Constant Time Big Numbers
(For Go)

L.ucas C. Meier

Supervisor: Prof. Bryan Ford

Overview

Big Numbers?
Timing Attacks?

Go?

Safenum (Our Work)
Further Work

Big Numbers

Useful in Cryptography

e N (Natural Numbers)
e 7/ NZ (Modular Arithmetic)
o ¥, (Prime Fields)

RSA

Public key (e, N), encrypt m with:

m® mod N

N =~ 2048 bits

Elliptic Curve Cryptography

Prime Fields!
7./ pZ.
for example:

p=2%° 19

Somewhat big

Implementation Strategies

e Hand-written implementation
e Generated (e.g. FiatCrypto)
e Dynamic (big.Int, our library)

Timing Sitde-Channels

Implementations in Theory

Implementations in Practice

’

Timing

77

rrrrrrrrrrrrr

D

<

°

Guessing Passwords

??2?2?7?7?7

Side-Channel Overview

Subtle Behavior:

e Caches
e Branch Prediction
e Microcode Pipelines

Further Information

A Survey of Microarchitectural Timing Attacks
and Countermeasures on Contemporary Hardware

Qian Ge', Yuval Yarom®, David Cock'”, and Gernot Heiser'

'Data61, CSIRO and UNSW, Australia, gian.ge, gernot@data61.csiro.au
“Data61, CSIRO and the University of Adelaide, Australia, yval@cs.adelaide.edu.au
*Present address: Systems Group, Department of Computer Science, ETH Ziirich,
david.cock@inf.ethz.ch

Threat Model

e Loops leak the number of iterations
e Memory accesses leak addresses
e Branching leaks condition

Constant-Time Computing Base

o Addition +

e Multiplication *

e Logical Operations |, &, ~
e Shifts <<, >>

big.Int

GO

Package big

import "math/big"

Overview
Index
Examples

Overview v

Package big implements arbitrary-precision arithmetic (big numbers). The following numeric types are

supported:
Int signed integers
Rat rational numbers

Float floating-point numbers

-

= g

o

Vo

‘\.‘.- 4

We use blg Int
for Cryptography

—

S = -'ﬁ G 3
[t's constant-time right?

Not Constant-Time

secret keys and other se zit
godoc documentation.

A much more specific issue related to this was raised in 2011 (#2445) but eventually

e the preliminar

Why? Bad Algorithms

nat.go X

math > big > nat.go > ...

§
if c !=0 3
subVV(z[:n], z[n:], m)

t else 3

copy(z[:n], z[n:])
§
return z[:n]

§

Why? Padding

ploaia

bt

in go/crypto

e Extensively in RSA, and DSA
e ECC: Elliptic Curve interface uses big.Int
e Only P384 uses big.Int for field arithmetic

Mitigations
In RSA: blinding:

Instead of:

¢ mod N

Calculate:

1
“(c-r®)* mod N
T

There be Dragons?

rsa.go X

crypto > rsa » rsa.go > @ DecryptOAEP

.= m.FillBytes(make([]byte, k))

Our Library

p
o
cronokirby/ L
safenum ‘.‘

Constant time big numbers for Go

A 2 ®o 77 66 Y3 O

Contributors lssues Stars Forks

cronokirby/safenum

Go. Contribute to cronokirby...

Constant time big numbers for

&’ github.com

Operations

e Modular addition, subtraction, exponentation,
etc.

e Modular square roots

e “Raw” addition and multiplication

Announced Size

V

0

E

2]

1

7

0

]

2

5 |

<

True Size

Constant-Time Choice

Performance: Operations

Operation op /s (big.Int) | op / s (Nat) | ratio
Addition 10,080,842 12,164,599 | 0.90
Modular Addition 6,986,739 3,075,188 2.27
Multiplication 1,316,322 542 385 2.43
Modular Reduction 454 917 63,253 7.19
Modular Multiplication 1,000,000 44 596 22.42
Modular Inversion 1,000,000 621 1610
Modular Exponentiation 223 86 2.59

Operation | op / s(big.Int) | op / s (Nat) | ratio

vz mod ps 40,464 26,886 | 1.50
vz mod pi - 7,867 -

Performance: Cryptography

Operation op /s (big.Int) | op /s (Nat) | ratio

RSA Decrypt 670 312 2.15
RSA Sign 675 372 1.81

RSA Decrypt (3 Prime) 1173 596 1.97
DSA Sign 6202 2625 2.36

DSA Parameters 0.89 1.64 0.54

Change Info

Owner © Lucas Meier

Reviewers » Q Filippo Valsor.. x /'

CC » @ Yolan Romailler X ' |z Go Bot X /'

Repo | Branch go| master

&

Topic /

Submit requirements
(9 Code-Review
¥ Untrusted

Other labels

(9 Run-TryBot

(9 Trust
(9 TryBot-Result

Patching RSA

1¢ 326012 crypto/rsa: replace big.Int for encryption and decryption 0

SHOW ALL ~ REPLY

No votes
C) laz Go Bot |
SHOW LESS ~
Mo votes
Mo votes
No votes

crypto/rsa: replace big.Int for encryption and decryption

Updates #2ZB654

Infamously, big.Int dees not preovide constant-time arithmetic, making
its use in cryptographic code quite tricky. RSA uses big.Int
pervasively, in its public API, for key generation, precomputation, and
for encryption and decryption. This is a known problem. One mitigation,
blinding, is already in place during decryption. This helps mitigate the
very leaky exponentiation operation. Because big.Int is fundamentally
not constant-time, it's unfortunately difficult to guarantee that
mitigations like these are completely effective.

This patch removes the use of big.Int for
encryption and decryption, replacing it with an internal nat type
instead. RSA signing is also affected, because it depends on encryption.

~ SHOW ALL 2 EDIT

Checks Mo results

Timeline

February —
Initial Commit
March API Designed
C Serialization
Add, Mul, Exp
. ModInv
April —
Faster (Montgomery)
Test on RSA
May ——
RSA Patch
June ——

10.1

The most important artifact?

Understanding!

Further Work

e Verifying security properties
e Improving performance: Assembly?
e More scenarios: ECC, PQC?

In Summary

y

We made an alternative to big.Int for
Cryptography. It’s only 2x slower.

