smart contract execution env.

Master Semester Project

Responsible : Prof. Bryan Ford
Supervisor : Noémien Kocher
Student : Maxime Sierro

Introduction

The project

Implementation of a new WebAssembly smart contract execution environment

for the DEDIS Ledger Architecture

Motivation

2 big disadvantages with the current native execution module :

1. Necessary recompiles of the entirety of the node’s environment

2. Support for Go smart contracts only

Node environment (in Dela)

60 =

@ [execute contract
execution

Smart contract

Node environment (in Dela) execution

environment

60 -]
— [

contract
L execution

W (Smart
J -

WebAssembly (WASM)

Binary format obtained from higher level “source languages”
Introduced in 2017 for web browser use
Sandboxed execution

eWASM : Ethereum’s proposed execution layer redesign

Goals

Fully functional alternative to the native module

Simultaneous support of multiple source languages

Determinism analysis

|deally : automated smart contract loading

Design

Dela ledger node

[module X]

-

] |

execution
module

}

WASM execution env.

N

/

(the ‘box’)

exec

out

1.

3 possible solutions

Web browser application

2. Web server

3. Unix daemon

10

Main factors

Amount of relevant resources

Ease of communication

WASI transition

11

WASI

WebAssembly System Interface, extension of WASM to the OS level

Newer : 2019

Less languages are WASI-compatible

12

Final choice : Node.|s application

Best of both worlds :
e Easy communication with the framework

e JavaScript’s “standard WASM” API

13

C/C++ support arguments

State of the art binary translation
2 languages with one stone

Prevalence

14

Go support arguments

Accurate comparisons with native executions

Frequently used by the lab

15

Differences

C/C++ treat WASM as a library, Go treats it as an application.

Very different implementation issues

16

Results

17

Counter Increase

1000
125.3
100 %
17.03 65.21
g 10 ¥ 2.97 - 11.82
o) 1 ¥t 145
g }ars;
E 01 0.269
=
@ 0.01
0.0006
0.001 0.0002 0.0002) B, .. X
0t - % -
1 10 100 1000
Number of executions
X Native Go to WASM X C to WASM
CPU: 25 GHz

Incrementation of a randomized counter 18

Ed25519 crypto operations

Single executions of smart contracts containing sequential operations
e Go : DEDIS’s Kyber library

e C : Libsodium library

19

Runtime (ps)

Base Point Multiplication

160 "

120 -

80 A -
%l x

40 . = =

3 ~
0 %< =
0 250 500 750 1000
Number of operations
X Native Go to WASM X Cto WASM
CPU : 2.5 GHz

Randomized scalar multiplications of the (x, 4/5) base point

20

Runtime (ps)

Ed25519 Point Multiplication
350

300

D

= a NN
S O O O,
o O O o

o)
o

I

o
o ¥

250 500 750 1000

Number of operations
X Native Go to WASM X Cto WASM

CPU : 2.5 GHz

Randomized scalar multiplications of points 21

Ed25519 Point Addition
70

52.5

Runtime (ps)
w
&)

17.5 *
0 % = * ®
0 250 500 750 1000
Number of operations
% Native Go to WASM X Cto WASM
CPU: 2.5 GHz
Randomized additions of two points 99

Trustworthy takeaways

Very low overhead
Similar order of magnitude for all executions

Go to WASM up to 3 times slower than native

23

Determinism

24

Sources of nondeterminism

1. Nondeterministic imports

2. NaN result from a floating point operator

3. Resource exhaustion

25

WASM is “almost deterministic”

OK for experiments, not for a realistic use case

What should be done if anyone can submit a smart contract ?

26

eWASM’s solution : Sentinel

Smart contract validator released in “AlphaQ” state

No documentation, written in Rust

Last commit 2.5 years ago 9

27

Sentinel strategy

1. Nondeterministic imports => Reject if there is an illegal import

2. NaNresult => Rejectif there is a floating point operator

3. Resource exhaustion => Fix a limit on the stack size

28

Sentinel strategy

Theoretically applicable : Sentinel validates contracts after the WASM
compilations

Reverse engineer without the metering injector ?

Does it really guarantee strict determinism ?

29

Automated smart contract loading

Current smart contract loading

Compile the smart contract to WASM
Add the binary in the environment’s correct folder
Add ~10 lines of JavaScript code

Recompile & relaunch

31

WASM compilation automation

Unfeasible for C/C++ : unpredictable fixes required in practice

Probably not worth the trouble anyway

32

Automatic handling of new smart contracts

First idea : automatically handle new binaries

Problem : the APl does not expect a large nor variable number of them

Solution : switch from “1 binary per smart contract” to “1 binary per source
language”

33

Conclusion

34

Suitable for experiments : multiple languages, on par with native module,
satisfying performance...

But can it become more ?

35

Future work

Immediately useful, should be quick :

- Rust support

Crucial but would take a lot of time :

- Strict determinism (if possible) & automated smart contract loading

Maybe slightly better in many years :
- Support WASI and use the relevant Node.js API

36

Questions

37

Backup Slides

Strong candidate : Rust

Top tier WASM support

Similar to C/C++ : Emscripten

39

Counter Increase
140

105

Runtime (ps)
S

35
0 %= %
0 250 500
Number of executions
X Native Go to WASM
CPU: 2.5 GHz

Incrementation of a randomized counter

750

x Cto WASM

1000

40

Automatic handling of new smart contracts

Switch from “1 binary per smart contract” to “1 binary per source language”

Achieved differently depending on the language

Simplified and scalable JavaScript code

Drawback : users must update and compile larger files

41

