
École Polytechnique Fédérale de Lausanne

Resilient routing protocol for Dela

Katja Goltsova

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Gaurav Narula
EPFL / DEDIS

Semester Project

Sep 2020 – Jan 2021

Contents

1 Introduction 2

2 Background 2
2.1 Mino interface . 2
2.2 Routing interface . 3
2.3 Minogrpc . 3
2.4 Tree routing protocol . 4

3 Design 4
3.1 Goals . 4
3.2 Protocol . 4

3.2.1 Basic routing . 4
3.2.2 Failure handling . 5

4 Implementation 5
4.1 NodeID space . 5
4.2 Handshake . 5
4.3 Special cases . 5
4.4 Minogrpc changes . 5
4.5 Limitations . 6

5 Evaluation 7
5.1 Setup . 7
5.2 Routing resilience . 8
5.3 Hop count . 8
5.4 Open connections . 9

6 Future work 9

1

1 Introduction

Dela [2] is a distributed ledger architecture, developed at DEDIS, EPFL. It describes and im-
plements the abstractions that allow a set of nodes agree on a state in a decentralized fashion.

To facilitate the communication between nodes, Dela implements a minimalistic network
overlay (mino). Opening a connection between each pair of communicating nodes does not scale,
so mino trades latency for reducing the number of open connections, sending a message to the
destination via intermediate hops that are other participants of the communication. A routing
protocol determines the route of a message by calculating the next hop for a given address. The
current tree-based routing protocol minimises the number of open connections between nodes.
However, it is not resilient: if a node fails or cannot be reached due to a network failure between
the node and its parent, the entire subtree of this node does not receive a message.

Resilient overlay networks have been studied extensively. Andersen et al. [1] introduced the
concept in 2001, proposing an overlay network, where nodes improve the quality of service by
monitoring the the internet paths among themselves and selecting a good path for a message
given the desired metric (e.g. latency, throughput). However, in this overlay each node has
a connection with each other, thus limiting scalability. At the other end of the spectrum are
peer-to-peer (P2P) overlay networks, which scale to hundreds of thousands of nodes and can
handle nodes joining and leaving. Many of these systems (typically those based on Distributed
Hash Table) assign a random NodeID to each node and forward messages so that each next
hop is closer in the identifier space to the destination. For instance, Pastry [4] and Tapestry [6]
employ prefix-based routing: in the typical case, each next hop has a longer common prefix with
the destination ID than the previous hop. Chord [5] organizes the nodes in a ring; each node
maintains a routing table, i-th entry of which allows it to make a step of size at least 2̂ı on the
ring. The next hop is the farthest node whose id still does not exceed the destination’s.

This project designs and implements a resilient routing protocol for Dela. The protocol
employs prefix-based routing, inspired by Pastry. With the same average number of hops per
message and comparable number of open connections, it improves the resilience of the existing
tree-based protocol by 25 − 100%, depending on the network condition and the workload.

The rest of this report is organized as follows: section 2 provides a background on the place
of the routing protocol in Dela. Then, section 3 describes the protocol design and section 4
discusses the implementation of the protocol within mino. Afterwards, section 5 evaluates the
protocol’s performance and compares it to the protocol currently used in Dela. Finally, section 6
concludes and discusses future work.

2 Background

2.1 Mino interface

Mino provides two ways to start communication with other nodes: Call and Stream. Call takes
a message and a set of addresses and sends the message directly to each node. Opening a direct
connection to each address, it does not use the routing protocol. Stream takes a set of nodes.
This is the way to initiate a longer communication round with this set of nodes.

Nodes can participate in communication after creating a public endpoint: defining a handler
for Calls and Streams. A response to a Call is simply a message. A handler for Stream has a
receiver to receive messages and a sender to send a response.

A call to Stream returns a sender and a receiver and initiates a communication round. The
caller is called orchestrator. Other nodes’ behaviour is defined by the handlers they registered. A
typical communication round develops as follows: the orchestrator sends a message to the set of
nodes, registered when initiating the round; the nodes’ handler is invoked, where the message is

2

received with the receiver and a reply is sent to some of the participating nodes with the sender.
If a follower sends a message to another follower, it is handled by that follower’s handler. If a
follower sends a message to the orchestrator, it arrives at the receiver, returned by Stream.

Dela uses Stream for collective signatures and for distributed key generation. Both com-
munication rounds start with the orchestrator broadcasting a message. Collective signature
participants simply send a message back to the orchestrator. Distributed key generation partic-
ipants respond by sending a message to each other participant. We used these two workloads
to compare the currently used tree based routing protocol and the protocol from this project.

2.2 Routing interface

Forwarding of packets is determined by a routing table. A packet is an abstraction, defined
by the routing protocol and encapsulating the source, the destinations and the message. A
routing table is created with GenerateTableFrom(Handshake) when a node is contacted by
another node: the first message sent is guaranteed to be a handshake, which contains sufficient
information to construct a routing table. The routing table on the node, booting the protocol,
is calculated with New based on the participants of the communication round, passed to Stream.

Packet routing is handled by Forward method of the routing table. It takes a packet and
calculates the next hop for it. If a packet has multiple destinations (e.g., if it is the first message
of the orchestrator which is broadcast), it is split into several packets, one per next hop. Forward
signals the inability to route a message to a given destination by marking the destination address
as Void.

The caller signals that a next hop is unreachable from this node with OnFailure method of
the routing table. It allows the routing table to recompute an alternative route to destinations,
not including this next hop.

When a node contacts another node for the first time, it sends a handshake so that the
distant node can initialize its routing table. PrepareHandshakeFor method of the initiating
node’s routing table constructs this handshake.

2.3 Minogrpc

Minogrpc is an implementation of network overlay using gRPC. At the moment, this is the only
implementation which uses a routing protocol. Its details, relevant to routing, are described
below.

As described above, the node, initiating a communication round, becomes the orchestrator.
The orchestrator has two parts: client side and server side, connected with a relay. This relay
is the only communication channel between the two sides.

The client side does not participate in the routing protocol. However, the messages have to
be sent to the client side to reach the node. Therefore, the only way to route a reply to the
orchestrator is to route it to the server side and then use the relay to the client side.

The server side boots the routing protocol: this is the participant whose routing table is
created with New. It computes the next hops for the orchestrator’s broadcast messages and sets
up a gRPC relay to each of these nodes. The first message it sends is a handshake, based on which
the nodes populate their routing tables. The message keeps propagating among participants,
and when it is delivered to all destinations, all nodes participated in forwarding, and therefore
have their routing tables initialized.

A node, which initiated a relay, becomes a parent of the ”passive” node. A node stores
one routing table per parent, calculated from the respective handshake. Whenever a message
needs to be routed, a node tries to route it using each of the routing tables, until it succeeds.

3

If a routing table routes a packet to nil, this is a special scenario, different from marking the
destination as Void. In this case, the node sends the message with the relay to the parent.1.

2.4 Tree routing protocol

The current routing protocol in mino builds a tree topology between participants, minimizing
the number of open connections. To guarantee small number of hops per message, the tree
height is fixed at 3.

This routing protocol dynamically builds a tree topology, choosing the children of the current
node among the nodes that are reachable from it. Once the topology is built, it does not change.
This makes the protocol not resilient: a failure of one node or network failure between a node
and its parent introduces a partition between the subtree of this node and the rest of the
participants.

3 Design

3.1 Goals

This project aims to improve the resilience of the existing routing protocol while keeping the
number of open connections small (subquadratic) and routing a message with a logarithmic
number of hops. We consider a model where nodes and network can fail, but all the nodes
adhere to the protocol.

3.2 Protocol

3.2.1 Basic routing

Each node is assigned a NodeID, which is deterministically computed from the node address.
The NodeID space is L-digit numbers with base B.

The routing table is specific for each node. For every prefix of the node’s NodeID and every
differing next digit, the routing table stores an entry (if available). This entry is the next hop
for a node with the corresponding prefix. For example, given Table 1, a message to NodeID 000
will be routed to the node with NodeID 021. Note that for a prefix of size L, the next hop in the
routing table is either that node, if there is a node with this NodeID among the participants, or
there is no entry.

prefix next hop

0* 021

1* 122

21* -

22* 220

200 -

202 202

Table 1: Example routing table for node 201 in 3-digit NodeID space with base 3

We provide an implementation which in addition to the routing table computes leaf set : the
set of reachable nodes, whose NodeIDs are closest to this node’s NodeID. If the destination’s

1Therefore the only way to reach the client side of the orchestrator is to route a message to the server side and
from there to nil

4

NodeID is in the leaf set, the message is sent directly to destination, bypassing routing with
routing table.

3.2.2 Failure handling

If all nodes and network links between nodes are functional, a message is forwarded to a node
which shares a longer common prefix with the destination until the message reaches the desti-
nation. However, because of failures all next hops with a longer common prefix might become
unavailable. In this case we route the message to a node whose NodeID shares with the destina-
tion a prefix of the same length as the current node and is numerically closer to the destination’s
NodeID. Note that in order to avoid loops, it is critical to require the common prefix of the same
length, not just being numerically closer.

4 Implementation

4.1 NodeID space

A NodeID is derived from node’s address by hashing it into the space of L-digit numbers with
base B. L defines the typical number of hops the message takes until it arrives at the destination
and is fixed at 5. The base is calculated to achieve a possibly smaller id space without collisions
(smaller id space is more dense, which means more redundancy and more resilient routing).

By birthday paradox, B = O(N
2
L), where N is the number of nodes, participating in the

communication round.

4.2 Handshake

The handshake contains the information about all the participants of the communication round.
Upon receiving the first handshake, a node computes its routing table, which it uses for the
entire communication round (adjusting when failures are signaled through OnFailure). Further
handshakes do not impact the routing table.

We chose to include all participants in the handshake for simplicity. A node can receive the
first handshake from any other node, including one that does not share any common prefix with
its NodeID, and needs to have sufficient information to serve routing requests in this case.

4.3 Special cases

As discussed in subsection 2.3, to reach the orchestrator, the message has to be routed to the
orchestrator’s server side. To achieve this, we force the NodeID of the client and server side of
the orchestrator to be equal.

The client side of the orchestrator also uses the routing protocol, but is the only player.
Similarly to routing from server side to the client side, we route the messages to nil so that
they are forwarded to the server side and can be routed to destinations.

4.4 Minogrpc changes

The implementation process of this routing protocol allowed us to identify a few points where
minogrpc’s implementation is tailored to the tree-based protocol, which can be improved. They
are outlined below.

When the routing tables routes a message to an address, with which the current node has
not opened a relay before, a new relay is open. However, in a non-tree based protocol such node

5

can be a parent of the current node, i.e. it has contacted the current node before. In this case,
we can reuse the relay, already established by the parent.

The orchestrator’s client side does not participate in the routing protocol, so the routing
tables do not know how to route the messages to it. We patch it by forcing the same NodeID
for both client and server, but this should not be decided at the routing protocol level. In
particular, the orchestrator’s server side should forward the message directly to the client side
without invoking the routing protocol.

Currently, a node, participating in a communication round, detects the end of it by moni-
toring the state of the relays to the parents: if they are all closed, the communication is over.
This approach is perfectly correct for tree-based routing protocol, but two issues arise once we
start accounting for network failures: first, the relays can be closed due to the network outage,
which can be transient. Meanwhile, another node can open a connection to the current node
and become its parent. Second, an alternative routing protocol can have loops of established
connections, i.e. in minogrpc’s case – relays. This does not mean a loop in the routing protocol:
for example, node 222 can send all messages to NodeIDs starting with 1 to node 111, while node
111 can send all messages to NodeIDs starting with 2 to node 222. An alternative way to detect
the end of a communication round therefore needs to be designed.

4.5 Limitations

Figure 1: A routing example in face of network failures

Consider Figure 1. Dotted lines stand for links that are down, solid lines – for functional
links. Assume that 201’s next hop for prefix 1** is 101. A message to 111 will be successfully
forwarded to 101, from which it cannot reach the destination. However, a successful routing to
the destination would be possible if 101 could signal to 201 that the destination is unreachable
from it.

We could improve our choice of next hops by exploiting the information about link laten-
cies. This is not possible at the moment because the communication rounds are short and the
information is not preserved across communication rounds.

6

5 Evaluation

5.1 Setup

We evaluated our implementation of the protocol by simulating message exchange between
multiple nodes. We implemented the two scenarios that Dela employs: replyOrchestrator, when
one node broadcasts a message and others reply to the orchestrator, and replyAll, when one
node broadcasts a message, and after receiving it all other nodes send a message to all nodes.
We compare the two implementations of the routing protocol: with and without the leaf set,
and the tree-based routing protocol, currently used in Dela.

To simulate network failures, we used SimNet [3]. SimNet allows the user to control the
network topology of a cluster of N nodes, each running the same Docker image. For full control
over the network topology, allowing dropping packets, the cluster is deployed on Kubernetes, and
each node of the simulated cluster is a Kubernetes pod. We created an autoscaling Kubernetes
cluster on Google Cloud Platform with virtual machines with 2 virtual CPUs and 4 GB memory.
5 cluster nodes were enough to run up to 40 simulation nodes (i.e. pods).

The simulation consists of two components: the image that each simulated node is running,
and the coordinator program that manages the simulation by executing commands on the nodes
and manipulating the network topology, i.e. disconnecting links. The two are detailed below.

By SimNet design, each node in the simulation was running the same image, i.e. could act
both as the orchestrator and as a follower. To become an orchestrator, the image had a controller,
listening for a command that specified a set of nodes for the communication round and a message
to broadcast. To act as a follower, the image had a handler that could process incoming stream
requests. Therefore, a communication round started when we executed a command to send a
given message to a given set of addresses on one of the nodes. The content of the message
determined the scenario that the nodes followed. Both the orchestrator and followers log the
received messages.

The simulation starts with a fully functional network. Our coordinator program initiated a
communication round by executing a ”send message” command on one node. This node became
the orchestrator and broadcast the provided message to the provided set of addresses. After this
message reached all the nodes, i.e. all nodes had their routing table built, and before the nodes
sent the replies, we disconnected a random subset of links2. We ran the simulation until all the
participants’ messages were either delivered or failed to be routed. One simulation round is one
communication round with a fixed number of participants that goes according to one of two the
described scenarios.

To perform the simulation, we introduced several changes to minogrpc implementation. First,
we log open connections, routing failures and packet forwarding. Second, to detect network out-
ages faster, we enable keepalive messages on gRPC relays, sent every 10 seconds (the minimum
allowed by gRPC). This way, failed relays are detected in maximum 30 seconds (10 seconds to
send a keepalive message and 20 seconds to detect the lack response) instead of several minutes
timeout when simply trying to use the relay. Third, we use insecure connection to avoid setting
up a certificate between each pair of participants for each simulation round. Fourth, in the
current minogrpc implementation, a node detects the end of a communication round as soon
as the relays to all its parents close (see subsection 4.4). For the purposes of the simulation,
we simply keep the communication round alive until the simulation is over and all resources are
freed.

2We also implemented disconnecting the links, used by the orchestrator’s message, but the negative impact of
this approach on the tree routing protocol is much more than on the prefix routing, because in the former, the
messages from the participants to the orchestrator use the same links, while for prefix routing this is often not
the case

7

5.2 Routing resilience

Figure 2: Fraction of delivered messages

Figure 2 presents the analysis of routing protocol resilience for the two communication sce-
narios and different percentage of failed links. Both implementations of the prefix-based routing
significantly outperform the tree-based routing protocol in terms of successfully delivered mes-
sages.

5.3 Hop count

Figure 3: Average number of hops per unicast message, no network failures

Figure 3 shows the average number hops per unicast message with different routing protocols

8

in a perfectly functioning network. Prefix-based routing protocols perform similarly to the tree-
based one. For the tree-based protocol, in the replyAll scenario the average number of hops is
approximately doubled because a message to the orchestrator has H hops while a message to
another follower has 2H hops, where H is the height of the tree. The prefix-based protocol,
including leaf set, has a slightly lower average number of hops, because a message is sent directly
to a leaf, where in the pure prefix-based protocol it might need to take more hops.

Figure 4: Average number of hops per unicast message

Figure 4 presents the average number of hops per unicast message in a faulty network. The
number of hops in the tree-based routing protocol is fixed. The number of hops in prefix-based
routing protocols is slightly higher because a longer common prefix is not achieved at every hop.

5.4 Open connections

Figure 5 presents the total number of open connections in a perfectly functioning network. The
numbers are the same for tree-based routing protocol, because its topology is always the same.
For prefix-based routing protocols, there are significantly more open connections in the replyAll
scenario, because more different paths through the network are used.

Figure 6 shows the number of open connections in a faulty network. Only successfully open
connections are counted. As expected, prefix-based routing protocols need more connections
but the growth is still linear with respect to the number of nodes.

6 Future work

The routing protocol improves on the existing tree-based protocol resilience by exploiting the
redundancy in the NodeID space. Further improvements are possible if minogrpc provides a

9

Figure 5: The number of open connections, no network failures

Figure 6: The number of open connections

way to signal last-hop failures (subsection 4.5). Analyzing the data about the network status
across different communication rounds might be useful to build latency-aware routing tables.

References

[1] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay
networks. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’01, page 131–145, New York, NY, USA, 2001. Association for Computing
Machinery.

10

[2] EPFL/DEDIS. Dela: DEDIS Ledger Architecture. https://github.com/dedis/dela, 2016.

[3] EPFL/DEDIS. SimNet. https://github.com/dedis/simnet, 2016.

[4] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–350, November 2001.

[5] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In SIGCOMM’01, pages
149–160, 2001.

[6] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on Selected Areas in Communications, 22:41–53, 2004.

11

https://github.com/dedis/dela
https://github.com/dedis/simnet

	Introduction
	Background
	Mino interface
	Routing interface
	Minogrpc
	Tree routing protocol

	Design
	Goals
	Protocol
	Basic routing
	Failure handling

	Implementation
	NodeID space
	Handshake
	Special cases
	Minogrpc changes
	Limitations

	Evaluation
	Setup
	Routing resilience
	Hop count
	Open connections

	Future work

