
Master Semester Project

Responsible : Prof. Bryan Ford
Supervisor : Noémien Kocher

Student : Maxime Sierro
1



Introduction

2



The project

Implementation of a new WebAssembly smart contract execution environment 

for the DEDIS Ledger Architecture

3



Motivation

2 big disadvantages with the current native execution module :

1. Necessary recompiles of the entirety of the node’s environment

2. Support for Go smart contracts only

4



5



WebAssembly (WASM)

● Binary format obtained from higher level “source languages”

● Introduced in 2017 for web browser use

 

● Sandboxed execution

 

● eWASM : Ethereum’s proposed execution layer redesign

6



Goals

● Fully functional alternative to the native module

● Simultaneous support of multiple source languages

● Determinism analysis

● Ideally : automated smart contract loading
7



Design

8



9



3 possible solutions

1. Web browser application

2. Web server

3. Unix daemon

10



Main factors

● Amount of relevant resources

● Ease of communication 

● WASI transition

11



WASI

● WebAssembly System Interface, extension of WASM to the OS level

● Newer : 2019

● Less languages are WASI-compatible

12



Final choice : Node.js application

Best of both worlds :

● Easy communication with the framework

● JavaScript’s “standard WASM” API

 

13



C/C++ support arguments

● State of the art binary translation

 

● 2 languages with one stone

 

● Prevalence

14



Go support arguments

● Accurate comparisons with native executions

 

● Frequently used by the lab

15



Differences

16

● C/C++ treat WASM as a library, Go treats it as an application.

 

 

● Very different implementation issues



Results

17



18

CPU : 2.5 GHz

Incrementation of a randomized counter



Ed25519 crypto operations

19

Single executions of smart contracts containing sequential operations

 

● Go : DEDIS’s Kyber library

● C : Libsodium library



20

CPU : 2.5 GHz

Randomized scalar multiplications of the (x, 4/5) base point



21

CPU : 2.5 GHz

Randomized scalar multiplications of points



22

CPU : 2.5 GHz

Randomized additions of two points



Trustworthy takeaways

23

● Very low overhead

● Similar order of magnitude for all executions

 

● Go to WASM up to 3 times slower than native



Determinism

24



Sources of nondeterminism

25

1. Nondeterministic imports

2. NaN result from a floating point operator

 

3. Resource exhaustion



26

WASM is “almost deterministic”

OK for experiments, not for a realistic use case

What should be done if anyone can submit a smart contract ?



eWASM’s solution : Sentinel

27

● Smart contract validator released in “Alpha0” state

● No documentation, written in Rust

 

● Last commit 2.5 years ago 🧐



28

1. Nondeterministic imports => Reject if there is an illegal import

2. NaN result => Reject if there is a floating point operator

 

3. Resource exhaustion => Fix a limit on the stack size

Sentinel strategy



29

Theoretically applicable : Sentinel validates contracts after the WASM 
compilations

Reverse engineer without the metering injector ?

Does it really guarantee strict determinism ?

Sentinel strategy



Automated smart contract loading

30



Current smart contract loading

31

1. Compile the smart contract to WASM

2. Add the binary in the environment’s correct folder

 

3. Add ~10 lines of JavaScript code

 

4. Recompile & relaunch



WASM compilation automation

32

Unfeasible for C/C++ : unpredictable fixes required in practice

Probably not worth the trouble anyway



33

First idea : automatically handle new binaries

Problem : the API does not expect a large nor variable number of them

Solution : switch from “1 binary per smart contract” to “1 binary per source
language” 

Automatic handling of new smart contracts



Conclusion

34



35

Suitable for experiments : multiple languages, on par with native module, 
satisfying performance...

But can it become more ? 



Future work

36

Immediately useful, should be quick : 

- Rust support

Crucial but would take a lot of time :

- Strict determinism (if possible) & automated smart contract loading

Maybe slightly better in many years :

- Support WASI and use the relevant Node.js API



Questions

37



Backup Slides

38



Strong candidate : Rust

● Top tier WASM support

 

● Similar to C/C++ : Emscripten

39



40

CPU : 2.5 GHz

Incrementation of a randomized counter



41

Switch from “1 binary per smart contract” to “1 binary per source language”

Achieved differently depending on the language

Simplified and scalable JavaScript code

Drawback : users must update and compile larger files

Automatic handling of new smart contracts


