L

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

WebAssembly Execution Environment for
Dela

Maxime Sierro

School of Computer and Communication Sciences
Decentralized and Distributed Systems lab

Master Semester Project

June 2021

Responsible Supervisor
Prof. Bryan Ford Noémien Kocher
EPFL / DEDIS EPFL / DEDIS

Contents

1 Introduction
1.1 Motivation
1.2 Goals s

2 Design
2.1 General Configuration
2.2 Supported Languages

3 Implementation
3.1 WebAssembly Compilation
3.2 Environment Setup
3.3 Smart Contract Execution
3.4 Communication with Dela,

4 Results
4.1 Counter Increase
4.2 Base Point Multiplication
4.3 Ed25519 Point Multiplication
4.4 Ed25519 Point Addition

5 Discussion
5.1 Determinism
5.2 Automated Smart Contract Loading

6 Conclusion

7 Bibliography

1 Introduction

The goal of the project is to implement a smart contract execution envi-
ronment which uses WebAssembly [1] to handle smart contracts written
in different languages. It must communicate with the Dela framework [2],
which is a blockchain-based distributed ledger currently developed in Go by
the Decentralized and Distributed Systems lab. Only a small subset of said
framework must receive changes to communicate with the new environment.
As a result, the vast majority of the work is focused on the environment it-
self, which is implemented from scratch.

1.1 Motivation

Node environment (in Dela)

L

Smart
@ execute contract
execution

Figure 1: Native smart contracts execution environment.

As shown in figure 1, the standard way of executing a smart contract
in Dela is inside of a node’s environment, which we call “native” execution.
While this method is very intuitive and efficient, it has two main limitations.
The first one is that adding, removing or modifying a smart contract requires
re-compiling the entirety of the environment, which is highly unpractical in
a realistic blockchain scenario where such changes are frequent. The second
is that smart contracts are required to be pre-compiled for the environment
running the ledger and must thus be written in the same language, which is
Go in this case.

To circumvent the first limitation, the obvious solution is to decouple
the smart contract execution environment from the node’s environment, as
illustrated in figure 2. Any modification on the smart contracts would only
require recompiling the smaller, decoupled environment which opens up the
possibility of loading and unloading smart contracts dynamically without

Smart contract
execution
environment

Node environment (in Dela)

Smart

execute contract
execution

60 =
()

Figure 2: Decoupled smart contracts execution environment.

interrupting the main Dela environment. With this decoupled environment,
smart contracts must not necessarily be written in Go, which somewhat
takes care of the second limitation. However, supporting multiple languages
efficiently is not straightforward and requires something else, which is when
WebAssembly comes into the picture.

WebAssembly (WASM) is an open standard that defines a binary format
which can obtained from higher level compatible languages, which we call
“source languages” in this report. As its name implies, it is made up of low
level “Assembly-like” instructions which can thus be run on a wide range
of machines very efficiently. The WASM code is executed in a sandboxed
environment. This added flexibility, its host independence and low perfor-
mance penalty make it an ideal candidate for a smart-contract runtime used
by many nodes trying to reach a consensus. Ethereum’s proposed redesign
of their execution layer using WASM (dubbed eWASM) [3] further indicates
that there is great potential for the technology in the blockchain field.

1.2 Goals

1. Implementation of a fully functional execution module that uses WASM

2. Simultaneous support of multiple smart contracts written in different
languages

3. Justification of configuration choices and the selection of compatible
languages

4. Performance comparisons
5. Determinism analysis

6. Testing comparable to the native module

2 Design

2.1 General Configuration

The most important design decision during the project was selecting the
“kind” of environment that should be implemented. WebAssembly was in-
troduced in 2017 and its initial aim was to enable high performance web-
browser applications with the help of a JavaScript API. Over time however,
WASM started seeing use outside of browsers because of its many advan-
tages, especially its near-native performance and consistent execution across
different hardwares. As a result, three options were identified and considered
: a web browser application, a web server and a unix daemon.

The first factor that was taken into account was the general lack of
resources on WASM, which is severely exacerbated when the environment
is not browser-based. Additionally, when dealing both with a non-browser
solution as well as unusual source languages like Go, information about the
specific interactions becomes virtually nonexistent. The daemon would have
communicated with the Dela framework using unix sockets and would have
used a runtime like Wasmer [4], Wasmtime [5] or WAVM [6], but was quickly
deemed to be the riskiest option. Not only was it the least documented kind
of environment and the most different from the standard browser solution,
it was also identified that those non-web environments were transitioning to
the Web Assembly Interface (WASI) [7] [8].

As a response to the aforementioned attempts to use WASM outside of
web-browsers, WASI was introduced in 2019 to achieve standardisation and
extend WASM to the OS level. The fact that it is newer and less mature than
“standard WASM?” further increased risks. Additionally, many languages
such as Go do not yet support compilation into WASM binaries which are
compatible with this interface. The transition also meant that almost every
up-to-date information about non-web solutions was about using WASI.

The aforementioned points about the lack of resources and WASI not
only apply to a unix daemon solution but also to a Node.js server-based
solution communicating over HTTP, though less severely. While Node.js
does expect its users to use its WASI API, it supports a limited portion of
the standard WASM JavaScript API. However, there was no evidence that
Node.js could handle Go’s unusual WASM implementation in this specific
context (which is further discussed in Part 3.2) and early tries to make it
work failed.

Even though a web-browser application functionally makes less sense
than the other options since the Dela framework would interact with it and
not a human using a browser, it was thus the chosen solution during the early
stages of the project and a working implementation was possible thanks to
sufficient resources. However, its communication with Dela was initially
simplified and it was identified that it would become very problematic as

the environment would grow in complexity, since such a browser-based so-
lution cannot easily and efficiently communicate with the framework. This
prompted a second round of tries to make a Node.js solution work despite
the limitations and the lack of information on unusual interactions.

Luckily, this second round was successful which was the best case sce-
nario : a working Node.js solution which uses the Javascript “standard
WAS” API and not the Node.js WASI API provides the best of both worlds
for the project. Intentionally ignoring the WASI API limits risks as it is
still experimental and enables the handling of smart contracts written in a
wider range of languages. At the same time, using an HTTP server instead
of a browser application provides an undeniably superior communication
with the Dela framework. While the interaction with WASM binaries is
not done with the intended Node.js API, this is the superior configuration
for the project’s specific needs at the present time ; there are currently no
concrete time estimates on WASI support for multiple languages and on a
stable release of the Node.js WASI API.

2.2 Supported Languages

Similarly to the freedom on the general configuration of the environment,
the choice of which smart contract languages to support was free and part
of the project.

Language compatibilities that were guaranteed to be worth prioritising
are C and C++, since they were the two intended source languages when
WebAssembly was introduced, before other languages added WASM com-
patibility as well. The target binaries are obtained from both languages with
Emscripten [9], a compiler toolchain which uses LLVM [10]. The quality of
the source language to WASM translation with Emscripten and the perfor-
mance of the resulting binaries are considered to be state of the art in the
world of WASM compatible languages, which made the environment sup-
port of the two languages even more indispensable since we are interested in
comparing performance with native executions of smart contracts. Another
obvious advantage is their extreme prevalence and that their simultaneous
support incurs negligible additional work.

The Go language is also supported for multiple reasons. The first is that
comparisons between the native and WASM executions become more inter-
esting when the exact same smart contract is compared between executions,
which is only possible if the native language is supported by the WASM
environment. This can provide a precise comparison on the performance
penalty caused by WASM and the communication with Dela since external,
language-specific differences are removed. Another advantage is that Go is
frequently used by the DEDIS lab, which means that its support could be
very convenient in the future.

Something that was not known when choosing Go was a fundamental

difference compared to other languages : C and C++ for example treat
WASM as a library, while Go treats it as an application. This results in
profound differences that requires the binaries to be treated very differently
depending on the source language, even after the WASM compilation has
been done. This caused many additional difficulties which are discussed in
part 3 and a lot of the work done to support Go could not be reused to
support C/C++. Even though this had a negative impact on productivity,
this makes the addition of Go way more interesting than another language
whose WASM support is similar to C/C++. Additionally, this allows in-
teresting performance comparisons between what is considered the state of
the art WASM support and a more subpar one in the case of Go. Since
the project also mostly acts as an exploratory experiment, it is also good
to prove that this kind of solution can handle less common languages with
poorer WASM support.

Another language which was a strong candidate is Rust, which is com-
monly considered to have the second best WASM support after C/C++
and whose binaries are similarly obtained from Emscripten. It it not cur-
rently supported by the environment because other goals were judged more
important than adding another language whose support is similar to two
supported languages when the ability of the environment to handle different
languages simultaneously was already demonstrated. However, its inclusion
could be a worthy time investment in the future and should be straightfor-
ward considering the similarity of the process to the inclusion of C/C++.

3 Implementation

3.1 WebAssembly Compilation

In this project, the compilation of smart contracts to WASM must be done
manually for each smart contract and the resulting binaries must be added
to the environment before it is launched. Because of the aforementioned
difference in the way Go and C/C++ treat WASM, the compilation process
varies depending on the source language. Let us start by explaining the
process for C/C++ since it is the standard.

A C/C++ smart contract must necessarily import the “emscripten.h”
header file and can specify which functions to export, so that such functions
can then directly be called from JavaScript in the server. The compilation
is done with Emscripten, creating both the binary WASM file as well as a
JavaScript file which will simplify the environment setup. Every necessary
source and header files must be specified to Emscripten, which is impor-
tant when entire libraries are imported by the smart contract. Emscripten
can efficiently optimise the resulting binary file by stripping away code of
libraries which is never used. Libraries which must usually be built with
tools such as CMake must be built with Emscripten instead.

Unfortunately, this process proved to be extremely finicky in practice
and would often fail for unintuitive or unclear reasons when large libraries
where imported by the smart contract. This required manual changes which
vastly differed for each library. Problems could arise both when building the
required libraries with Emscripten and during the final compilation process.
In the worst cases, the errors were devoid of sense and needed to be inel-
egantly avoided, for example by including parts of the problematic library
directly inside of the smart contract. Personal experiments also indicated
that these difficulties may vary depending on the hardware, which further
complicates the process.

Let us now cover the process when the source language is Go. The smart
contract must necessarily import the experimental “syscall/js” package to
communicate with JavaScript. Compiling to WASM is natively supported
but is only possible for “main” functions unlike in C/C++. For this reason,
it is necessary to set the smart contract function to the global JavaScript ob-
ject inside of the main Go function, which allows it to be called directly from
JavaScript as is the case for C/C++. Unlike the process with Emscripten,
the Go to WASM compilation succeeded without issues most of the time.
However, it always generates very large binaries of several megabytes and is
highly dependent on the imported packages, unlike Emscripten which prunes
unused code more efficiently. Using TinyGo [11] (which is also uses LLVM)
can reduce this size but does not support every language feature, which may
be an issue for some smart contracts.

The original smart contracts written in their source language are in-
cluded along their corresponding WASM binary for readability and to allow
users to do the compilation themselves if desired. The necessary commands
are included as comments in every smart contract, which is particularly use-
ful for C/C++ smart contracts as the commands are particularly long and
complex.

3.2 Environment Setup

The environment is launched with one simple Node.js command and must
automatically set up the smart contracts from the included WASM binaries
as well as the HT'TP communication with the framework before any execu-
tion request is sent from Dela. To improve the global execution time, the
environment mus obviously do as much work as possible before it receives
its first request.

Instantiating the C/C++ is straightforward : the JavaScript modules
created with Emscripten mentioned in the previous subsection are first in-
cluded, which then allows each function to be instantiated. The Go instanti-
ation proved way more troublesome since only some parts of the JavaScript
WASM API work on Node.js and that Go has an unusual WASM support
since WASM is treated as an application instead of a library. A very specific

way to instantiate Go smart contracts proved to be working when recom-
mended methods previously failed on Node.js.

Unlike C/C++ which can efficiently and durably export functions to the
environment, Go only sets them in the global JavaScript object as long as its
main function is running. This requires artificially keeping the program open
indefinitely so that the environment can use the smart contract function at
any time while specifying arguments. In our case, this is simply achieved in
each Go program by waiting to receive a value which never arrives from a
channel in main() after having set the useful smart contract function to the
global JavaScript object. It is not possible to use a WASM binary where the
smart-contract operations are contained in the Go program’s main function
: such a binary would be run in its entirety multiple times without needing
to keep it indefinitely running but is not feasible simply because a main
function does not take arguments nor does it return anything. It is thus
necessary to export non-main functions to the the environment in this odd
way if any sort of communication between the environment and the smart
contract is required.

An optional step that the environment can take during its setup is to
“warm up” each smart contract by launching each exported WASM function
with meaningless but realistic arguments, while ignoring the resulting out-
put since it is meaningless as well. This was found to have a positive impact
on the performance of the following first real execution of the corresponding
smart contract when requested by Dela, especially for C/C++ ones. How-
ever, this does not benefit any subsequent execution and comes with the cost
of significantly increasing the setup time, which is obviously dependent on
the number of smart contracts the environment supports. Because this step
is inelegant and its limited benefits are not necessarily needed, it is disabled
by default.

An intentionally simple Rest API is then launched and the server listens
to a specific port on the local host which is arbitrarily chosen and known by
Dela.

3.3 Smart Contract Execution

The requests to execute a smart contract with specific arguments that the
environment receives always have a JSON structure, which contains both
the smart contract name as well as the arguments. When such a request is
received, the environment reads two fields of the received JSON to get the
smart contract’s unique name and its source language. The latter is specified
because multiple versions of a same smart contract could be instantiated
and available from different source languages. Each WASM binary must be
placed in the right folder specifying the source language, so that multiple
binaries of the same name but obtained from different source languages can
be supported simultaneously.

The environment can then call the right exported method with the en-
tire JSON as an input in string format. C/C++ executions require slightly
more work than Go’s because the string needs to be allocated to the func-
tion’s instance, then freed once the execution’s result is stored. The result
of the execution must also have a JSON structure, which contains informa-
tion about the success of the execution, writes to the ledger’s storage and
potential errors.

Because of this design, each smart contract must handle JSON struc-
tures in the original program written in the source language before getting
compiled to WASM : smart contracts which would already be written would
need to be slightly adapted before being compatible with this specific envi-
ronment. However, this does not require any deep redesign since the required
additions only affect the smart contract’s input and output. If the JSON
structure handling is added at the start and end of the function, it becomes
compatible with the environment without any need to change the smart
contract’s actual process and can be compiled to WASM.

3.4 Communication with Dela

Dela ledger node

WASM execution env.

(the ‘box’)
.
/ exec =

Figure 3: Communication between the Dela execution module and the en-
vironment.

out

execution
module

Since the communication is one to one (each node from the Dela ledger
has its own WASM environment) there was no need for a complex Rest
API using a web application framework. For this reason, the HTTP server
was intentionally simple and built using Node.js’s “http” module only. The
aforementioned use of JSON structures was chosen because of its flexibility
while being able to be sent over HI'TP during both transmissions. This
sometimes led to necessary translations between bytes and strings using
Base64 encoding both inside of the Dela framework and inside of smart
contracts since JSON does not support raw bytes. The communication

process is again intentionally simple : both data transfers seen in figure 3
only consist of one JSON file. Each one contains every information, which
can easily be retrieved since the keys are agreed upon by Dela and the
environment.

Outside of the transaction itself, some parts of the ledger’s storage must
also be sent over to the environment because smart contracts may need to
read or write content on it such as its state. However, the parts of the storage
which are necessary change depending on the smart contract. Sending the
entirety of the storage would be the easiest solution but would be very
inefficient. As Dela matures and transactions become more realistic and
complex, a system needs to be implemented which sends only the essential
parts of the storage. The solution should be to create a map accessible by
Dela’s execution module which specifies which parts of the storage must be
included in the JSON to be sent over to the environment depending on the
smart contract name, which would be the keys of the map. Note that the
source language of the smart contract does not affect which parts of the
storage are required. This would be the easiest and quickest way for the
module to obtain the subset of the storage to include in the JSON with the
unique smart contract name.

Errors are handled and relayed across the different parts so that the
Dela can directly read eventual errors. However, only “honest” mistakes are
assumed since the environment is located on the same machine as the Dela
node : we do not consider either to be a potentially harmful adversary to
the other. For example, we do not expect the node to divert from protocol
and send unusual data to the environment in an attempt to shut it down
since it has no reason to do so. Even a hostile node would gain no benefit
by making its own WASM environment behave in an unusual manner : the
environment is nothing more than a tool serving the node.

4 Results

This part compares benchmarked performances of various operations ex-
ecuted either natively on the Dela framework or on the environment as a
WASM binary, which may be obtained from a smart contract originally writ-
ten either in Go or C. In the second case, what is benchmarked is the time
it takes for Dela’s execution module to receive the WASM execution’s result
from the environment after its request, meaning even the communication
between the two is included in the runtime. The native and “Go to WASM”
versions can use the exact same Go code, but this is obviously not possible
for the “C to WASM?” versions. The latter were nevertheless written while
aiming to stay as close as possible to the two Go versions.

10

4.1 Counter Increase

Counter Increase
1000

125.3

100

1708 65.21

—_
o

297 11.82

0.462 1.845

—_

[o.260

Runtime (ps)
=]

0.01

0.0006

0.001 00003

0.0002 0.0002 -
4 % »N

1 10 100 1000

1

Number of executions
X Native Go to WASM C to WASM

As its name implies, the operation is a very simple incrementation of a
counter. Since the operation itself is extremely inexpensive, this is a great
indication of the overhead incurred by the two kinds of WASM executions
on the environment. Considering the many additional steps that are part
of the WASM executions (HTTP communications between Dela and the
environment, communications between JavaScript and WASM, read and
writes to the JSON) the overhead of less than one picosecond per execution
seems very impressive. Note that this overhead is lower for C smart contracts
compared to Go ones. As expected, the native times are extremely low since
the only operations measured are the inexpensive increments of a number.

The plot’s X variable is the number consecutive executions, meaning
that the aforementioned WASM smart contracts’ overhead is repeated se-
quentially. A log-log plot is used to show a wide range of results and high-
lights the linear growth. It is more interesting to increase the number of
operations inside of the WASM smart contract’s instead of repeating the
entire execution process with its overhead and is also more realistic since
it represents the execution of a complex smart contract as opposed to the
sequential executions of many inexpensive ones. However, doing so when
the operation itself is a simple integer increment does not yield interesting
results, which is why we only use this approach in the following subsections
focused on more complex cryptographic operations.

11

4.2 Base Point Multiplication

Base Point Multiplication

160

__ 120 v
[/)) o
o
)
E 80 » i
=
c x
3 3
o %

40 = -

3 ®
0 % had
0 250 500 750 1000

Number of operations
X Native Go to WASM X Cto WASM

We now use a linear-linear plot since we only increase the number of oper-
ations inside of the smart contracts and no nonger launch the global execu-
tion process multiple times. The aforementioned overhead of less than one
picosecond very quickly becomes irrelevant as the number of operations in-
creases. The sequential operations are scalar multiplications of the Ed25519
base point (z,4/5). The native and WASM version written in Go use the
lab’s Kyber library [12] while the C version uses Libsodium [13]. The re-
sults are what we would expect, considering that C is known to have a better
WASM support compared to Go. It is also satisfying to see that while the
Go to WASM version is two to three times slower than the native one, it
still is of the same order of magnitude.

4.3 Ed25519 Point Multiplication

The operations analysed are scalar multiplications of random elliptic curve
points. This time, the C to WASM version fares even better, beating the
native version : differences in the two libraries must necessarily be the cul-
prit. The Go to WASM translation again results in two to three times slower
performance and cannot be blamed since it does not impact the native re-
sults. The C runtimes are comparable to the ones seen in the previous part
while the Go runtimes more than doubled : base point multiplications prob-
ably have some sort of optimisation in the Kyber library which causes the
difference.

12

Ed25519 Point Multiplication
350

300
250 .
200
150 - %

Runtime (ps)

X

100 ' »

50

I

0 %
0 250 500 750 1000

Number of operations
X Native Go to WASM C to WASM

4.4 Ed25519 Point Addition

Ed25519 Point Addition

70
__ 525
[2])
3 %
[0
E 35 ,
.E -~
=]
T

175 -
0 % S = 2
0 250 500 750 1000

Number of operations
X Native Go to WASM C to WASM

This graph compares runtimes of sequential additions of two elliptic curve
points. The results are unexpected : Libsodium’s point addition appears
to be abysmally slower than Kyber’s. This is the only possible explanation
since we cannot blame the C to WASM translation compared to Go’s ;
native C experiments seemed to confirm that additions are surprisingly slow
in Libsodium. As a result, this comparison is almost completely dictated by
differences in the libraries used and makes the impact of the environment and
WASM negligible. The fact that Libsodium’s additions runtimes are similar
to its multiplications’ runtimes in scale is quite curious but is ultimately not

13

the main focus of this analysis. The Go to WASM version is once again
about three times slower than the native one, which is the most trustworthy
takeaway from these four comparisons.

5 Discussion

5.1 Determinism

Determinism is a crucial question in this blockchain context : since transac-
tions are inputs to smart contracts and that a consensus is reached if enough
nodes agree on the resulting output, it is crucial that this output is obtained
deterministically. Nondeterminism could lead honest nodes to disagree with
each other regarding the validity of transactions.

WASM is nondeterministic by design [14], but situations in which this
nondeterminism can occur in smart contracts are fortunately limited to the
following 3 cases :

1. The smart contract imports nondeterministic libraries, such as “time”
2. A floating point arithmetic operator produces a NaN value

3. A resource such as memory is exhausted

NaN values’ bits are set nondeterministically and exhaustion of resources
can depend on the hardware. None of these cases should realistically happen
when the author of a smart contract is honest, which allow us to confidently
affirm that the smart contracts that the environment currently supports are
executed deterministically. The problem is that “almost deterministic” is
not good enough in this blockchain context : if the environment is to be
realistically deployed and supposed to run smart contracts submitted by
anyone in the future, it will need a system which can identify and reject
problematic smart contracts which may cause nondeterminism.

The most instructive way to learn how to achieve such a “deterministic
subset” of WASM was to inspect eWASM’s solution. It uses a validator
called Sentinel [15], which inspects and potentially rejects WASM binaries
among other tasks. While Sentinel is totally undocumented and written in
Rust which I am not familiar with, it was possible to deduce the general
strategy it uses to validate smart contracts.

Smart contracts importing nondeterministic libraries are automatically
rejected by Sentinel with a whitelist approach : only a particular set of
libraries are allowed to be imported. The WASM file is parsed by Sentinel
and rejected if it contains a forbidden floating point opcode. This is very
radical but likely necessary as it is very hard to know in advance which
operation could result in a NaN output since it depends on many variables
and on the initial arguments. The way in which Sentinel manages to avoid

14

nondeterminism caused by exhaustion of resources is not as clear and seems
to be focused on the stack size by setting an upper bound.

Since Sentinel validates WASM binaries indiscriminately from their source
language, these strategies could also be used once the binaries are obtained
from submitted smart contracts before validating them for this project’s
environment. Developing such a solution would require a lot of reverse engi-
neering on Sentinel. The required amount of work appears to be substantial
; achieving this strict deterministic subset would likely be an entire project
in itself.

It is also important to note that Sentinel is considered to be in alpha
state by its author and did not receive updates in more than two years :
there is no absolute guarantee that it is capable of completely eliminating all
forms of nondeterminism. Personal attempts to inquire about its state were
unsuccessful and mirror previous experiences when trying to learn about
eWASM in general : while no official announcement has been made, it be-
comes apparent that work on the project has dwindled significantly in recent
years.

5.2 Automated Smart Contract Loading

In its present form, the environment needs manual adjustments each time a
new smart contract is added : the WASM binary must be generated by the
user, added to the environment and a small amount of additional JavaScript
code must be written to instantiate the binary during the setup and run the
exported function when the right request is received afterwards. While this
is currently acceptable with an environment which supports only 8 smart
contracts at the time of writing, it should support more automation as its
usage grows. The ability to dynamically add a new smart contract from
the Dela framework without the need to manually modify the environment
would be the absolute ideal scenario.

The most painful part of the process is the WASM binary generation
when using Emscripten ; smart contracts written in Go were most often
translated to WASM without issues. Unfortunately, this is clearly the harder
part to automate since issues with Emscripten where very frequent and
needed unpredictable fixes every time. Additionally, in the case where this
compilation would be done automatically by Dela, it would need access
to each of the libraries imported by the smart contract which would be
highly impractical. It makes much more sense to leave this compilation up
to users especially since automating the C/C++ to WASM compilation is
legitimately unfeasible at the present time.

However, it would theoretically be possible to automate each step follow-
ing the WASM compilation : Dela would receive the binary from the user,
run a “Sentinel-like” validator on the binary (if such a system is available)
then automatically add the binary to the environment. What was thought

15

to be the first needed step for this automation was the development of a
version of the environment which automatically supports additional bina-
ries without the need to add new JavaScript code. Each binary would have
had to be added in the correct folder corresponding to its source language
as is currently the case since this impacts the way they are handled by the
environment.

Unfortunately, it turns out that the JavaScript WASM API does not ex-
pect many binaries to be used simultaneously, and having a variable number
of such binaries is even more problematic. This is not surprising consider-
ing the intended usage is to efficiently execute a heavy application in a web
browser : entire games are usually run on a web browser as a single WASM
binary as an example. The most elegant way to achieve a version which does
not require new code additions while being compatible with the WASM API
would likely be the following redesign : each source language should only
have one corresponding WASM binary containing every smart contract as
exported functions. Emscripten enables the compilation of multiple source
files into one binary but Go requires every function to be exported in the
same main function if every G smart contract function is to be contained
in the same WASM binary. A user would thus need to submit an updated
version of a binary containing additional smart contracts to Dela instead of
a new binary containing only one smart contract.

6 Conclusion

The project was a success as each goal that was initially fixed was met
; the environment is able to handle smart contracts written in multiple
languages simultaneously and the solution’s performance is of a similar order
of magnitude as the native one with almost negligible overhead penalty
despite its complex nature. Once the environment is launched, the WASM
execution module can replace the native one and is well tested.

While the environment in its current form is suitable to experiments
with eight smart contracts, it would need significant additional work to be
adapted for a realistic deployment supporting a variable and potentially very
large amount of smart contracts submitted by users which could potentially
introduce nondeterminism. Smart contract binaries would need to be val-
idated by a solution comparable to eWASM’s Sentinel whose development
could be very lengthy, but assuredly theoretically possible. Dynamically
adding smart contracts from Dela without the need to manually modify the
environment is not currently supported and would likely require to redesign
the environment so that there is only one WASM binary per source language,
as opposed to the current design with one binary per smart contract.

Another worthy time investment would be to add support for smart
contracts written in Rust. Its inclusion should not be difficult as it is similar

16

to C/C++ and also works with Emscripten. Other languages could also be
added, though none support WASM as well as Rust at the moment. These
inclusions would also be immediately beneficial as opposed to the heavier
aforementioned features which would be long-term investments.

The evolution of the more recent WebAssembly System Interface should
also be monitored as it matures and becomes supported by a wider range
of languages. While I personally forecast that it will not be ready before
many years, redesigning the environment to use the Node.js WASI API as
opposed to the “standard WASM” JavaScript API may be worthwhile in
the future.

I thank my supervisor and the DEDIS lab for this unprecedented oppor-
tunity to learn about modern technologies while having virtually unlimited
freedom regarding both the project’s design and its implementation.

17

7

Bibliography

References

Webassembly. https://webassembly.org.
Dedis ledger architecture. https://github.com/dedis/dela.

Ethereum flavored webassembly (ewasm). https://github.com/
ewasm.

Wasmer - the universal webassembly runtime. https://wasmer.io/.

Wasmtime - a small and efficient runtime for webassembly and wasi.
https://wasmtime.dev/.

Wavm - webassembly virtual machine. https://wavm.github.io/.
Wasi - the webassembly system interface. https://wasi.dev/.

Standardizing wasi: A system interface to run webassem-
bly outside the web. https://hacks.mozilla.org/2019/03/
standardizing-wasi-a-webassembly-system-interface/.

Emscripten. https://emscripten.org/.
The llvim compiler infrastructure. https://11lvm.org/.
Tinygo - a go compiler for small places. https://tinygo.org/.

Dedis advanced crypto library for go. https://github.com/dedis/
kyber.

Libsodium. https://github.com/jedisct1l/libsodium.

Nondeterminism in webassembly. https://github. com/WebAssembly/
design/blob/main/Nondeterminism.md.

Sentinel - validator and metering injector for ewasm. https://github.
com/ewasm/sentinel-rs.

18

