Swiss Post E-Voting

Presentation by Ella Kummer

Supervisor : Louis-Henri Merino

Professor Bryan Ford
DEDIS Laboratory

Plan of the presentation SWiss POST 7

Quick overview of the Swiss post e-voting system
Goal of the project

Summary of the reviews

Interesting reviews

A

Conclusion

SECURITY OBJECTIVES SWISS POST ;7

* Individual verifiability : Allows the voter to check that the vote was
correctly transmitted and registered by the server by comparing a
verification code that they receive with their voting documents to the
verification code displayed online when they go to the ballot box.

* Universal verifiability : Allow voters or auditors to check that the election
outcome corresponds to the registered votes using advanced cryptographic
techniques such as non-interactive zero-knowledge proofs and verifiable
mix-nets

* Vote secrecy : Do not reveal a voter’s vote to anyone. It preserves the
privacy of the voter by encrypting votes end-to-end and splitting the
decryption key among multiple entities.

DECOMPOSITION OF THE SYSTEM ; SwissposT

This application contains pravem——— The Control Components

several microservices. compose a system in which
Each microservicels | | eeeeeeeeee- Vote / Election-----~ ---»{ Voter Portal Use > they WOfk together as a
responsible for one part

P P Voter group.

of the voting process, rroms
i.e., authentication, \ There are two types of

election information, administration /|| Secure Dats control control components: the

Y
]
2

Voting Server

. . Configuration Manager Components
vote verification, etc. A Return Codes Control

Canton \ Component (CCR) and the
It is considered Use Use Use

Mixing Control Component

Support

. They generate the return
wisspos Cryptoli Crypto Primitivi Domain

Swisspost o o - o codes, shuffle the encrypted
/ \ votes, and decrypt them at

the end of the election while
guaranteeing the integrity of

untrustworthy jt . (ccMm).
_________ evelopment /______ | N v M

the voting protocol.
A library that provides key sharing and encryption

e _ : An open-source server side library which implements At least one of them must be
capait:)|ht|e.s to the voting p;°t°C°|' It prﬁverlmts |.n;orrect,d cryptographic algorithms used as building blocks for the trustworthy while three of
unsate or insecure usage of cryptography algorithms an voting protocol. Focuses on the verifiable mix net and non- them might be under an

roviders. It has a single-entry point that is configurable . .
P g ype g interactive zero-knowledge proofs. adversaries’ control.

DHASES swiss posT'

The cryptographic protocol divides the Swiss Post Voting System’s "runtime" into three
parts:

1. Configuration Phase : Generates the voter’s codes that are subsequently sent to the

voter by postal mail and generates the election public key that is used for encrypting the
votes.

2. Voting Phase : First authenticates the voter. Then the voter can select the desired voting
options and ensure individual verifiability, thus the vote can get confirmed.

3. Tally Phase : The voting server and the mixing control components decrypt the votes

and compute the election result while protecting vote secrecy and guaranteeing universal
verifiability.

GOAL OF THE PROJECT SWISS POST

* Review the source code and the documentation to look for potential
vulnerabilities and security issues.

* Methodology :

» Target a part of the system (e.g. building block) or part of the protocol (e.g.
phase) for specific reasons (e.g. complexity, newness)

* Analyse the documentation
e Correct results
* Correct security (also related to scheme used)

* Analyse the implementation

swisspost'h

SUMMARY OF THE REVIEWS

REVIEWED CODE

CRYPTOGRAPHIC IMPLEMENTATION :

* Multi-recipient EIGamal scheme
* Digital signatures (RSA-PSS)
 Randomness generation

* Hashing (SHA-256)

swisspost'h

REVIEWED CODE cwiss post
CONFIGURATION PHASE IMPLEMENTATION

foting Serve CCRs Auditors
. SetupVoting : GenKeysCCR;
.
GenKeysCCR;j : s
= (Pk('('n/},;x

| e GenVerCardSetKeys

computes key pairs to later encrypt or derive new |
keys . | &= GenVerDat

- {pkcer, }i

]
=
i

I

- ve, K, epecs € Lpee

GenEncLongCodeShares : I

1
A
I
L
B

GenEncLongCodeShares;

}-

creates shares of the long return codes. o

Set u pTa I chc Mj : | 5= CombineEncLongCodeShares
| e GenCMTable :

computes the election key pair for each control ot

Component. [Oevoe

o Pkeon, s PReors K K€ Caxpros 1+ Cexpot s TexpPCC s TexpCK.

J L p! J
Ve, Cpcc. Cak, By, ELgi j, ELyy, pTable, CMtable
VerifyConfigPhase
,,,,,,,,,,,,,,,,,,,,,, invalid execution _________________.__.

VCard = (SVKy4, BCKyy, CCiq, VCCyy) [I

REVIEWED CODE SWIss POST
VOTING PHASE — CONFIRM VOTE IMPLEMENTATION

CreateConfirmMessage :

‘ VerifyVCC

. . Voter
create a confirmation key. i
CreatelLVCCSharej : . iy
derives codes for the next step. ™ et g
L ICCwy; 00 | [”,U
ExtractVCC : i T
I l¢— ExtractVCC .
extracts a code to allow the voter to check that I -- - weld sonbmution. g
it is identical to the code printed on their voting 1 N U imvalid contimation. ___
card %

swisspost'h

REVIEWED CODE
TALLY PHASE IMPLEMENTATION

GenVerifiableShuffle :

shuffles and re-encrypts the votes and proved a proof of the shuffle.

GenVerifiableDecryptions :

provides a verifiable partial decryption of a list of encrypted votes.

VerifyShuffle :

verifies the correctness of the shuffle argument.

VerifyDecryptions :

verifies the correctness of the decryption.

EINDS swisspost'h

v Necessary checks on inputs/data

v’ Groups operations

v’ Collision resistance for hash functions
v No insecure libraries

v’ Signed data

v’ Encryptions

o Java best practises
o Inconsistency between the documentation and the theory

FINDS swisspost'h

e Secure implementation of the cryptographic schemes

v’ El Gamal encryption

v’ Schnorr protocol for zero-knowledge proof (using Fiat-Shamir trick)
v Pedersen commitment scheme

v’ Bayer-Groth mixnet

EINDS swisspost'h

* Rely on java for

" Randomness generation
" Primality tests

" Digital signhature

= Partly for hashing

~ security

swisspost'h

INTERESTING DETAILED REVIEWS

RANDOMNESS GENERATION SWISS POST 7
- UPDATE

Class SecureRandom

java.lang.Object
java.util.Random
java.security.SecureRandom

: provides a cryptographically strong random number generator (RNG)

public BigInteger genRandomInteger(final BigInteger upperBound) {
checkNotNull(upperBound);
checkArgument (upperBound.compareTo(BigInteger.ZERO) > @, "The upper bound must a be a positive integer greater than ©.");
final BigInteger m = upperBound;

final int bitlLength = m.bitLength();
Inside Crypto Primitives
BigInteger r;
do {
// This constructor internally masks the excess generated bits.
r = new BigInteger(bitlLength, secureRandom);
} while (r.compareTo(m) >= @);

return r;

public BigInteger genRandomIntegerUpperBounded(BigInteger upperBound) {
checkNotNull(upperBound);
checkArgument (upperBound.compareTo(BigInteger.ZERO) > 0);

int length = upperBound.bitLength();

Inside Cryptolib
BigInteger random;
do {
random = genRandomIntegerByBits(length);

} while (random.compareTo(upperBound) >= @);

return random;

RANDOMNESS GENERATION SWISS POST 7
- UPDATE

e Some cryptographic primitives are implemented both in the crypto-primitives and the cryptolib (for instance the ElGamal encryption
scheme). The implementations are functionally equivalent. We are continously replacing the cryptolib implementation with the more robust

crypto-primitives one.

https://qgitlab.com/swisspost-evoting/e-voting/e-voting

MixDecOnlinej function SWISS POST 7

Algorithm 6.2 MixDecOnline;
Context:
sroup modulus p € P
e M ° Group cardinality g € Ps.it. p=2¢+ 1
The online Mixing control Grom g 1<,
Election event ID ee € (Apggae)™
Ballot hox ID bb € (Apaee1s)'™
CO m p O n e nts C C M S h u ffl e a n d re - Control component index j € [1,3]
Number of allowed write-ins + 1 for this specific ballot box ¢ € N*
List of shuffled and decrypted ballot boxes Ly, ;

encrypt the previous control

Partially decrypted votes cgec j—1 € (Hy)™

) . Remaining election public key EL,, ;1 € Gg b =ELp, if j =1
component’s ciphertexts and O s) 6
Ensure: Np > 1 > The algorithm runs with at least one vote

Ensure: | =4

perform partial decryption. Ere b

Operation:
1: i,y « (ee, bb, "MixDecOnline”, IntegerToString(j))
2: if Ng > 1 then > Shuffling requires at least 2 votes
(Crmix,j: Tmix,j) GenVerifiabIeShuffle(cdew-_l.ﬁpk‘_,_lj > See crypto primitives

specification

If t h e CO nt ro I CO m p O n e nt I S t h e fl rSt 4: [)riIl(:i::iE::i;:;i_f-i)fij;t:.::)TVerifiableDecryptions(cmix_j. (ELpi,j» ELax), faux) > See crypto

5: else > If there is only 1 vote in the ballot box
t M Y - 1 t h ° t | M t f 6: (Cdec j» Taec,j) < GenVerifiableDecryptions(€gec j—1. (ELpk,j+ ELsx,j), Laux)
OMmixy\j=41), the Inputlist o " ond if |
8: EL'p; < CompressPublicKey(ELyy ;. d) > See crvpto primitives specification

ciphertexts corresponds to the o By T

10: th‘_ﬂ R Lbb,_j UJbb

cleansed encrypted votes.

Shuffled votes ¢mix; € (H7)

Shuffle proof mm; > See the domain of the Shuffle proof. Empty if Nz = 1.
Partially decrypted votes cgec; € (H;)"

Decryption proofs mgec ; € (Zy % th)”‘c

Remaining election public key ELyy ; € "Gg

MixDecOnline function

* The algorithm accepts the case
where only one vote is submitted to
decryption.

* This could be considered as a security
issue as this case does not preserve
the voter anonymity.

* As there is only one vote, no shuffling
can be performed to break the link
between the ciphertexts and the
plaintexts and thus the voter.

swisspost'h

Algorithm 6.2 MixDecOnline;

Context:
Group modulus p e P
Group cardinality g € Ps.it. p=2¢ + 1
Group generator g € G,
Election event ID ee € (Apggeeis)™
Ballot box ID bb € (Apgecis)'™
Control component index j € [1,3]

Number of allowed write-ins + 1 for this specific ballot box § € N*
List of shuffled and decrypted ballot boxes Ly ;
Input:
Partially decrypted votes Cgec j—1 € (Hy)™
Remaining election public key EL,.; 1 € Gi
CCM; election key pair (ELg ;,ELg ;) € GYy x Zj
Ensure: N; > 1 > The algorithm runs with at least one vote
Ensure: [=4
Ensure: 0 </ <d < pu
Ensure: bb ¢ Ly ;

b = Ely, if j = 1

Operation:
1: laux < (ee,bb, "MixDecOnline”, Integer ToString(j))

2: if Ng > 1 then > Shuffling requires at least 2 votes

3 (Cmix,j» Tmix,;) — GenVerifiableShuffle(cgec j—1. Epkd_lj > See crypto primitives
specification

4: (Cdecj» Tdec,;) + GenVerifiableDecryptions(Cmix ;. (ELpx,j» ELskj), laux) > See crypto
primitives specification

5: else > If there is only 1 vote in the ballot box

6: (Cdec - Tdec,j) <— GenVerifiableDecryptions(Cgec,j—1. (ELpk,j: ELsk ;) Laux)

7. end if

8 EL'pr; + CompressPublickey(ELpy 5, 0) & dee crypto primitives specilication

9: ELg; + ELP?'J_I mod p

pk.j
10: Lpp; ¢ Lo U bb

Qutput:
Shuffled votes cmix; € (H?c)
Shuffle proof mmiy; > See the domain of the Shuffle proof. Empty if Ng = 1.
Partially decrypted votes cyec; € (Hj)M
Decryption proofs fgec; € (Z % ZQE)N“
Remaining election public key ELy ; € "Gg

MixDecOnline function SWISS POST

* This is a special case not likely to happen as during a vote there is a
very low chance of having only one voter.

* However, for the sake of security it should be acknowledge. Either it
needs to be modified*, or they need to make clear that they allow
this case which removes some anonymity.

* e.g. enforce to receive at least two ciphertexts to ensure 2-anonymity
and have only 50% of chance of linking the voter to their vote.

MixDecOnline function SWISS POST

v Thankfully, as the verifier is trustworthy, it is not possible for an
active attacker to try to reduce the list of ciphertexts in order to use
this condition as an oracle to ask for the decryption of a specific

ciphertext.

During the shuffling (and decryption) proof, the original vector of
unshuffled ciphertexts is used as input, a difference between the lists’

sizes would be directly detected by verifier.

DIGITAL SIGNATURE

swisspost'h

“The Swiss Post Voting System uses the RSA-PSS signature scheme with
2048-bits key length “

Algorithm 8.16 SignCheckpoint: Generate a signature for the checkpoint log entry

Context:

the RSA signing key ksg, defined by:
- the modulus m € P

- the public exponent p € N*

- the private exponent d € N*

Input:

The HMAC value of the previous entry h_; € B* > The empty byte array is used in the
case of a first line log entry

The liberated session key k; € 13%2

The encrypted session key k. € B*

The maximal number of log lines between checkpoints n € N

The maximal time duration between checkpoints (in milliseconds) d € N

The timestamp of the log entry t € N

The log message m € (Aycs \ CR, LF)”

The HMAC of the checkpoint log entry h € B2

Operation:
1: ny < IntegerToByteArray(n) > See crypto primitives specification
2: dy, + IntegerToByteArray(d)
3: t, < IntegerToByteArray(t)
4: my, < StringToByteArray(m) > See crypto primitives specification

0 b Uk U o L s s LR
T U

f=2]

T DL LA AR I il B |

: s < Signgsa_pss(ksig.) > Uses standard RSA-PSS signature, with SHA-256 as a digest

function.

6: 5 < Signgsa_pss(ksig, p) > Uses standard RSA-PSS signature, with SHA-256 as a digest SW’SS POST?

function.

final Signature signature = Signature.getInstance ("SHA256withRSA");

Signature.update (..);
Signature.sign{() ;

Class Signature

java.lang.Object
java.security.Signature Spi
java.security.Signature

“The Signature class is used to provide applications the functionality of a digital signature
algorithm.

The signature algorithm can be, among others, the NIST standard DSA, using DSA and SHA-
256.

These algorithms are described in the Signature section (*) of the Java Cryptography
Architecture Standard Algorithm Name Documentation.”

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Signature

The signature algorithm with SHA-* and the RSA encryption algorithm as defined in the OSI
Interoperability Workshop, using the padding conventions described in PKCS #1 (Public-Key
Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1)

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Signature

swisspost'h

CONCLUSION

CONCLUSION

* The system is still under development and

some future work is planned

* Through the work done in this project, we
have a high level of confidence on the security

of the Swiss post e-voting system

swisspost'h

Future Work

We plan the following work for future releases.

.

.

Explicitly implement the DecodePlaintexts algorithm. Currently, the output of the system consists of the encoded voting options (prime
numbers). Please note that the verifier checks the decoding of the prime numbers.

Reduce the number of code smells and increase test coverage. We will prioritize code that implements important elements of the
cryptographic protocol.

The voting server is untrusted: we distributed many functionalities to the mutually independent control compenents in the current protoco
However, for historical reasons, the voting server still performs additional validations not strictly necessary from the protocol point of view.
Moreover, the voting server uses the JavaEE framework, while the other parts of the solution use SpringBoot. To improve maintainability, we
want to reduce the voting server's responsibility to the strict minimum and align it to SpringBoot

Ensure reproducible builds, see the section on reproducible builds.

Known Issues

The current version of the source code h e follo

g known issues
* The source cade is not fully aligned to the specification version 0.9.7.
The

issue #7

nVerDat and CreatelLCCShare algorithms do not implement the partial Choice Return Codes allow list. This point refers t

The contral components do not check the list of ballot boxes that they already part

y decrypted. This refers to Gitlab issue #11
The DecryptPCC _j algorithm is not implemented. Currently, the voting server decrypts the PCC and sends them to the control
components.

The contral components da not receive the CCR_j Choice Return Codes Encryption public keys during the confi

uration phase. They

only received the combined Choice Return Codes Encryption public key during voting (signed by the administration board key)

We plan for a typescript implementation of the crypto-primitives implementation (open-sourt

) that follows the crypto-primitives
specification and implements the voting client"

zero-knowledge proofs. The

escript implementation is going to address the following

points:

The EncodeVotingOptions method is currently implemented outside the CreateVo

algorithm
o The implementation’s zero-knawledge proof currently

do not include the complete statement of the specification and use a different
hash function

Write-ins are currently

supported

hic primitives are implemented both in the ¢

pto-primitives and the cry

lib (for instance the E

entations are functionally equivalent. We are continously replacing tl

yptolib implementation with the more robust

thy in o

eat model) is built using Angu

Even though there are long-term

veaknesses and future b

wser compatibility support, ideally, the frontend would be migrated to /
rewritten in Angular,

* In some cases, publicly writable directories are used as temporary storage. The s

y risk associated is mitigated

uch services

1 a containerized environment, where we co

ol all the running processes. We plan to remove the use of temporary storage complete

Y

