
Swiss Post E-Voting

• Presentation by Ella Kummer

• Supervisor : Louis-Henri Merino

• Professor Bryan Ford

• DEDIS Laboratory

1

Plan of the presentation

1. Quick overview of the Swiss post e-voting system

2. Goal of the project

3. Summary of the reviews

3. Interesting reviews

4. Conclusion

SECURITY OBJECTIVES

• Individual verifiability : Allows the voter to check that the vote was
correctly transmitted and registered by the server by comparing a
verification code that they receive with their voting documents to the
verification code displayed online when they go to the ballot box.

• Universal verifiability : Allow voters or auditors to check that the election
outcome corresponds to the registered votes using advanced cryptographic
techniques such as non-interactive zero-knowledge proofs and verifiable
mix-nets

• Vote secrecy : Do not reveal a voter’s vote to anyone. It preserves the
privacy of the voter by encrypting votes end-to-end and splitting the
decryption key among multiple entities.

3

DECOMPOSITION OF THE SYSTEM :

A library that provides key sharing and encryption
capabilities to the voting protocol. It prevents incorrect,
unsafe or insecure usage of cryptography algorithms and
providers. It has a single-entry point that is configurable

An open-source server side library which implements

cryptographic algorithms used as building blocks for the

voting protocol. Focuses on the verifiable mix net and non-

interactive zero-knowledge proofs.

The Control Components

compose a system in which

they work together as a

group.

There are two types of

control components: the

Return Codes Control

Component (CCR) and the

Mixing Control Component

(CCM).

They generate the return

codes, shuffle the encrypted

votes, and decrypt them at

the end of the election while

guaranteeing the integrity of

the voting protocol.

At least one of them must be

trustworthy while three of

them might be under an

adversaries’ control.

This application contains

several microservices.

Each microservice is

responsible for one part

of the voting process,

i.e., authentication,

election information,

vote verification, etc.

It is considered

untrustworthy

PHASES

The cryptographic protocol divides the Swiss Post Voting System’s "runtime" into three
parts:

1. Configuration Phase : Generates the voter’s codes that are subsequently sent to the
voter by postal mail and generates the election public key that is used for encrypting the
votes.

2. Voting Phase : First authenticates the voter. Then the voter can select the desired voting
options and ensure individual verifiability, thus the vote can get confirmed.

3. Tally Phase : The voting server and the mixing control components decrypt the votes
and compute the election result while protecting vote secrecy and guaranteeing universal
verifiability.

5

GOAL OF THE PROJECT

• Review the source code and the documentation to look for potential
vulnerabilities and security issues.

• Methodology :
• Target a part of the system (e.g. building block) or part of the protocol (e.g.

phase) for specific reasons (e.g. complexity, newness)

• Analyse the documentation
• Correct results

• Correct security (also related to scheme used)

• Analyse the implementation

6

SUMMARY OF THE REVIEWS

7

REVIEWED CODE

CRYPTOGRAPHIC IMPLEMENTATION :

• Multi-recipient ElGamal scheme

• Digital signatures (RSA-PSS)

• Randomness generation

• Hashing (SHA-256)

REVIEWED CODE
CONFIGURATION PHASE IMPLEMENTATION

GenKeysCCRj :

computes key pairs to later encrypt or derive new
keys.

GenEncLongCodeShares :

creates shares of the long return codes.

SetupTallyCCMj :

computes the election key pair for each control
component.

REVIEWED CODE
VOTING PHASE – CONFIRM VOTE IMPLEMENTATION

CreateConfirmMessage :

create a confirmation key.

CreateLVCCSharej :

derives codes for the next step.

ExtractVCC :

extracts a code to allow the voter to check that
it is identical to the code printed on their voting
card.

REVIEWED CODE
TALLY PHASE IMPLEMENTATION

GenVerifiableShuffle :

shuffles and re-encrypts the votes and proved a proof of the shuffle.

GenVerifiableDecryptions :

provides a verifiable partial decryption of a list of encrypted votes.

VerifyShuffle :

verifies the correctness of the shuffle argument.

VerifyDecryptions :

verifies the correctness of the decryption.

FINDS

✓ Necessary checks on inputs/data

✓ Groups operations

✓ Collision resistance for hash functions

✓ No insecure libraries

✓ Signed data

✓ Encryptions

o Java best practises

o Inconsistency between the documentation and the theory

FINDS

• Secure implementation of the cryptographic schemes

✓ El Gamal encryption

✓ Schnorr protocol for zero-knowledge proof (using Fiat-Shamir trick)

✓ Pedersen commitment scheme

✓ Bayer-Groth mixnet

FINDS

• Rely on java for

▪ Randomness generation

▪ Primality tests

▪ Digital signature

▪ Partly for hashing

~ security

INTERESTING DETAILED REVIEWS

15

RANDOMNESS GENERATION
- UPDATE

: provides a cryptographically strong random number generator (RNG)

Inside Crypto Primitives

Inside Cryptolib

RANDOMNESS GENERATION
- UPDATE

https://gitlab.com/swisspost-evoting/e-voting/e-voting

MixDecOnlinej function

The online Mixing control
components CCM shuffle and re-
encrypt the previous control
component’s ciphertexts and
perform partial decryption.

If the control component is the first
to mix (j = 1), the input list of
ciphertexts corresponds to the
cleansed encrypted votes.

MixDecOnline function

• The algorithm accepts the case
where only one vote is submitted to
decryption.

• This could be considered as a security
issue as this case does not preserve
the voter anonymity.

• As there is only one vote, no shuffling
can be performed to break the link
between the ciphertexts and the
plaintexts and thus the voter.

MixDecOnline function

• This is a special case not likely to happen as during a vote there is a
very low chance of having only one voter.

• However, for the sake of security it should be acknowledge. Either it
needs to be modified*, or they need to make clear that they allow
this case which removes some anonymity.

* e.g. enforce to receive at least two ciphertexts to ensure 2-anonymity
and have only 50% of chance of linking the voter to their vote.

MixDecOnline function

✓ Thankfully, as the verifier is trustworthy, it is not possible for an
active attacker to try to reduce the list of ciphertexts in order to use
this condition as an oracle to ask for the decryption of a specific
ciphertext.

During the shuffling (and decryption) proof, the original vector of
unshuffled ciphertexts is used as input, a difference between the lists’
sizes would be directly detected by verifier.

DIGITAL SIGNATURE

“The Swiss Post Voting System uses the RSA-PSS signature scheme with
2048-bits key length “

“The Signature class is used to provide applications the functionality of a digital signature
algorithm.

The signature algorithm can be, among others, the NIST standard DSA, using DSA and SHA-
256.

These algorithms are described in the Signature section (*) of the Java Cryptography
Architecture Standard Algorithm Name Documentation.”

…
https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Signature

…

The signature algorithm with SHA-* and the RSA encryption algorithm as defined in the OSI
Interoperability Workshop, using the padding conventions described in PKCS #1 (Public-Key
Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1)

final Signature signature = Signature.getInstance("SHA256withRSA");

Signature.update(…);

Signature.sign();

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#Signature

CONCLUSION

25

CONCLUSION

• The system is still under development and
some future work is planned

• Through the work done in this project, we
have a high level of confidence on the security
of the Swiss post e-voting system

