
École Polytechnique Fédérale de Lausanne

E-voting on DELA

Anas Ibrahim, Vincent Parodi

CYBERSECURITY MASTER SEMESTER PROJECT

Supervisors : Noémien Kocher, Gaurav Narula
Responsible : Prof. Bryan Ford

EPFL IC IINFCOM DEDIS
BC 210 (Bâtiment BC)

Station 14
CH-1015 Lausanne

June 10, 2021



Abstract—E-Voting is a very interesting, actual, fancy, and
useful use case to demonstrate the utility of a distributed ledger
technology. The aim of this project is to implement a new E-
Voting system based in Dela [1], the latest blockchain-based
distributed ledger from the DEDIS lab. We implement the back-
end part of a complete e-voting system, from the creation of an
election to the publishing of the results. We provide a rest API
such that any front end can make use of the system.

I. INTRODUCTION

E-Voting is a nice showcase to demonstrate the utility of
a system based on a distributed ledger. Its utility is well
understood by the general public and it addresses a very actual
concern.

The DEDIS lab has already implemented an E-Voting
solution that has been successfully used in the past for EPFL
elections [2]. This system is using the previous DEDIS ledger,
cothority/onet [3], which is now being replaced by a more
recent system: Dela [1]. The cothority (collective authority)
project provides a framework for development, analysis, and
deployment of decentralized, distributed (cryptographic) proto-
cols. A given set of servers running these protocols is referred
to as a collective authority or cothority.

In 2008, Ben Adida published the white paper to his web-
based voting scheme named Helios [4]. The idea was to use
a Sako-Kilian mixnet, essentially a single shuffle, so that a
voter can verify the encryption of his ballot, audit the shuffle
to check if his ballot has been included and finally verify the
integrity of the decrypted ballot once the election is over. The
whole Helios protocol works as follows:

1) Alice encrypts and casts as many ballots as she wishes.
Ensuring that each ballot has been encrypted correctly.

2) Alice’s encrypted ballot is published on the election’s
public bulletin board.

3) A shuffle is performed when the election closes, provid-
ing a verifiable proof of correctness according to Sako-
Kilian.

4) Any observer is now able to verify the shuffle, specifi-
cally Alice can check if her ballot has been included.

5) When no complaints have been made by any auditor the
shuffled ballots are decrypted with a decryption proof for
each one of them.

6) The tally is performed on the decrypted ballots.
The Helios protocol does not secure a voter’s privacy but
only his actual vote, thus everyone who has cast a ballot
is part of the public bulletin board. As a consequence the
Helios software is not meant to be used in elections where
voter coercion is an issue [5]. This includes political elections
where anonymity is crucial to avoid any potential threats
against people who have cast a ballot. On the other hand
it is perfectly suited for elections in smaller environments
like universities or local clubs. The current implementation
builds on the ideas used in the Helios project. The goals are
to provide a completely verifiable election architecture where
the protocol can be audited by any observer at any stage of the
process. This e-voting scheme does not hide the identity of the
voters either but insures that voters and ballots are unlikable.

Some of the components of the Helios project, especially the
underlying protocols, have been replaced or adapted.

The Sako-Kilian mixnet is replaced by Andrew Neff’s ver-
ifiable secret shuffle [6]. This yields a significant performance
improvement as demonstrated in [7]. Another change is the
actual storage architecture. Helios relies on a conventional
relational PostgreSQL [8] database model that is hosted on a
single server that is also meant to perform the actual shuffle. In
the current implementation all the election related data is put
on the blockchain instead, using cothority [3]. This mitigates
the single point of failure since the data is now administered
by a collective of servers. Also, the servers can run distributed
protocols that enhance the reliability and aptitude of the
system. For example, in Helios ballots are encrypted using
a global key pair whereas the current implementation uses a
distributed key generation protocol to create a collective public
key. Each node only get one share of the collective secret key
(which of course is not enough to retrieve the secret key) which
means no single node can decrypt the ballots. Furthermore, the
election data is hosted on a blockchain so the integrity of the
data is provided if at least 2/3 of the nodes are honest, which
is a lot safer than having a single point of failure as in Helios.

The goal of our project is to implement a proof-of-concept
of a similar system using Dela [1] instead of cothority. We still
aim to provide a completely verifiable election architecture
where the protocol can be audited by any observer at any
stage. This e-voting scheme will not hide the identity of the
votes either, it will only protect their actual ballots.

II. GOALS OF THE PROJECT

A. Motivation and contribution

Motivation : E-voting already has some use cases, for
instance EPFL elections have been conducted using the cur-
rent implementation. [2] Dela is the new distributed ledger
infrastructure of the DEDIS lab, it serves the same purpose as
cothority but it is more modular, more maintainable, testable
and stable. Our project should offer the same functionalities as
the current implementation, but it benefits of the advantages
of Dela over cothority. In addition, it is the first practical work
based on Dela.

Contribution : The general goal is to have a first proof-
of-concept of a simple E-Voting system that runs on Dela, as
explained before we are looking for the same functionalities as
the current implementation. In practice, we will have to modify
the DKG service of Dela, implement a shuffling service, an
e-voting smart contract, and an http server that allows a front-
end to use the system.

B. Requirements

The system should be usable by two actors:
• Admin: responsible for managing an election.
• Voter: end-user that is able to cast a vote and get the

result of an election.
We want the following to hold :
• Votes are anonymous.



• A quorum of nodes must witness the whole process.
• Votes are securely stored and cannot be tempered/deleted.
• Anyone can verify the election’s result.
• A single node cannot prevent a user to cast his/her vote.

C. Scenarios

A scenario describes the high-level use of our system, from
the actor’s point of view. It implies that all requirements are
followed. The initial goal of our system is to handle the
following scenario that describes the minimal proof-of-concept
:

Happy scenario :
1) (admin) set up a new election
2) (voter) cast a vote
3) (admin) closes election (shuffle ...)
4) (voter) read the results

However, we went a bit further in our implementation. Indeed,
our system is able to handle multiple elections, multiples users,
multiple votes per users (only the last cast vote is saved) and
users are able to monitor the election. Also, we considered
security threats caused by malicious nodes and we tried to fix
some of these issues (more about this in the security analysis
in section VII).

D. Threat Model

We consider active adversaries, which include the nodes
participating in the distributed protocols as well as the users
of the system.

Dela offers the primitives to run distributed protocols and
smart contracts, handled by a set of Byzantine fault-tolerant
nodes. It assumes less than 1/3 of the nodes are malicious,
thus we assume as much, since our implementation is based
on Dela.

III. ELECTION PROCESS

Before going deeper into the architecture and the implemen-
tation details, we give an overview of the election process.
First, the administrator runs the Dela nodes, performs the
setup of the blockchain, initiates the distributed key generation
protocol (DKG) plus the shuffling protocol and starts the e-
voting http server. Then, he registers the election’s information
on a smart contract. Before storing this information in the
blockchain, every node retrieves the collective public key from
the DKG. This public key is stored along with the election’s
information and can be retrieved by any voters. To keep
their votes anonymous, voters would precisely use this key to
encrypt their ballots locally before casting it. Encrypted ballots
are then stored in the blockchain, along with the corresponding
election and can not be tampered with nor deleted thanks to
Dela properties. Once the administrator closes the election,
nodes shuffle the ballots before proceeding with the decryption
(again, this prevents adversaries from linking a ballot to a
voter). And finally, the result of the election is published
and anyone can access it. During the whole process, the
administrator and the voters interact with our system through
our e-voting http server.

IV. ARCHITECTURE

A. DELA

Dela stands for DEDIS Ledger Architecture. It provides a
modular framework that describes a minimal and extended
set of abstractions for a distributed ledger architecture. It
also provides several modules implementations that can be
combined to run a distributed ledger.

The system is built around three abstractions that offer an
API to clients so that one can propagate transactions, create
and validate that it will be accepted, and finally wait for a
confirmation that it is included, or rejected, by the public
ledger.

A transaction is what triggers a change in the ledger set
of values, where it is left to the ledger implementation to
define how values are stored and identified. The transaction is
created with a targeted execution environment alongside the
input parameters.

1) The first abstraction which allows one to propagate
transactions is defined as a pool that can work indepen-
dently from the other abstractions. In fact, you could run
a distributed system that only shares transactions.

2) The second is a service that accepts a transaction and
can return if it will be included in the next block, or if
it will be rejected. Furthermore, it defines the validity
of the transaction so that it cannot be reused in a replay
attack for instance.

3) Finally, the third abstraction will collect the transactions
from the pool and create a chain of blocks, block after
block according to a consensus algorithm. One can
register to the service to receive notifications when a
new block is created and learn about the transactions
included in the block, and which of them have been
accepted.

The corresponding modules implementations :
1) Transaction Pool. Each participant of a distributed ledger

needs to collect a bunch of transactions when it is trying
to create a block. The pool is there to provide that
service, so that clients can send their transactions to one
of the pool of the distributed system while the ordering
services (see point 3) wait for enough transactions to be
discovered to start a new block. The purpose is to offer
a single entry point for the client and then the system
will take care of spreading the transactions so that any
reachable node participating in the distributed ledger will
at some point learn about it.

2) Validation service. The validation service is there to
protect the system against malicious behaviour. We
already mentioned a replay attack which allows an
attacker to listen for transactions and reuse them to
double spent, or similar operation. Bitcoin is protected
because of the UTXOs, while Dela is using a nonce that
is monotonically increasing for each address/identity.
Another potential issue is the input parameters provided
by the transaction which could allow a malicious client
to execute a smart contract in a incorrect way. The



validation service makes sure the result of a transaction
execution only updated what is allowed. Finally, because
it is the validation that defines what the transaction looks
like, it also provides a manager that will help to create
and sign transactions. For instance, in the case of Dela, a
client needs to use the correct nonce for the transaction
to be accepted.

3) Ordering service. A distributed ledger backed with a
blockchain evolves block after block. Each block con-
tains a list of transactions that will be execute sequen-
tially or in parallel depending on the implementation.
Each execution will produce zero, one or several changes
in the ledger values. The ordering service is responsible
for creating the blocks and, in another extent, the chain.
The abstraction does not provide any property on how
the consensus is decided, but it defines the ways to read
or get the values of the ledger.

B. Election

In practice we store the election information in the structure
1, and these election structures are stored in the blockchain and
managed by the e-voting smart contract. The Ballot structure
is just a string, which means the front end can submit any type
of ballot as long as it can parse it back correctly. The back-end
would not perform any check on the ballot. Indeed, since our
system cannot access the content of the ballot at an early stage
(the content is encrypted until the decryption phase, at the end
of an election), it cannot check whether the cast ballot follows
the format of the corresponding election. Therefore, it is up
to the front-end to provide a meaningful format to allow other
voters to know which questions are being asked and how they
can answer to these questions.

We detail the election structure in listing 1.

• Title : Title of the election.
• ElectionID : ID of the election, used by users to refer to

a particular election.
• AdminID : ID of the admin of the election.
• Status : Status of the election : Open when the election

is up and accepts new ballots, Closed when the election
no longer accepts new ballots, ShuffledBallots when the
ballots have been shuffled, ResultAvailable when the
election is over (the shuffled ballot have been decrypted)
and the results are available, Canceled when the election
is canceled.

• Pubkey : Collective public key generated via DKG and
used to encrypt votes.

• EncryptedBallots : Encrypted vote of each user.
• ShuffledBallots : Shuffled ballots for each round of the

shuffling protocol.
• Proofs : Corresponding proof of the shuffle of each round.
• DecryptedBallots : Content of the ballots in plaintext.
• ShuffleThreshold : Threshold of nodes that needs to

provide a correct shuffling (see section V-B).
• Members : The address and the public key of each node

participating in the shuffling protocol.

type ID string

type status uint16

const (
Open = 1
Closed = 2
ShuffledBallots = 3
ResultAvailable = 5
Canceled = 6

)

type Election struct {
Title string
ElectionID ID
AdminId string
Status status
Pubkey []byte
EncryptedBallots map[string][]byte
ShuffledBallots map[int][][]byte
Proofs map[int][]byte
DecryptedBallots []Ballot
ShuffleThreshold int
Members []CollectiveAuthorityMember
Format string

}

type Ballot struct {
Vote string

}

Listing 1: Election structure

• Format : The front end is free to put any information
in this field. It allows to encode and decode a ballot as
mentioned previously

C. Smart contract

There is no notion of “instance of a smart contract” in Dela,
therefore we have to consider a smart contract as a single entity
that performs its read and write operations on the storage with
a predefined set of keys.

The simplest and naive solution for our system is to have a
single smart contract that stores everything : the elections, the
ballots for each election, and the results. This is like having a
giant XML/JSON file that contains everything, with the smart
contract being the interface that handles that.

Transactions can perform the following actions, handled by
our e-voting smart contract :
• createElection : Creates an election and stores it in the

blockchain.
• castVote : Stores the encrypted ballot of the user who

casts the vote in the given election (specified by its id),
in the blockchain. If a user casts more than one vote then
vote n + 1 overwrites vote n to avoid user voting more
than once. The election needs to be open.

• closeElection : Closes the given election, in practice only
updates the status of the election in the blockchain to
closed. The election needs to be open.

• shuffleBallots : For a given election, verifies a shuffle of
the ballots and stores the shuffle along with its proof
on the blockchain if the shuffle is correct. Used in the



Shuffle protocol, see section V-B. The election needs to
be closed.

• decryptBallots : Updates the election in the blockchain
with the decrypted ballots. The ballots must have been
shuffled.

• cancelElection : Cancels an election, effectively just sets
the election status to canceled, which forbids any action
on this election.

Only the administrator of the election can trigger closeElec-
tion, shuffleBallots, decryptBallots and cancelElection on this
particular election. The arguments of the transactions are listed
in listing 2.

type CreateElectionTransaction struct {
ElectionID string
Title string
AdminId string
ShuffleThreshold int
Members []CollectiveAuthorityMember
Format string

}

type CastVoteTransaction struct {
ElectionID string
UserId string
Ballot []byte

}

type CloseElectionTransaction struct {
ElectionID string
UserId string

}

type ShuffleBallotsTransaction struct {
ElectionID string
Round int
ShuffledBallots [][]byte
Proof []byte

}

type DecryptBallotsTransaction struct {
ElectionID string
UserId string
DecryptedBallots []Ballot

}

type CancelElectionTransaction struct {
ElectionID string
UserId string

}

Listing 2: Transactions arguments

V. PROTOCOLS

The project is driven by several protocols. The distributed
key generation (DKG) protocol has to be executed before the
creation of an election to generate a collective public key
which is used to encrypt the ballots, insuring that no single
node can decrypt them. The shuffling protocol is executed
once all votes have been submitted, so that the ballots become
unlikable to the voters. And finally, the decryption protocol is
executed once the votes have been shuffled, to retrieve the
content of the ballots which is then shared to users.

A. Distributed key generation

1) Background: We use the implementation in kyber [9]
of the protocol from Pedersen [10], where to mitigate the
possibility that one server hold all power over public/private
key pair a node of the roster only holds a share of the
secret without the ability to reconstruct the global secret on
its own. Each participating server Si of a set of servers S
starts off by randomly selecting a polynomial of degree t,
fi(z) = ai,0 + ai.1z + ... + ai,tz

t with coefficients in Zn.
Here, zi = ai,0 = fi(0) is each party’s secret. The protocol
works even if some nodes are malicious. It is possible to
specify a threshold for the number of nodes that have to be
honest in the implementation in kyber. The shared secret is
then reconstructed with x =

∑
i zi. From this, the public key

calculation follows with y = gx. The raw implementation of
the above protocol is part of the DEDIS code base and is thus
easily included in our project. Before creating an election,
an admin has to run the DKG protocol, the collective public
key generated will then be used as the public key of the new
election. Naturally, the public key produced by the protocol
can then be used by a front-end application to encrypt ballots
before casting them.

2) Implementation: This protocol is already implemented
in Dela.

B. Shuffle

1) Background: We use Neff shuffle on ElGamal ciphertext
pairs. As a reminder, the ElGamal encryption algorithm can
either be performed on a multiplicative prime order group or
an elliptic curve. For the project we chose to go with the
Twisted Edwards Curve over a prime order field [8]. For the
remainder of this text all operations are meant to be performed
over this curve with additive notation :
E(Fp) = {O}∪{(x, y) ∈ Zp;−x2+y2 = 1− 121665

121666x
2y2}

p = 2255− 19
yg = 4/5
n = 2252 + 27742317777372353535851937790883648493

Since the equation is quadratic in x, the x-coordinate of the
base point g is set to be positive.

The ElGamal encryption algorithm proceeds as follows:

1) Bob picks a random x ∈ Zn and computes y = gx. Let
x be Bob’s private key and y is his public key.

2) Alice encrypts a message m ∈ 〈g〉 by selecting a random
value r ∈ Zn then computing u = gr and v = m+ yr.

3) (u, v) is the ciphertext that is transmitted to Bob.
4) To decrypt the message, Bob recomputes the secret s =

ux = grx = yr and extracts the message with m =
v − s = m+ yr − yr.

We can use the fact that the ElGamal crypto system is
probabilistic and re-encrypt the ciphertexts multiple times
without compromising the correctness of the decryption.
For a single re-encryption, we get :

1) Given the ciphertext (u, v) choose a random value r′ ∈
Zn and calculate (u′, v′) = (gr′ + u, yr′ + v).



2) The decryption algorithm remains unchanged. s =
u′x = (gr′ + u)x = gr′x + ux = yr′ + yr followed
by v′ − s = yr′ +m+ yr − yr′ − yr = m.

The re-encryption property of the ElGamal cipher is a corner-
stone in both shuffling algorithms. Proving the correctness of a

shuffle means that given a tuple (A,B, g, y) where A =

(
ui
vi

)
is a list of ElGamal ciphertext pairs and given a permutation

π and a list of random values ri ∈ Zn, B =

(
uπ(i) + grπ(i)
vπ(i) + yrπ(i)

)
is the re-encryption and permutation of A. g and y are, as
mentioned above, the base point of the curve and the public
key. Now, a prover P needs to show to a verifier V that
B has been generated from A without revealing neither the
permutation π nor the random values ri or the secret key x.
In terms of an election this means that a voter can verify
whether his ballot has been correctly included in the shuffle
and has not been disregarded by the system.

It is possible to use Neff shuffle [6] to perform such a
shuffle. This is what is implemented in the kyber library [9],
and that we use in our implementation : Neff shuffle gives a
proof of the shuffle that is a seven-move, public coin proof of
knowledge which is computational zero knowledge. Indeed,
distinguishing between real and simulated proofs is as hard as
the decision Diffie-Hellman problem. The proof is of course
hard to forge, more details can be found in the paper [6] and
in kyber’s implementation [9].

2) Implementation: When an admin closes an election, the
shuffle protocol has to be executed to insure that ballots and
voters are unlinkable. More precisely, the protocol unfolds as
follows: Let N be the set of nodes that participate in the
protocol.

1) ∀n ∈ N,n retrieves the encrypted ballots if it is the first
round, or the shuffled ballots from round r − 1 if it is
round r.

2) ∀n ∈ N,n performs a Neff shuffle on the retrieved
ballots.

3) ∀n ∈ N,n try to store the resulting shuffled ballots and
the proof of the shuffle in the blockchain.

4) only the first valid shuffle is stored in the blockchain.
To validate a shuffle, every node would perform the
verification of the shuffle using its corresponding proof.
Let us say it was the shuffle from node ns, then ns exits
the protocol, and N ← N \ {ns}

5) r ← r + 1
6) if r = threshold then done otherwise go to 1)

Of all the nodes that shuffle the ballots at some point during
the protocol, we need at least one to be honest otherwise they
could all collude which would reveal the permutations and
ultimately the mapping between users and votes. Therefore we
can set the threshold to 1/3 of the total number of nodes, since
we assume in the threat model that less than 1/3 nodes are
malicious. Also only a shuffle with a valid proof of correctness
can be accepted at step 4), thus it is not possible to temper
the ballots during the shuffling protocol. After the completion

of the protocol the shuffle with the proof of correctness can
be retrieved by any observer.

C. Decryption

The decryption protocol is always executed at the end of
the election to get the votes in plaintext so that we are able to
give the result of the election.

1) Background: The decryption protocol unfolds as follows
:

1) The server that is first contacted by the election creator
prompts the other nodes that participate in the protocol
to decrypt the shuffled ballots with their own secrets and
to send the result back to the this node.

2) A single node cannot fully decrypt the encrypted ballots,
the initiator node runs its own decryption pass with its
secret then reconstructs the ballot plaintexts using all the
partially decrypted ballots from the other participating
nodes.

3) The result is published in the blockchain.
We have to note that at no point during the decryption

protocol is it necessary that one server accumulates the private
shares of the private key, which would allow this server to
reconstruct the private key and decrypt the ballots at will. In
other words, it remains true that no server is able to decrypt the
ballots by itself. Right now the initiator node asks and waits
for the partial decryption of all the other nodes participating in
the protocol. This is a problem because a malicious node could
chose to not send his partial decryption and this would block
the system. However, it remains true that no single node can
decrypt the ballots. Also, this is easily fixable as we just need
to make sure the initiator node proceeds once it has collected
a threshold t of partial decryption, which would mean that the
system cannot be blocked if at least t nodes are honest. We
could set t = (2/3)∗(numberofnodes) since we assume that
at least 2/3 of the nodes are honest.

The Helios project also provides a Chaum-Pedersen non-
interactive proof of decryption. At the current stage of the
project this feature has not been implemented.

2) Implementation: The protocol was for the most part
already implemented in Dela. However, the current imple-
mentation does not perform any kind of verification on the
ciphertext to decrypt. Indeed, we must only decrypt shuffled
ballots. We would not want a malicious node to initiate the
decryption of a non shuffled ballot. Therefore, we adapted
the current implementation : every node participating in the
decryption first check that the ciphertext is indeed a shuffled
ballots of the corresponding election before sending its public
share.

VI. IMPLEMENTATION

A. Golang

The whole Dela project as well as the advanced cryptog-
raphy library kyber are almost entirely written in Go [11],
therefore we naturally chose to implement our e-voting project
in Go as well.



B. Project structure

We briefly describe the project structure. Note that it might
change in the future.
• memcoin : A command line interface for the administra-

tor to setup the system.
• evoting : Contains the implementation of the evoting

smart contract, the http server and every structures we
use in our system.

• dkg : Contains the implementation of the DKG protocol
and the decryption protocol.

• shuffle : Contains the implementation of the shuffling
protocol.

C. Front end

We did not implement the front-end part of the system
ourselves. The only requirement for a seamless interaction
of the front-end with the back-end is the availability of a
Twisted Edwards Curve implementation necessary to perform
the encryption of ballots and the actual verification of the
shuffles. Users could access the front-end application through
a browser that is for example hosted by a node.js server and
which authenticates the user toward a database [12]. In our
case this could be the EPFL’s internal authentication service
[13]. As soon as the user is authenticated the front-end relays
the communication towards our back-end. During this project
we worked in collaboration with another MASTER student
who was in charge of implementing the front-end. Once
the front-end managed to encrypt the ballots, it was able to
correctly interact with our back-end using the API, see section
VI-D.

D. HTTP server

We implemented an HTTP server that allows a front-end
to interact with our system. For each smart contract action,
there exists an endpoint that pushes a transaction triggering
the corresponding action. Also, we added a few GET methods
:
• getElectionInfoEndpoint : Retreives the election’s infor-

mation corresponding to the provided election id.
• getAllElectionsInfoEndpoint : Retreives the information

of all the elections stored in the blockchain.
• getAllElectionsIdsEndpoint : Retreives the id of all the

elections stored in the blockchain.
• getElectionResultEndpoint : Retreives the result of a

specific election.
Also, you can find the API messages in the appendix. Note

that it might change in the future.

E. Tests

We implemented a few unit tests for the shuffling proto-
col, decryption protocol and the evoting smart contract. The
coverage is shown in table I.

As we can see there is still room for improvement. Also,
we miss integration tests for the http server, though we tested
scenarios manually (with the cli) and with the help of Sarah
who was in charge of implementing the front-end.

package coverage [%]
smart contract 86.59

dkg 89.72
shuffle 92.87

TABLE I: Test coverage for our packages

As a comparison, the coverage of the current implementa-
tion is shown in table II. Note that the evoting smart contract
of our implementation does not match exactly the evoting
package of the current implementation. The point is that it
seems to be easier to test a system which uses Dela, compared
to a system using cothority.

package coverage [%]
evoting 37

dkg 65.38
shuffle 65.54

TABLE II: Test coverage of the current implementation

F. Benchmark

The costs were computed on a Windows 10 64-bit architec-
ture laptop with a 4-cores Intel(R) Core(TM) i7-1065G7@
1.30GHz processor. We evaluated the performance of our
system by benchmarking the shuffling part and the decryption
part. We designed a scenario in which we vary the number of
ballots and the number of nodes to show the effects of these
to parameters on the computation time of the shuffling and the
decryption. This scenario consists of :

1) Setting up a DKG protocol and a Shuffle protocol with
a certain number of nodes.

2) Creating an election.
3) Casting a certain number of votes.
4) Requesting the closing of the election.
5) Requesting the shuffling of the ballots by calling the

corresponding endpoint.
6) Requesting the decryption of the shuffled ballots by

calling the corresponding endpoint.
We perform an end to end evaluation, we compute the time
from the call to the endpoints to receiving the response from
the server. This benchmark essentially allows us to know
whether our system scales well, and if it is not the case, we
can figure out what is going wrong and try to come up with
a solution.

Decryption performance evaluation : The results are
shown in figure 1. The number of nodes seems to have a
small influence on the computation time. Indeed, with 5 nodes,
the performance is only decreased by 10% compared to the
4 nodes case. However, the computation time seems to grow
exponentially with the number of ballots, and we can provide
an explanation for this. Let’s recap how the decryption works
: to make sure nodes does not decrypt a non-shuffled ballots,
every node checks that the ciphertext is indeed a shuffled
ballot of a certain election, and if it is not the case, it simply
does not take part in the decryption protocol. Also, the current
implementation of the DKG protocol only allows to decrypt



0 3 10 25 50
0

3
5

10

15

20

25

30

Number of ballots

Ti
m

e
[s

]
3 nodes
4 nodes
5 nodes

Fig. 1: Decryption protocol benchmark

one ciphertext at a time. Thus, the more ballots we have
in an election, the more checks the nodes must perform.
Also, the list of the shuffled ballots is also longer (making
the checks slower). Not to mention the fact that the nodes
would retreive the election object from the blockchain for each
ciphertext decryption. To fix this issue, we can improve the
DKG implementation by allowing rosters of nodes to decrypt
multiple ciphertexts at once. This way, nodes would perform
only one read per election, and more importantly, nodes would
perform only one DKG decryption per election (and not per
ballot).

0 3 10 25 50
0

3
5

10

15

20

25

30

Number of ballots

Ti
m

e
[s

]

3 nodes
4 nodes
5 nodes

Fig. 2: Shuffling protocol benchmark

Shuffling performance evaluation : The results are shown
in figure 2. Unlike the decryption phase, the shuffling protocol
seems to scale well. Both the number of nodes and the number
of ballots influences the computation time but the shape of
the line does not grow exponentially with any of these two

parameters.

VII. SECURITY ANALYSIS

We consider active adversaries, which include the nodes
participating in the protocols as well as the users. We rely on
Dela so we can handle at most 1/3 of the nodes to be malicious.
Our shuffling protocol can handle at most n − 1 malicious
nodes if n is the number of participating nodes. (if there is
one honest node then we have one correct shuffle which is
technically enough, given that the node that performed it is
honest). The DKG protocol needs t honest nodes. Since we
need at least 2/3 of the nodes to be honest because of Dela, we
can set t = (2/3)∗n. Currently the decryption protocol needs
all the nodes to be honest, but as explained in section V-C,
we can easily modify it so that it needs only t honest nodes.
Since we need at least 2/3 of the nodes to be honest because
of Dela, we can set t = (2/3)∗n. Since this problem can only
cause the system to block, we assume in the remaining of this
section that we can make it work with only t = (2/3) ∗ n
honest nodes. Therefore the entire system can handle at most
1/3 of the nodes to be malicious, otherwise attacks targeted
directly at Dela are possible.

The communication between users and the http server is not
secure, thus it is vulnerable to man-in-the-middle attacks. An
adversary could sniff the traffic or even alter the content of the
packets. A solution would be to use HTTPS instead of HTTP.

What can happen if the node hosting http server is malicious
?

1) If a user communicates with a malicious node then the
node could refuse his vote, and even make it so the user
does not realise (if the user looks at the blockchain via
this node).

2) Users fetch the collective public key using getElection-
Info endpoint, the malicious server can reply with his
own public key. The user will then use this public key
to encrypt his vote, which he will send to the server.
The server can then decrypt the vote, associate its value
with the user, re encrypt the vote using the real public
key of the election, and upload this to the blockchain.

3) It could simply block the whole system, make it so that
the election never reaches an end. Basically it can block
the system at any time

4) When a user wants the result of an election, it queries
the server, thus if it is malicious it can send fake ballots
so that the result is changed.

Would some sort of distributed http server mitigate this kind
of issues ? In our case if we ran the server on all nodes it
would not help in the sense that if the node which the user
communicates with is malicious, it would be able to trick the
user into thinking that everything is fine and the user would
not check with other nodes. An idea would be for each user
to communicate with every node and look for inconsistencies.
Then, it keeps the response sent by at least 2/3 of the nodes
(this response must exist since we consider at least 2/3 of non
malicious nodes). In this setting, in 1) if a client sends his
vote to a malicious node, even if the malicious nodes tells



the client that his vote has been included, the client will be
able to verify that it is not the case, and maybe send his vote
again to one of the 2/3 nodes that are consistent. In 2) the
client has to query the getElectionInfo endpoint of all nodes
and use the public key that is in at least 2/3 of the replies. In
3), if several nodes run servers then one node cannot block
the whole system. In 4) the user could query the result to all
nodes and accept a result that is given by at least 2/3 of the
nodes.

More generally, we thought of some attacks, and whether
they would work against our system :

• It is not possible to execute different steps of the election
out of order because of the status field of election.

• Attack on election public key : A node might want to
corrupt the public key associated to an election so that
it can decrypt the votes. However, a node cannot try to
associate his own public key to an election. Indeed, when
an election is created the collective public key generated
by the running instance of DKG is automatically asso-
ciated with this election. Therefore the public key of an
election should be safe as long as the DKG protocol is
not compromised.

• Attacks on the http server : see above
• Attacks on ballots : if the node hosting http server is

malicious, see above. Otherwise the transaction to store
the ballot on the blockchain is accepted and so if Dela
is not compromised we should be good, a node cannot
prevent a user from casting his vote, or modify the votes
already stored. A voter cannot vote twice, only his last
vote will be considered.

• Attacks exploiting the lack of authentication and access
control : Users could try to close an election, run the
shuffling protocol and the decryption protocol. Even now
this would not work because we compare user ids with
the admin id.

• A node could cast as much votes as he wants generating
fake user ids. This attack will not work when a proper
authentication system will be implemented.

• A node can basically interfere with the flow of an election
(cancel...), just to make it so that the election we want to
run is never performed. This attack will not work when
a proper authentication system will be implemented.

• A node can close the election (ignore legitimate ballots),
then trigger the shuffling and the decryption. The shuf-
fling will not happen if there is only one ballot, so it
cannot be used directly to infer the vote of a user, but
if the adversary has an accomplice among users, then he
can cast his vote (which the adversary knows) and then
close the election when only one other user has caster
his vote, the shuffle will happen and the adversary will
be able to infer the user’s vote because even if there are 2
shuffled votes he knows the user (accomplice) who cast
one of these votes. This attack will not work when a
proper authentication system will be implemented.

• Deleting an election : Right now a malicious node can

create an election with the same id as an election that
is currently on the blockchain and it will overwrite this
election. This is easy to fix though.

• Attack on the shuffling protocol : anyone could try to
discover the mapping between users and votes. The fact
that we use Neff shuffle and that all nodes verify the proof
of a given shuffle before it can be stored in the blockchain
means that a user or a node cannot infer the mapping
between users and votes from the encrypted votes (which
are linked to user ids), the shuffled votes, the shuffling
proof and the resulting decrypted votes.

• Attacks against integrity of ballots : a node cannot forge
a shuffle proof (Neff shuffle) which means a node cannot
temper with ballots at the shuffle phase. To recreate the
mapping from user to votes, all nodes that have shuffled
the ballots would have to collude, since we take the
threshold for the number of nodes that have to shuffle
to be at least 1/3 of the nodes, then more than 1/3 of the
nodes would have to be malicious and collude with each
other, they would then be able to perform this attack but
also to attack Dela itself.

• Attack on the decryption protocol : A node could try to
execute the decryption protocol on the ballots before they
are shuffled, which would give him the votes of each user
in clear text. We deal with this case in the protocol, it
will trigger an error.

• We do not have an implementation for the proofs of
decryption yet.

VIII. FUTURE WORKS

We did not have time to implement a real authentication
system, and as such it could be the target of future works,
specifically we thought of using EPFL’s internal authentication
service Tequila. Also, we only ran the nodes on the same
computer. Deploying the system on different machines over a
widespread network would allow to perform more tests, and
We summarize our ideas for future works here :

• We did not have time to implement a real authentication
system, specifically we thought of using EPFL’s internal
authentication service Tequila.

• We only ran the nodes on the same computer. It would
be interesting to deploy the project on different machines
over a widespread network. This would allow to perform
more tests and benchmarks as well as to use the system
for real elections, such as elections within the university.

• We could execute the DKG protocol on the blockchain
• The encryption and shuffling scheme currently imple-

mented in kyber are limited respectively in term of the
size of the plaintext to be encrypted and in term of the
size of the ciphertexts to be shuffled. This could be dealt
with in future works.

• We did not implement the proof of decryption of ballots.
This would be good to have to complete the system.

• Improve the decrypt protocol implementation to allow the
decryption of multiple ciphertext at once.



IX. CONCLUSION

The goal of our project was to implement a first proof-
of-concept of a simple E-Voting system that runs on Dela.
Our system allows admins to create several elections, multiple
users can then cast several ballots, and admins can then close
the election, trigger the shuffling of the ballots, and finally
request the decryption of the ballots and publish their values
in the blockchain so that anyone can verify the result of the
election. The encrypted ballots, the shuffled ballots and the
proofs of the shuffles, as well as the decrypted ballots are
stored in the blockchain so that anyone can monitor the whole
process. Also, the votes remain anonymous. Indeed, the ballots
are encrypted with a collective public key so that more than
1/3 of the nodes would have to collude to decrypt the ballots.
The ballots are shuffled using Neff’s shuffle in such a way that
more than 1/3 of the nodes would have to collude to discover
which user cast which vote. All the information related to
elections are stored in a blockchain so the integrity of the
data, including the ballots, is guaranteed. A single node cannot
prevent a correct transaction to perform the corresponding
action, particularly a single node cannot prevent a user to cast
his vote. Therefore, our system handles the scenario in section
II-C satisfy the requirements defined in section II-B under the
threat model defined in section II-D.

REFERENCES

[1] Dela, the new dedis distributed ledger. https://github.com/dedis/dela.
Last consulted 10.06.2021.

[2] “Epfl uses blockchain technology to secure e-voting systems.” https:
//actu.epfl.ch/news/epfl-uses-blockchain-technology-to-secure-e-voting.
Last consulted 10.06.2021.

[3] Cothority, the current dedis distributed ledger. https://github.com/dedis/
cothority. Last consulted 10.06.2021.

[4] B. Adida, helios, Web-based open-audit voting.
[5] Coercion, https://en.wikipedia.org/wiki/Electoral fraud#Intimidation.

Last consulted 10.06.2021.
[6] C. A. Neff, “A verifiable secret shuffle and its application to e-voting.”

http://web.cs.elte.hu/∼rfid/p116-neff.pdf. Last consulted 10.06.2021.
[7] P. J. Andrea Caforio, Linus Gasser, “A decentralized and dis-

tributed e-voting scheme based on verifiablecryptographic shuf-
fles.” 2017, https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/
report-2017-2-andrea caforio-evoting.pdf. Last consulted 10.06.2021.

[8] PostgreSQL, https://www.postgresql.org/. Last consulted 10.06.2021.
[9] Kyber, dedis cryptographic library. https://github.com/dedis/kyber. Last

consulted 10.06.2021.
[10] T. P. Pedersen, “A threshold cryptosystem without a trusted party.” https:

//dl.acm.org/citation.cfm?id=1754929. Last consulted 10.06.2021.
[11] The go programming language. https://golang.org/. Last consulted

10.06.2021.
[12] Node.js. https://nodejs.org/en/. Last consulted 10.06.2021.
[13] Tequila, federated identity management system. https://tequila.epfl.ch/.

Last consulted 10.06.2021.

APPENDIX

API

type LoginResponse struct {
UserID string
Token string

}

type CollectiveAuthorityMember struct {
Address string
PublicKey string

}

type CreateElectionRequest struct {
Title string
AdminId string
Token string
Members []CollectiveAuthorityMember
ShuffleThreshold int
Format string

}

type CreateElectionResponse struct {
ElectionID string

}

type CastVoteRequest struct {
ElectionID string
UserId string
Ballot []byte
Token string

}

type CastVoteResponse struct {
}

// Wraps the ciphertext pairs
type Ciphertext struct {

K []byte
C []byte

}

type CloseElectionRequest struct {
ElectionID string
UserId string
Token string

}

type CloseElectionResponse struct {
}

type ShuffleBallotsRequest struct {
ElectionID string
UserId string
Token string

}

type ShuffleBallotsResponse struct {
Message string

}

type DecryptBallotsRequest struct {
ElectionID string
UserId string
Token string

}

type DecryptBallotsResponse struct {
}

type GetElectionResultRequest struct {
ElectionID string
Token string

}

type GetElectionResultResponse struct {
Result []Ballot

}

type GetElectionInfoRequest struct {
ElectionID string
Token string

}

type GetElectionInfoResponse struct {

https://github.com/dedis/dela
https://actu.epfl.ch/news/epfl-uses-blockchain-technology-to-secure-e-voting
https://actu.epfl.ch/news/epfl-uses-blockchain-technology-to-secure-e-voting
https://github.com/dedis/cothority
https://github.com/dedis/cothority
https://en.wikipedia.org/wiki/Electoral_fraud#Intimidation
http://web.cs.elte.hu/~rfid/p116-neff.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2017-2-andrea_caforio-evoting.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2017-2-andrea_caforio-evoting.pdf
https://www.postgresql.org/
https://github.com/dedis/kyber
https://dl.acm.org/citation.cfm?id=1754929
https://dl.acm.org/citation.cfm?id=1754929
https://golang.org/
https://nodejs.org/en/
https://tequila.epfl.ch/


ElectionID string
Title string
Status uint16
Pubkey string
Result []Ballot
Format string

}

type GetAllElectionsInfoRequest struct {
Token string

}

type GetAllElectionsInfoResponse struct {
AllElectionsInfo []GetElectionInfoResponse

}

type GetAllElectionsIdsRequest struct {
Token string

}

type GetAllElectionsIdsResponse struct {
ElectionsIds []string

}

type CancelElectionRequest struct {
ElectionID string
UserId string
Token string

}

type CancelElectionResponse struct {
}


	Introduction
	Goals of the project
	Motivation and contribution
	Requirements
	Scenarios
	Threat Model

	Election process
	Architecture
	DELA
	Election
	Smart contract

	Protocols
	Distributed key generation
	Background
	Implementation

	Shuffle
	Background
	Implementation

	Decryption
	Background
	Implementation


	Implementation
	Golang
	Project structure
	Front end
	HTTP server
	Tests
	Benchmark

	Security analysis
	Future works
	Conclusion
	References
	Appendix

