*
is negligible and it is zero-knowledge if |C| is polynomially bounded". The Swiss post e-voting
performs only one round and considers that 1/q is negligible.
Since we consider only one round, the rest of the conditions are irrelevant. (Section 6.1 and
Theorem 3).

5.3.5 ExtractVCC

In the ExtractV CC algorithm3?, the voting server extracts the short Vote Cast Return Code from
the Return Codes Mapping table CMtable. The voting server then stores the Verification card ID
and the encrypted vote in the list of confirmed vote. The whole algorithm is shown on Figure
5.6.

From the documentation[16], the algorithm receives as input:

long Vote Cast Return Code shares: received from the previous algorithm.

Verification card ID

Return Codes Mapping table

Encrypted vote: encrypted in CreateV ote algorithm during the SendingVote phase.

The implementation also takes as input the Election Event ID and the Tenant ID.

The aim of the algorithm is to output a Vector of short Vote Cast Return Codes to allow the
voter to check that the short Vote Cast Return Code id on their voting client is identical to the
short Vote Cast Return Code printed on their voting card.

First, the long Vote Cast Return Code shares are multiplied. This corresponds to the multipli-
cation of the hashed Confirmation key exponentiated with the Voter Vote Cast secret key. The
result is then hashed and used to retrieve the codes from the CMtable.

The computation’s result must be equal to the one used to construct the CMtable. Let’s focus on
the computation when generating the CMtable in order to compare.

In the GenEncLongShares algorithms during the configuration phase 5.2.1, the Voter Vote Cast
secret key is derived similarly as in the previous algorithm Create LV CCShare. The matrix of
exponentiated, encrypted, hashed Confirmation Keys is then computed using the Voter Vote
Cast secret key. Using this matrix, the algorithm Combine EncLongCodeShares computes the

$https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/voting-server/vote-
verification/src/main/java/ch/post/it/evoting/votingserver/voteverification/service/ExtractVCCService.java

35

Algorithm 5.10 ExtractVCC
Context:
Group modulus p € P
Group cardinality ¢ € Ps.t. p=2¢+1
Group generator g € G,
Election event ID ee € (Apggse1s)™™
Character length of the Base64 encoded hash output 1lgges > 44 for a 256-bit hash function
Voting Server’s list of confirmed votes Lconsirmedvotes
Input:
CCR long Vote Cast Return Code shares (1VCCiq,1, 1VCCia.2, 1VCCia3, 1VCCia4) € G,*
Verification card ID veyq € (Apggers) ™
Return Codes Mapping table CMtable € (AB(,,MI““ X AB,,,.F,(;_,‘*)NE'(HH)
Encrypted vote Eli4 € G, X G,

Operation:

1: pVCC,, - [1}_, 1VCCia; mod p

2: 1VCCiq ¢ RecursiveHash(pVCC, 4, veyq, ee) > See crypto primitives specification
3: if Base64Encode(RecursiveHash(1VCC;4)) ¢ CMtable then

4: return L

5: else

6: Look up Base64Encode(RecursiveHash(1VCC;4)) and retrieve ctVCC;, in CMtable

: skvceiq ¢ KeyDerivationFunction(1VCCiq4, 16) > See Algorithm 8.7
8: VCCiq < GetMessageSymmetric(ctVCCiqg, skvcciq) > See Algorithm 8.10
9: VCCiq < ByteArrayToString(VCCi4) > See crypto primitives specification
10: Leonfir < Leonts U (vcig,Eliq)
11: end if

Output:
Short Vote Cast Return Code VCCiq € (A19)®

Figure 5.6: ExtractVCC algorithm
[16]

vector of encrypted pre-Vote Cast Return Codes which corresponds to the multiplication of
the exponentiated, encrypted, hashed Confirmation Keys for each eligible voter. Finally, this is
decrypted by the GenC M Table algorithm and hashed. This results in the multiplication of the
exponentiated, hashed Confirmation Keys.

In conclusion, the computation is different but leads to the same result: the long Vote Cast Return
Code.

This last computation is hashed and allows to retrieve from CMtable potentials for the right
tenantld, electionEventld, verificationCardld. This is done the exact same way as when the
potentials were pushed inside the CMtable.

However, the entries of the table are symmetrically encrypted using AES 128 in Ga-
lois/Counter Mode (GCM) mode. The implementation uses the javax GCMParameterSpec class
31, For this reason, a new key is derived from the long Vote Cast Return Code applying the mask
generation function MGF1 according to RFC8017. This key allows the decryption of the informa-
tion retrieved from the table which corresponds to the Short Vote Cast Return Code. During the
GenCMTable algorithm, the input (Short Vote Cast Return Code) was indeed encrypted using
the same key derived from the long Vote Cast Return Code.

In conclusion, the protocol performs the right computation to confirm a vote and there are
no security breaches. To start with, only the knowledge of all keys allows the confirmation of

3lhttps://docs.oracle.com/javase/7/docs/api/javax/crypto/spec/ GCMParameterSpec.html

36

the votes. Indeed, in order to recover the right Short Vote Cast Return Code, the secret keys are
needed, which are known only by the Control Component and at least one of them is trustworthy.
This means that it won't share the keys to help an attacker or try to modify the protocol. Then, as
explained in section 3.2, the print office is trustworthy and it is the voter’s job to compare the
returned code and to make sure that they keep secret the personal code received on the printing
sheet. It is finally up to the voter to make sure of the comparison to detect any attack that would
have been detected by a modified output.

Considering the implementation, there is nothing to report. Every check needed is correctly
performed, each access to the database is performed, java prepared statements for SQL eliminate
most risks of SQL injections, and the code follows the protocol specifications.

5.4 Tally phase

During the tally phase, the voting server and the mixing control component decrypt the votes
and compute the election result running two algorithms: MizOnline3? andMizO f fline33. They
also ensure that all the parties executed the protocol faithfully running Veri fyOnlineT ally and
VerifyOf flineTally. More details about the tally phase can be found in subsection 3.3.3.

During the tally phase, the Swiss post e-voting system uses the Pedersen scheme and the
Bayer-Groth mixnets. For this reason we give an overview of them in the next two subsections.

5.4.1 Pedersen scheme

A cryptographic commitment allows a party to commit to a secret value and to keep it hidden
from others to then reveal it later. A commitment scheme must be binding and hiding, these
properties are explained later.

In a non-interactive commitment scheme, the commitment is computed and made public or
itis sent. Later in order to reveal the value, the value is sent along with the randomness used when
creating the commitment. With these parameters, anyone can run the commitment protocol to
check that indeed this was the value committed to.

The Swiss post e-voting system uses the Pedersen commitment scheme[12] with a commit-
ment key ck = (h, g1, ..., g») generated in a verifiable manner.

The Pedersen commitment scheme satisfies three properties that the Bayer-Groth mix net

#https:/ /gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/ control-components/distributed-
mixing-service/src/main/java/ch/post/it/evoting/controlcomponents/mixing/service/ MixDecryptOnlineService.java
#Bhttps:/ /gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/secure-data-manager/secure-data-

manager-backend/services/src/main/java/ch/post/it/evoting/sdm/application/service/MixDecryptService.java

37

requires. The scheme is perfectly hiding, computationally binding, and homomorphic.
Perfectly hiding means that one cannot retrieve the committed value before it is revealed or
guess it. Indeed, the commitment is uniformly distributed in G,,.

Computationally binding indicates that the committed value cannot be modified after the com-
mitment. This is ensured by the fact that it is computationally infeasible to find two different
values producing the same commitment in a setting where the discrete logarithm problem is
hard and when the commitment keys are generated independently and verifiably at random.
Finally, as the scheme is homomorphic, it holds that GetCommitment(a + b, r + s) =
GetCommitment(a, r)*GetCommitment(d, s) for messages a and b, commitment key ck and
random values r and s.

The Swiss post e-voting system instantiates the Pedersen commitment scheme over the group
of quadratic residues @), C Z,,. Since p and ¢ are large primes, quadratic residuosity implies p =
2¢q + 1. The Pedersen commitment scheme works with the generators G, ..., G, € Q). This allows
the system to set up parameters where the discrete logarithm problem is hard and to ensure the
computationally binding property holds.

There is an important generalization of the Pedersen commitment scheme that makes it
possible to commit to multiple values at once[6]. The public key consists of m + 1 group elements
Y1, -, Ym, h and we compute a commitment to m = (my, ..., my,) € Zyasc = h' [[[~, 7" using

the randomness ¢ € Z,,.

5.4.2 Bayer-Groth mixnet

Verifiable mix nets are used in modern e-voting schemes as they hide the relationship between
encrypted votes possibly linked to a voter, and decrypted votes[7]. A re-encryption mix net
is made of a sequence of mixers where each mixer receives a list of ciphertext and outputs a
list containing the shuffled and re-encrypted ciphertexts. However, as the ciphertexts are re-
encrypted, it is not possible to verify directly whether the shuffle and encryption operations
were done correctly or not. Thus, we need to compute a zero-knowledge argument that makes
it possible to verify that the shuffle was done correctly and proves its knowledge, but without
revealing anything about the permutation and the randomizers used. The verifier can then verify
the proofs and guarantee that no mixer added, deleted, or modified a vote.

Bayer-Groth[1] propose an honest verifier zero-knowledge argument for the correctness
of a shuffle of homomorphic encryptions. It constructs a shuffle of C, ..., C'y by selecting
a permutation = and randomizers p, ...on , and calculating C] = Crq)Epk(1;p1),...,Cy =
Cn(N)Epk(l;PN)-

38

5.4.3 MixDecOnline and MixDecOffline

The MixDecOnline and MixDecOffline algorithms are composed of two main functions,
GenVerifiableShuf fle and GenVeri fiable Decryptions.

In order to understand the shuffling combined with re-encryption and partial decryption of
the votes, it is important to understand how the election key is derived. We have seen that each
mixing control component generates a CCM election key pair (EL,y j = g¥ls+i, ELy ;). The
election public key E'L,, is then derived by computing the product of all CCM elections public
keys: H?:l ELy; (mod p) = ?:1 gELskip = gFLska+ELsk 2+ ELsks+ELsya (mod p).

One by one, each control component shuffles and re-encrypts the ciphertexts using the election
public key, and consecutively partially decrypts them using its personal election secret key. Each
time a control component is finished with running the algorithm, it removes its part from the
election public key. For example, for the thirst control components, the election public key is
gELsk,3+ELsk,4 (mod p).

The MixzDecOnline algorithm can be found on Figure 5.7, and MizDecO f fline only differs by
its last step as it corresponds to the last decryption outputing the plaintexts.

Algorithm 6.2 MixDecOnline;

Context:
Group modulus p € P
Group cardinality g e Psit. p=2g + 1
Group generator g € G,
Election event ID ee € (Apgse1s)'™®
Ballot box ID bb € (Apgase1s)'™
Control component index j € [L, 3]
Number of allowed write-ins + 1 for this specific ballot box ben
List of shuffled and decrypted ballot boxes Ly, ;

Input:
Partially decrypted votes Cgecj—1 € (]]'11;)"c
Remaining election public key ELy ;_ € G b =Ely, ifj=1
CCM; election key pair (ELpy j,ELg ;) € Gl x Zj

Ensure: Ne > 1 > The algorithm runs with at least one vote

Ensure: [=4
Ensure: 0 <1 <6< pu
Ensure: bb ¢ Ly ;

Operation:
1: laux ¢ (ee, bb, "MixDecOnline”, IntegerToString(7))
2: if Ne > 1 then > Shuffling requires at least 2 votes
3: (Crmixj» Tmix,;) < GenVerifiableShuffle(cgec j—1, ELpk j—1) > See crypto primitives
specification
1: (Cdec,j» Taec ;) +— GenVerifiableDecryptions(Cmic;. (ELpij, Lok ;). daux) > See crypto
primitives specification
5: else & If there is only 1 vote in the ballot box
6: (Cdec.j» Taec.;) < GenVerifiableDecryptions(cgec,j—1. (ELpk j, ELek ;). Taux)
7: end if
8: EL'jx; < CompressPublicKey(ELyy ;. §) > See crypto primitives specification
9: EL; % mod p
pk.j
10: Lypj ¢ Lonj UDbb
Output:
Shuffled votes cmix; € (H*)
Shuffle proof my; > See the domain of the Shuffle proof. Empty if N = 1.

Partially decrypted votes Cgec; € (H;)™
Decryption proofs maej € (Zg x Z')%
Remaining election public key ELy ; € G,

Figure 5.7: MixDecOnline algorithm
[16]

39

We notice that the algorithm accepts the case where only one vote is submitted to decryption
(line 5 on Figure 5.7). This could be considered as a security issue as this case does not preserve
the voter anonymity. Indeed, as there is only one vote, no shuffling can be performed to break the
link between the ciphertexts and the plaintexts and thus the voter. This opens up the possibility
of linking a voter to their vote without any interference. It should be enforced to receive at least
two ciphertexts to ensure 2-anonymity and have only 50% of chance of linking the voter to their
vote.

Thankfully, as the verifier is trustworthy; it is not possible for an active attacker to try to reduce the
list of ciphertexts in order to use this condition as an oracle to ask for the decryption of a specific
ciphertext. As during the shuffling (and decryption) proof, the original vector of unshuffled
ciphertexts is used as input, a difference between the lists’ sizes would be directly detected by
verifier.

This is a special case not likely to happen as during a vote there is a very low chance of having only
one voter. However, for the sake of security it should still be modified or they should acknowledge
that voter anonymity is not ensured in this case.

5.4.4 GenVerifiableShuffle

In the GenVerifiableShuf fle algorithm3* shown on Figure 5.8, a control component shuffles
and re-encrypts the received ciphertexts. It also provides a Bayer-Groth proof of the shuffle. The

Algorithm 5.1 GenVerifiableShuffle: Shuffle (including re-encryption), and provide
a Bayer-Groth proof of the shuffle
Context:
Group modulus p € P
Group cardinality g € P s.t. p=2¢+1
Group generator g € G,
Input:
A vector of ciphertexts C € (H,)™
A multi-recipient public key pk € G]; [> This public key is passed as context to all
sub-arguments
Require: 0 <1<k
Require: 2< N <¢g—3

Operation:
1: (C',m,r) + GenShuffle(C, pk) [> See algorithm 5.3
2: (m,n) < GetMatrixDimensions(V') [> See algorithm 5.5

@

: ck « GetVerifiableCommitmentKey(n) [> See algorithm 5.6 [> This commitment
key is passed as context to all sub-arguments

: shuffleStatement + (C,C’)

. shuffleWitness « (m,r)

5: shuffleArgument < GetShuffleArgument(shuffleStatement, shuffleWitness, m,n) [> See

algorithm 5.11

o U

Output:
C e (#)Y
shuffleArgument

Figure 5.8: GenVerifiableShuffle algorithm
[13]

3 https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/MixnetService.java

40

algorithm first calls the GenShuf fle function3® with the list of ciphertexts and the multi-recipient
public keys as inputs.

GenShuffle

The function shuffles and re-encrypts alist of ciphertexts C1, ..., Cy with the given multi-recipient
public key pk. The given multi-recipient public key corresponds to the election key.

Hence, the first control component re-encrypts the list of ciphertexts using the election public
key. Then, each next control component needs to re-encrypt the list of ciphertexts using the
remaining election public key. As explained previously, the remaining public key corresponds
to the election public key without its part coming from control components which already
decrypted the ciphertexts.

Specifically, the re-encryption of ciphertexts C, ...C'y works as follows: it selects a permutation
7 and randomizers p1, ...pn , and computes C] = Cﬂ(l)EEka(l; p1), ., Cy = C,T(N)EEka(l; PN).
For each i, this corresponds to C! = Cris) * ELZ}%, which in turn can be written as C] =
Crriy * g Mm@ Fsh2n(o) FskSni Tskdni) 201 Let's write the sum of the different secret keys ski from all
control components as sk. Considering that C.;y = My ;) * g*F=@)? =) for a previously generated
randomness p’, one can finally write: C} = M, ;) * gSkﬂi)p;(i) s gFm()*Pi = My * g*Fx) (Pt

Let’s notice that this corresponds to the homomorphic encryption E,;(1 « M;;p; + pl) =
E,i(1; pf) * Epi(M;; pi). In this case we use the sum of all the election secret keys and this cor-
responds to the election used for the first control component. However for each next control
component i, the secret key corresponding to the control components j < i are removed from
the election key.

The function uses the randomness service and also a permutation generator, the
GenPermutation function®®. This function generates a permutation of integers [0, N) with N
corresponding in this case to the size of the list of ciphertexts. The Swiss post e-voting system im-
plements the Fisher-Yates shuffle which allows to generate a permutation of N items uniformly
at random without retries®”. For each element, this algorithm randomly chooses a next element
in the list to swap the current element with. The function is implemented correctly, and checks
that N is positive. The system only implements one loop more than is necessary, as the element
resulting in the last position can only be swapped with itself, but this has no consequence.

The multiplication of the ciphertexts is carefully done. They don’t forget to also multiply
the v = generator™™@mness that is used for decryption. This corresponds to adding the two
exponents equal to the different randomness generated for both encryptions.

%https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/ShuffleService.java

%https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/PermutationService.java

$"https://en.wikipedia.org/wiki/Randomyermutation

41

Overall, the implementation is correct. The necessary checks on the inputs are done and
there are no security threat.

After this, the GenVerifiableShuf fle algorithm calls the Get Matriz Dimensions function.

GetMatrixDimensions

The function?®® takes the size of the list of received ciphertexts and computes the size-optimal
number of rows and columns for creating a matrix. It computes size-optimal dimensions which
are as close as possible to the dimensions of a square matrix so as to result in the smallest size of
the shuffle argument and be the most efficient. The algorithm computes | /N |, and decrements
its value until it finds an integer that divides N. This gives m the number of rows, and allows to
compute n = N/m the number of columns. This indeed gives the size-optimal dimensions and
the implementation is correct.

After the matrix dimensions, the GenVerifiableShuffle algorithm calls the
GetVerifiableCommitmentKey function and creates the ShuffleStatement and
Shuf fleWitness.

GetVerifiableCommitmentKey

A commitment key represents a public key used for the calculation of a commitment. The
GetVerifiableCommitmentK ey algorithm3? creates a commitment key with n number of ele-
ments, where n is the number of columns in the matrix dimensions previously derived, to later
be able to commit to each column. The key must be part of the quadratic residue group G,,.
Due to the generation of the parameters p, g and g (see 5.1.1), every element of the quadratic
residue group is a generator. The algorithm ensures that it is an element of the group by squaring
the potential element of the commitment key. The implementation guarantees that no trivial
element (0, 1, g) is chosen, and knowing ¢, the generation is deterministic to enable every party
to derive the commitment key. The implementation also ensures that commitment keys are
generated independently and verifiably at random. On conclusion the generation of the key
meets the requirement explained in subsection 5.4.1.

#Bhttps://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/MatrixUtils.java

$https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/ CommitmentKeyService.java

42

ShuffleStatement

The shuffle statement contains the list of the ciphertext and the list of newly shuffled and re-
encrypted ciphertexts which uses the permutation and randomness generated.

ShuffleWitness

The shuffle witness contains the permutations and the randomness used for the re-encryption of
the ciphertexts. These are secret parameters, for which their knowledge must be proven without
revealing them.

Finally, the GenVerifiableShuf fle algorithm computes a cryptographic argument for the
validity of the shuffle calling Shuf fle Argument and using the shuffle statement and witness.

ShuffleArgument

The shuffle argument is computed calling the GetShuf fle Argument function?® displayed on
Figure 5.9. The algorithm follows the shuffle argument’s generation (without verification) from
the Bayer-Groth paper found on Figure 5.10. It computes a cryptographic argument of knowl-
edge of the permutation and the randomness used to generate the new list of ciphertexts in
GenShuf fle. Precisely, the shuffle argument combines the multi-exponentiation argument and
the product argument. They respectively prove that the product of a set of ciphertexts raised to a
set of committed exponents gives a specific ciphertext, and that a set of committed values has a
specific product.

The first step for the prover is to commit to the permutation. This is done by committing to
m(1),...,m(IN) using the Pedersen scheme in the Swiss post e-voting system’s implementation. To
follow, the prover receives a challenge = and commits to 2™ ™) In the implementation,
every permutation 7 () and ™) is placed in a matrix of the dimensions previously computed,
and we compute a commitment for each column®!.

To check that the same permutation has been used in both commitments, two random chal-
lenges y and z are sent to the prover.

By using the homomorphic properties of the Pedersen scheme the prover, can commit to
dy —z=yr(1)+ 2™V, . dy — 2z = yn(N) + 2™ — 2 and using the argument from the section 5
of the Bayer-Groth paper, the prover shows > | (d; — 2) = SV, (yi + 2 —). The implementation
calls the Get Product Argument function, which is the only one that was not checked during this
project.

“*https://gitlab.com/swisspost-evoting/crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/ evoting
/cryptoprimitives/mixnet/ShuffleArgumentService.java

“hitps://gitlab.com/swisspost-evoting/crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/ CommitmentService.java

43

Algorithm 5.11 GetShuffleArgument: compute a cryptographic argument for the valid-
ity of the shuffle
Context:

Group modulus p ¢ P

Group cardinality g € P s.t. p=2g+ 1

Group generator g € G,

A multi-recipient public key pk € G5

A commitment key ck = (h,g5.....9,) € (G, \ {L.gh*"!
Input:

The statement composed of

- The incoming list of ciphertexts C € (H,)V s.t. 0 < I <k

- The shuffled and re-encrypted list of ciphertexts G’ g (H;)V

The witness composed of

- permutation T € I

- randomness € Z,"

The number of rows to use for ciphertext matrices m € N*

The number of columns to use for ciphertext matrices n € N* s.t. 2 < n < v
Ensure: Vi € [0, N) : C/ = GetCiphertextProduct(GetCiphertext(1, p;. pk), C ;)
Ensure: N =mn

Operation:
1: r « GenRandomVector(g, m) [> See algorithm 3.2
2: A+ Transpose(ToMatrix({m(i)} ¥ !, m,n)) [> Create a n x m matrix. See algorithm 5.14 and algorithm 5.13
3: ¢, ¢ GetCommitmentMatrix(A, r, ck) [> See algorithm 5.8
4: x « ByteArrayTolnteger(RecursiveHash(p, g, pk, ck, C, C’, ¢ 4))
5: s + GenRandomVector(q, m)
6: b« {zm(}N T
7: B+ Transpose(ToMatrix(b, m, n))
8: e « GetCommitmentMatrix(B, s, ck)
9: y + ByteArrayTolnteger(RecursiveHash(c 5, p, ¢, pk, ck, €, C’ ¢ 4))
10: =z + ByteArrayTolnteger(RecursiveHash("1", ¢ 5, p, q, pk, ek, C, /. ¢ 1))

[> Both € and €” are passed in the vector forms here
11: Zneg + Transpose(ToMatrix({—z} ™ .m,n}) [> Vector of length N, with all values being ¢ — =
12: ¢, « GetCommitmentMatrix(Zneg, 0, ck) [> A vector of length m, with all 0 values
13: ep «clep [> Entry-wise product

14 D+ yA+B

15: t e« yr+s

16: b [N (mi+af—2)
17: pStatement « (cpc__.b)
18: pWitness « (D + Zneg, t)

19: productArgument + GetProductArgument(pStatement, pWitness) [> See algorithm 5.18
20: peg—(p-b) [> Standard inner product ¥V ' p;b;
21 & (L

22: C « GetCiphertextVectorExponent‘\ation(C",) [> See algorithm 4.9
23: mStatement « (ToMatrix(C", m,n),C,cpz) [> See algorithm 5.13
24: mWitness « (B, s, p)

25: multiExponentiationArgument + GetMultiExponentiationArgument(mStatement, mWitness) [> See

algorithm 5.15

Output:
shuffleArgument (c 4. ¢ g, productArgument, multiExponentiationArgument) € G,™ x G,™ x ... x ..
[> See algorithm 5.18 and algorithm 5.15 for their respective domains

Figure 5.9: GetShuffleArgument algorithm
[16]

44

Common reference string: pk, ck.

Statement: C,C’ € HN with N = mn.

Prover’s witness: m € Xy and p € ZLY such that C” = £,1(1; p)C.

Initial message: Pick 7 « Z7", set @ = {7 (i)}}\, and compute ¢4 = comcx(a; 7).
Send: cx

Challenge: z « Zj.

Answer Pick s € Z", set b = {x”“)}f\;l and compute cg = comx(b; s).
Send: cp

Challenge: y, z < Zj.

Answer: Define c_. = comek(—2,...,—2;0) and ¢p = C,};CB- Compute d = ya +
b, and t = yr+s. Engage in a product argument as described in Sect.[Slof openings
dy — z,...,dN — z and t such that

N N
cpe_, = comei(d — 2z;t) and H(d1 —z)= H(yi +at—2).
i=1 i=1
Compute p=—p-band set = (x,22,...,2")T. Engage in a multi-exponentiation

argument as described in Sect.] of b, s and p such that

C* = (1 p)C™® and cp = com(b; s)
The two arguments can be run in parallel. Furthermore, the multi-exponentiation
argument can be started in round 3 after the computation of the commitments cp.
Verification: The verifier checks c4,cp € G™ and computes c_ ., cp as described
above and computes vaz 1 (yi+ ' — z) and C™®. The verifier accepts if the product
and multi-exponentiation arguments both are valid.

Figure 5.10: Bayer-groth shuffle argument computation

(1]

It uses a derived pStatement representing the statement used for the calculation of a product
argument, computable with the knowledge of the verifier. It also uses a derived pWitness repre-
senting a witness for a product argument, containing computations using the secret values we
committed to and thus non-reproductible by an outside party.

This demonstrates that the same permutation has been used in both cases and means that the
prover has a commitment to x1, ..., zy permuted in an order that was fixed before the prover saw
X.

Finally, the algorithm computes an mStatement, the statement for the multi exponent argu-
ment, and an mWitness, the witness for the multi exponentiation argument. Using the multi-
exponentiation argument from section 4 of Bayer-Groth paper, the prover demonstrates that
there exist randomizers p1, ..., p such that [[¥, ¥ = k(13 0) T, C{mﬂ(i). In the implemen-
tation this part is computed by a function called Get Multi Exponentiation Argument*? which
implements the protocol on Figure 5.11 from the Bayer-Grother paper.

However, as we are in a non-interactive setting, every time a challenge is supposedly sent by
the verifier, the challenge is actually derived from all the environment variables, inputs of the
function, and values supposedly previously sent to the challenger. When two different challenges
are needed in a row with no computation added in between, an integer string is prepended to
differentiate them and avoid replay.

At the end of the GenVerifiableShuf fle function, the control component outputs the Shuf-

“https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/MultiExponentiationArgumentService.java

45

Common reference string: pk, ck.
Statement: C,,...,C,, e H", C € H,and ca € G™
Prover’s witness: A = {a;}", € Z}*™, r € Z7', and p € Z, such that

m
C =E&Eu(1;p) H C and ca = comy(A;7)
i=1
Initial message: Pick ag « Z;‘, rg < Zg,and by, 50,70 - - -y bo—1, S2m—1:Tam—1 —
Z, and set b,,, = 0, s,, = 0.7, = p. Compute for k =0,...,2m — 1

m,im
.o — . _ by . a;
ca, = comer(ag; o) . ep, = comex (bi si), By = Eu(G™im) [€
i=1,j=0
j=(k—m)+i
2m—1 2m—1
Send: ca,, {8, Yrmg 1Bk} sy -
Challenge: = + Z7.
Answer: Setx = (z,22,....2z™)7 and compute

2m—1

a=ap+ Az r=ro+r-z b:bg+Zkak
k=1

2m—1 2m—1

s=8 + Z spzF T=To+ Z Tezh .
k=1 k=1

Send: a,r,b,s, 7.
Verification: Check ca,,¢B,.....€B,,,_, € G,and Ep,...,Ezp—1 € H,and a €
ZZ}, and r, b, 5,7 € Zg, and accept if ¢, = comex (0;0) and £y, = C, and

2m—1
k
ca e f = come(a;r) CBy H ch, = comeg(b; s)
k=1
2m—1 . m
b. Fm—ig
Eo [EE =ém(c™in][] C: .
k=1 i=1

Figure 5.11: Bayer-Groth multi exponentiation argument computation

(1]

46

fleArgument and the new list of shuffled and re-encrypted ciphertexts. The new list of ciphertexts
is given to the next control component to run the same algorithm and in turn partially decrypt
the list. However, if this was the last control component running the algorithm offline, the final
output is the list of plaintexts representing the votes.

As is shown on Figure 5.8, the implementation of the GenVerifiableShuf fle algorithms
calls a few different functions. They were all verified and these functions compute the intended
output with a correct implementation regarding the methdology chapter.

5.4.5 GenVerifiableDecryptions

The GenVerifiable Decryptions*® function provides a verifiable partial decryption of a list of
ciphertexts.

GetPartialDecryption

This function takes as input the list of ciphertexts previously shuffled and re-encrypted. This list
was encrypted using the election key computed using the product of all CCM election public
keys of the control component which haven not run the MizDecOnline algorithm yet. The
GetPartial Decryption decrypts the list of ciphertexts according to the ElGamal scheme (same
scheme used for encryption), using as input its election secret key.

Informally, using its secret key, the control component removes from the encryption of the vote
its contribution. The vote is not encrypted anymore using its secret key and can be decrypted by
the next control components.

To understand in details what happens, we continue the example from 5.4.4. GenShuf fle

output a new list of ciphertexts such that C; = M. * gskm)(p;(iﬁm) = My *
(Rt F3k2n iy Hsh3n(o ka0 TP0) (in the case of the first control component). The par-
tial decryption uses the election secret key sk1 and computes C!/ = C! x vy~ = O/ «
g(p;(i)—l-pi)*(—skl) — M. *g(Skl'/r(i)+5k27r(i)+8k37r(i)+3k47r(i))*(p;(i>+pi) " g(P;<i)+Pz‘)*(—Sk1) = M, *

(k2 Fsk3n (o Heha@) ¥ (P) T00) for j — 1. N. This results in the vote not being encrypted any-

more relative to the first control component.

The implementation uses the ElGamal decryption scheme from section 5.1.1, and there is
nothing to notice, everything is implemented correctly.

“hitps://gitlab.com/swisspost-evoting/crypto-primitives/ crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/zeroknowledgeproofs/ZeroKnowledgeProofService.java

47

GenDecryptionProof

The GenDecryptionProof algorithm computes a proof of validity for the fresh decryption using
a scheme derived from the Schnorr protocol in a non-interactive setting**.

On Figure 5.12 and 5.13, one can find the GenDecryptionProof algorithm and its main
function Compute PhiDecryption.

Algorithm 6.2 GenDecryptionProof: Generate a proof of validity for the provided de-
cryption
Context:
Group modulus p € P
Group cardinality g € Ps.t. p=2¢+1
Group generator g € G,
Input:
A multi-recipient ciphertext C = (v, ¢y, ..., ¢_1) € H,
A multi-recipient key pair (pk,sk) € Gf;' x Zf;'

A multi-recipient message m = (mg, ..., my_;) € @ql s.t. m = GetMessage(C, sk)
An array of optional additional information i,,, € (Aycg™)*
Require: 0 <<k

Operation:
1: b < GenRandomVector(q, 1) [> See algorithm 3.2
2: ¢ < ComputePhiDecryption(b,) [> See algorithm 6.1
3 f+ (p,g.9.7)
4: (pkg; ..., pk;_,) +— CompressPublicKey(pk,) [> See algorithm 4.5
5: for i € [0,1) do
6: y; < pk!
T Yii < ,%
8 end for ‘
9: h,,, + ("DecryptionProof", (¢g,.... ¢ 1), m,i,,) [> If i, is empty, we omit it
10: e — ByteArrayTolnteger(RecursiveHash(f, (1, ..., 45 1), €, hy,)) [> See
algorithms 2.8 and 3.6
11: sk’ «+— CompressSecretKey(sk, 1) [> See algorithm 4.6

12: z+ b+e-sk’

Output:
Proof (e,z) € Zq X qu

Figure 5.12: GenDecryptionProof algorithm
[16]

The ComputePhiDecryption function®® computes a list of ¢* and v%. v represents the gener-
ator g exponentiated to the randomness used for encryption, and b; are elements of a random
vector of the same size as the list of ciphertexts.The phi function maps the election secret key, for
which we need to prove the knowledge, to its public key and the decryption of the ciphertext.
Indeed, if the vector b corresponds to the election secret key, this list is equal to the list of elec-
tion public keys and the list of election public keys exponentiated to the randomness used for
encryption.

These are actually computed next in the GenDecryptionProof.
As we are in a non-interactive setting, these results are not sent to the challenger but hashed to

“https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/zeroknowledgeproofs/DecryptionProofService.java

“Shttps://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/zeroknowledgeproofs/DecryptionProofService.java

48

Algorithm 6.1 ComputePhiDecryption: Compute the ¢-function for decryption
Context:

Group modulus p € P

Group cardinality g € P s.t. p=2¢ +1

Group generator g € G,
Input:

Preimage (g, ...,,) € Z,

Base v € G,

Operation:
1: for i € [0,1) do
2: y; — g"i > y; = pk; when x; = sk;
3 Y <5 D>y =g = % when v = ¢" and x; = sk;
4: end for
[> All symbols used in the comments above are aligned with algorithms 4.4
and 4.7

Output:

The image (yp, -.- , Yar_1) € qug
This algorithm implies that for the multi-recipient ElGamal key pair (pk,sk) and the
valid decryption m = (imy,...,m;_,) of the ciphertext (y, @g, ..., #_,), the computation
of the ComputePhiDecryption(sk,) would yield (pky, ..., pk,_;, g Cio1

mg’ T my g

Figure 5.13: ComputePhiDecryption algorithm
[16]

the variable e.

Finally, the function computes z = b + e * sk where sk is the election secret key used for encryp-
tion, and in this case the witness.

This computation is explained in more detail during the verification. Briefly, the elements b and
sk are unknown to an outside party, but the public key g°* is known as well as e which is part of the
output with z, and it is possible to prove knowledge of b by computing g* = gt+e*sF = g0 x (g°%)e.

The implementation of GenDecryptionproof is correct, as well as that of all the different
functions it calls. Again, all the necessary checks are performed (cross-checks, inputs) and the
java best practises are followed.

Regarding the security of the system, as the implementation is correct, it relies theoretically
on the scheme used.

5.4.6 VerifyOnlineTally and VerifyOfflineTally

In the VerifyOnlineTall and VerifyO f flineTally algorithms, the proof of the decryption and
the shuffling are verified and run in the verifier*6 47,

“Shttps://gitlab.com/swisspost-evoting/ verifier/ verifier/-/blob/master/verifier-block3/src/main/java/ch/post/it/evoting
/verifier/block/block3/verifications/VerifyOnlineDecryptionProofs.java

“"https://gitlab.com/swisspost-evoting/ verifier/verifier/-/blob/master/verifier-block4/src/main/java/ch/post/it/evoting
/verifier/block/block4/verifications/VerifyOfflineDecryptionProofs.java

49

5.4.7 VerifyShuffle

The VerifyShuf fle algorithm*® shown on Figure 5.14 verifies the correctness of the shuffle
argument computed in the GetShuf fle Argument algorithm for the list of ciphertexts and their
shuffled and re-encrypted list. It computes the matrix dimensions the same way as in the

Algorithm 5.2 VerifyShuffle: Verify the output of a previously generated verifiable
shuffle
Context:
Group modulus p € P
Group cardinality ¢ € P s.t. p=2¢+1
Group generator g € G,
Input:
A vector of unshuffled ciphertexts C € (H,)™
A vector of shuffied, re-encrypted ciphertexts C’ € (H,)™
A Bayer-Groth shuffleArgument [> See algorithm 5.11 for the domain
A multi-recipient public key pk € @5 [> This public key is passed as context to all
sub-arguments
Require: 0 <1<k
Require: 2< N<¢q—3

Operation:
1: (m,n) < GetMatrixDimensions(XV) [> See algorithm 5.5
2: ck « GetVerifiableCommitmentKey(n) [> See algorithm 5.6 [> This commitment
key is passed as context to all sub-arguments
: shuffleStatement « (C, C’)
4: return VerifyShuffleArgument(shuffleStatement, shuffleArgument, m, n)
[> See algorithm 5.12

w

Output:
The result of the verification: T if the verification is successful, | otherwise.

Figure 5.14: VerifyShuffle algorithm
(16]

generation of the proof and derives the deterministic commitment key. Finally, it calls the
VerifyShuf fle Argument function using as inputs the list ciphertexts, the list of shuffled and
re-encrypted ciphertexts, and the shuffleArgument computed during the proof.

The VerifyShuf fleArgument function first re-computes the challenges z,y,z. Then,
it derives the part of the proof computable without the knowledge of witness: the
pStatement and mStatement, as during the generation of the proof. Now, instead of
generating the proof it verifies them using two functions: VerifyProductArgument and
VerifyMulti Exponentiation Argument.

VerifyProduct Argument takes as input the product Argument generated during the proof and
verifies the equality stated during the generation using the pStatement. Again, as its sibling in
the proof this function was not checked.

VerifyMultiExponentiation Argument verifies the multiExponentiationProof using the
mStatement. It computes the verification part of the protocol on Figure 5.11.

The whole function corresponds to the Verification part explained on Figure 5.10 and is

“8https://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/mixnet/MixnetService.java

50

correctly implemented.

5.4.8 VerifyDecryptions

The function Veri fyDecryptions*® receives for each ciphertext its proof composed of the pair (e,
z) computed in 5.4.5. For each cipherext, it verifies the proof.

First, it applies the Compute PhiDecryption function to z to construct a list z. This computes
a list Ofgz — gb+e*sk — gb % (gsk)e, and gz*p.

Then, as during the generation of the proof, the algorithm constructs a list y containing the
list of election public keys ¢** prepended to the list of election public keys exponentiated to the
randomness used for encryption g***#,

Next, it multiplies both list 2 and y, with y raised to the exponent e. For the first [elements this
is equal to : [g°] * [y =] = [g"***F] % [y~] = [g" * g°"*F] % [(9°%) 7] = [¢" % g°*F'] ¥ [(9~****] = ¢". For
the next [elements this results in: [g7*Tr**sk] « [g5F x p]=¢ = [gP*0 x gP**5F] x [g%F % p] ¢ = ¢P**. To
sum up, if the prover was honest, this computation retrieves the output (¢°, g***) of the function
ComputePhiDecryption with input b, without knowing the value of b.

At this point, the verifier has all elements to compute the hash ¢’ with the same inputs as
during GenDecryptionProof.

The trustworthy verifier compares the newly generated ¢’ to the received e. If everything was
done correctly, they are equal.

No error were found in the implementation. As the previous algorithm, the security relies on
the scheme used for the commitment and re-encryption. The Pedersen commitment scheme
and the Bayer-Groth mixnet are currently considered as secure, and consequently is this part of
Swiss post e-voting system theoretically.

“Shttps://gitlab.com/swisspost-evoting/ crypto-primitives/crypto-primitives/-/blob/master/src/main/java/ch/post/it/evoting
/cryptoprimitives/zeroknowledgeproofs/DecryptionProofService.java

51

Chapter 6

Conclusion

In this project, we covered some specific part of the Swiss post e-voting system and analyzed
their implementation and the theory behind them.

After reviewing all parts covered in the analysis section, one doubt remains about the potential
oracle implemented in the MixzDecOnline and MixDecO f fline functions and mentioned in
section 5.4.3. This would deserve more attention. Either it needs to be modified, or they need to
make clear that they allow this case which removes some anonymity in a particular situation.
Otherwise, overall no security issue was found.

There are a few inconsistencies between the documentation and the theory, but with no
security impact. In some functions, Java best practises are not always respected, however the
majority of the code does follow them and it is known that the implementation will be improved
in this sense.

Overall, the system is still under development and some future work is planned!. Through
the work done in this project, we have a high level of confidence on the security of the Swiss post
e-voting system.

https://gitlab.com/swisspost-evoting/e-voting/e-voting

52

Bibliography

(1]

(2]

3]

(4]

(5]

6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correctness of a
Shuffle”. In: EUROCRYPT 2012, LNCS 7237.. 2012, pp. 263-280.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash Functions for Message
Authentication”. In: Advances in Cryptology - CRYPTO 96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings.
Vol. 1109. Springer, 1996.

Amos Fiat and Ad Shamir. “How To Prove Yourself: Practical Solutions to Identification and
Signature Problems”. In: Advances in Cryptology — CRYPTO' 86. Lecture Notes in Computer
Science. 1987.

Taher El Gamal. “A public key cryptosystem and a signature scheme based on discrete
logarithms.” In: G. R. Blakley and David Chaum, editors, CRYPTO, volume 196 of Lecture
Notes in Computer Science. Springer, 1984, pp. 10-18.

NHenri Gilbert and Helena Handschuh. “Security Analysis of SHA-256 and Sisters.” In:
Cryptography 2003. 2003, pp. 175-193.

Jens Groth. “Homomorphic Trapdoor Commitments to Group Elements”. In: IACR Cryptol.
ePrint Arch. 2009 (2009), p. 7.

Thomas Haines, Rajeev Gore, and Bhavesh Sharma. Did you mix me? Formally Verifying
Verifiable Mix Nets in Electronic Voting. Cryptology ePrint Archive, Report 2020/1114. 2020.

RSA Laboratories. “PKCS 1 v2.1: RSA Cryptography Standard”. In: 2020.

Derrick Lehmer. “Tests for primality by the converse of Fermat’s theorem”. In: Bulletin of
the American Mathematical Society 33.3 (1927), pp. 327-340.

Philipp Locher, Rolf Haenni, and Reto E. Koenig. “Analysis of the Cryptographic Imple-
mentation of the Swiss Post Voting Protocol”. In: July 19, 2019.

Ueli Maurer. “Unifying Zero-Knowledge Proofs of Knowledge”. In: AFRICACRYPT 2009,
LNCS 5580. 2009, pp. 272-286.

Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: Advances in Cryptology - CRYPT0 91, LNCS 576. 1992, pp. 129-140.

Swiss Post. “Cryptographic Primitives of the Swiss Post Voting System - Version 0.9.11”. In:
E-voting documentation. 2021.

53

(14]

[15]

[16]

[17]

(18]

[19]

(20]

Swiss Post. “Infrastructure whitepaper of the Swiss Post e-voting system”. In: E-voting
documentation. 2021.

Swiss Post. “Protocol of the Swiss Post Voting System - Version 0.9.11”. In: E-voting docu-
mentation. 2021.

Swiss Post. “Swiss Post Voting System - System specification Version 0.9.7”. In: E-voting
documentation. 2021.

Swiss Post. “SwissPost Voting System architecture document - Version 0.9.1”. In: E-voting
documentation. 2021.

Michael O Rabin. “Probabilistic algorithm for testing primality”. In: Journal of Number
Theory 12.1 (1980), pp. 128-138.

National Institute of Standards and Technology. “SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions”. In: FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION. 2015.

Yiannis Tsiounis and Moti Yung. “ On the security of elgamal based encryption.” In: Hideki
Imai and Yuliang Zheng, editors, Public Key Cryptography, volume 1431 of Lecture Notes in
Computer Science. Springer, 1998, pp. 117-134.

54

	Contents
	Introduction
	Background
	Timeline
	Current findings

	Description of the System
	Security Objective
	Individual verifiability
	Universal verifiability
	Vote secrecy

	Parties of the system
	Actors
	Building Blocks
	Verifier

	Phases
	Configuration phase
	Voting phase
	Tally phase

	Methodology
	Starting point
	Where to look at
	What to look at

	Analysis
	Cryptography
	Multi-recipient ElGamal scheme
	Digital signatures
	Randomness generation
	Hashing

	Configuration phase
	SetupVoting
	SetupTally

	Voting phase
	Schnorr protocol
	Fiat-Shamir trick
	CreateConfirmMessage
	CreateLVCCSharej
	ExtractVCC

	Tally phase
	Pedersen scheme
	Bayer-Groth mixnet
	MixDecOnline and MixDecOffline
	GenVerifiableShuffle
	GenVerifiableDecryptions
	VerifyOnlineTally and VerifyOfflineTally
	VerifyShuffle
	VerifyDecryptions

	Conclusion
	Bibliography

