
École Polytechnique Fédérale de Lausanne

Anonymous Proof-of-Presence Groups for Messaging and Voting

by Céline Camacho Gabriel Fleischer Sébastien Fulpius
Raoul Gerber Jean-Baptiste Michel Romain Pugin

Nicolas Raulin Ouriel Sebbagh Alexis Tabin
Maxime Würsch

Semester Project Report

Approved by the Examining Committee:

Prof. Bryan Ford
Thesis Advisor

Pierluca Borsò
Thesis Advisor

Louis-Henri Merino
Thesis Supervisor

Haoqian Zhang
Thesis Supervisor

EPFL IC DEDIS
Bâtiment BC

Station 14
CH-1015 Lausanne

January 15, 2021

Abstract

To protect from Sybil attacks, where one person creates many fake identities, communication
tools usually require people to provide some sort of identity, like a credit card or a phone number.
However, this causes a privacy problem as it links the virtual identity to a physical one in a
privacy-invasive way. Weak identities such as e-mails are better in term of privacy, but do not
protect against Sybil attacks and do not provide any form of accountability (e.g. one person,
one vote). Proof-of-Personhood solves this problem by proving a digital identity is linked to a
person, without revealing its identity. This is done by organizing in-person events and giving
present people a token proving they attended. In this project, we started to build an application
to implement the Proof-of-Personhood approach. The current version allows users to create
an organization and run roll-call events. It is not finished yet, and this project is thought to be
continued by other students and engineers.

2

Contents

Abstract 2

1 Introduction 5

2 Background 7
2.1 WebSocket . 7
2.2 Publish-Subscribe pattern . 7
2.3 EdDSA signatures . 8

3 Design 9
3.1 Overview . 9

3.1.1 Local Autonomous Organization . 9
3.1.2 PoP event (roll-call) . 9
3.1.3 Other events . 10

3.2 Architecture . 10
3.2.1 Architecture overview . 10
3.2.2 Witnesses . 11

3.3 Messaging Protocol . 11
3.3.1 JSON-RPC 2.0 . 11
3.3.2 JSON Schema . 13
3.3.3 Other tools and relevant knowledge . 13
3.3.4 Request object and layers . 13
3.3.5 Response object . 14
3.3.6 Create Roll-Call Example . 15

3.4 Front-end . 16
3.4.1 Home UI . 16
3.4.2 Organization UI . 17

4 Implementation 20
4.1 Back-end 1 in Go . 20

4.1.1 Relevant packages . 20
4.1.2 Message flow . 23
4.1.3 Debugging and testing . 24

3

4.2 Back-end 2 in Scala . 24
4.2.1 JSON parser . 24
4.2.2 Networking and WebSocket . 26
4.2.3 Publish-Subscribe . 27
4.2.4 Unit tests . 29

4.3 Front-end 1 in React native . 29
4.3.1 Navigation . 30
4.3.2 Storage . 30
4.3.3 Networking and WebSocket . 30
4.3.4 Date and time picker . 32
4.3.5 Testing . 32

4.4 Front-end 2 in Android . 32
4.4.1 PoP application . 33
4.4.2 Activities . 33
4.4.3 Fragments . 33
4.4.4 Models . 35
4.4.5 Protocol models . 35
4.4.6 JSON parsing . 37
4.4.7 Network . 37
4.4.8 Testing . 38

5 Evaluation 39
5.1 Cross testing . 39

5.1.1 Major bugs found . 39
5.2 Future work . 39

5.2.1 Events . 40
5.2.2 Other high level objectives . 40
5.2.3 Low level . 40
5.2.4 Testing . 41

6 Related Work 42
6.1 A question of privacy and democracy . 42

6.1.1 Redemocratizing permissionless cryptocurrencies 42
6.1.2 New perspective of democracy . 45
6.1.3 Other related Project . 46

7 Conclusion 47

Bibliography 48

4

Chapter 1

Introduction

In January 2021, users of the messaging application WhatsApp received a message informing
them that the application was updating its terms and privacy policy. Allowing the application
to increase the amount of data it shares with the other Facebook Companies[1]. A short time
after that, a steep rise in downloads of Signal, a cross-platform encrypted messaging service, has
been observed. This increase could correspond to people choosing a safer app to communicate
[2]. Similarly, during the summer of 2020, the release of the SwissCovid application, a contact
tracing app for COVID-19, was in the heart of heated discussions, especially because people
were reluctant to the idea of being traced [3].

These two examples show that, nowadays, people care more about their privacy. But most of
the applications we use link us to a virtual entity in a privacy-invasive way. They ask the user
for its phone number in order to create its account and use their services. Even a reputed safe
application like Signal does that in order to achieve more accountability and to protect itself
against Sybil attack. These applications trade privacy for security. On the other hand, if weak
identities are used, like email addresses or pseudonym public keys, one user could easily create
multiple identities by, for example, creating multiple email addresses. Thus the application loses
any type of accountability and Sybil attack protection.

The difficulty in finding a way of identifying people online lies in achieving both a non
privacy-invasive and sufficiently accountable mechanism. Obtaining accountability and Sybil
attack resistance is desired, but we also need to take into account the users’ privacy. How nice
would it be if we could authenticate users while respecting their privacy and ensuring a high
security level? This is the main goal of the Proof-of-Personhood, bind the physical and virtual
identities of one user in a way that enables accountability and preserves anonymity. The objective
is verifying people rather than identifying them by organizing parties and generating tokens.
This is similar to a masquerade ball [4], where there is a real-world gathering which still preserves
the attendees’ anonymity.

The project is hence a real life application of this idea. The goal of the PoP application is to let

5

users create their own local autonomous organizations and others to attend them. Once the LAO
has been created, each user can create different events for each LAO, like meetings, polls or even
roll-calls, where attendees have to be physically present. The Proof-of-Personhood is achieved
by creating said roll-call events, where users must be physically present to prove their existence.
With this application we aim to link virtual and physical identities in a non privacy-invasive way
and still achieving some accountability and Sybil attack protection.

6

Chapter 2

Background

In this chapter, we present several technologies and patterns used in the project.

2.1 WebSocket

WebSocket is a communication protocol. It runs on top of TCP and provides a full-duplex channel.
The advantage of WebSocket compared to TCP is that WebSocket allows to send messages, where
TCP only support a byte stream.

We choose to use WebSocket instead of HTTP because the server needs to send notifications
to the client. It is easier to implement a notification system using WebSocket than using HTTP,
as WebSocket provides a full-duplex channel where HTTP only provides a half-duplex channel.
As a consequence, if we wanted to implement a notification system using HTTP, the HTTP client
would need to poll the server, which is less efficient. Choosing WebSocket instead of HTTP does
not affect our system’s compatibility as WebSocket is a standard supported by many platforms.

2.2 Publish-Subscribe pattern

The publish-subscribe pattern is a messaging pattern where the sender of a message does not
have to explicitly specify the receiver. Instead, when sending a message, the sender specifies a
channel. We call this action "Publishing on a channel". A receiver can subscribe to a channel.
When a sender publishes a message on a channel, any entity subscribed to that channel will
receive the message published to it. For example, we created a channel where all messages
related to an event are published.

This pattern is useful in our project because the sender of a message does not know in

7

advance to whom it must send a it. The sender can just publish it on a channel, and subscribers
will receive it.

2.3 EdDSA signatures

EdDSA is a digital signature scheme based on twisted Edwards curves, a type of elliptic curves.
Signing a message lets the receiver check the authenticity of the said message. Given a mes-
sage, the owner of the private key can sign the message using EdDSA. Given a signature, the
corresponding message and the public key, anyone can verify if the signature is correct. Digital
signature scheme are used to prove the authenticity of a message.

In this project, we use Ed25519 as our signature scheme. This is a version of EdDSA using
Curve25519, a popular elliptic curve.

8

Chapter 3

Design

3.1 Overview

3.1.1 Local Autonomous Organization

The core of the PoP project is the Local Autonomous Organization (LAO). This is a kind of group
used to organize different types of events. Users of the PoP app can have three different roles
in a LAO. First, there is the organizer, who is the creator of the LAO and can run events. Then
there are witnesses, who attest events are valid. The organizer and witnesses are specified at LAO
creation. Finally there are the attendees, who are attending the events of the LAO. We describe in
the following subsections the different types of these events.

3.1.2 PoP event (roll-call)

Running the event

A PoP event is a physical event where people can come to get a PoP token. It is designed in such
a way that one person can only obtain a single token. People could then use this token on other
services to prove they are a real person. Note that although a PoP token proves you are a person,
it is not linked to your identity. Thus services can not identify you using your token.

How does a PoP event work in practice? First, the organizer must setup a server that will be
used for the event. They can easily create a server running on their smartphone using the PoP
application or run it on a dedicated machine. The organizer of the event sets a location and a
time for the event. At the given time, participants (called attendees) come to the event. They
either need to install the PoP application, or to use the web version. During the event, they can

9

scan a QR code containing the address of the organizer server and connect to it.

Once every attendee is connected to the server, the roll-call can start. The roll call is the part
of the event where attendees obtain a proof they were physically present at the event. Once the
roll-call starts, no one else can enter the room where it takes place. The smartphone of attendees
show a pseudonymous QR code. The organizer must then scan the QR code of all attendees and
write them to the server. Once the roll-call ends, everyone has received a PoP token.

Validity of the Pop event

During the event, witnesses are present. Their role is to attest that the event is valid. They verify
no one is entering the room where the roll-call takes place after it started and that an attendee
does not obtain multiple tokens. They take pictures and videos of the event to prove that it is a
real event, not a fake event the organizer is using to create fake Proof-of-Personhood.

3.1.3 Other events

There are other types of events as the roll-call. However, they are at this stage less important, as
it is the roll-call that ensures the Proof-of-Personhood principle. Here is a list of the other events
the app should implement, even though it is not the case yet.

• Meeting: A gathering of people to discuss together. It requires a name and a start time. The
organizer can optionally add an end time, a location and metadata.

• Poll: A vote to get the opinion of the participants on a question. It can be either choose
one of N or approve any of N. The result of the poll is sent to the attendees once the poll is
closed.

• Discussion: A moderated discussion where the attendees can participate. The structure of
the discussion is not defined yet.

3.2 Architecture

3.2.1 Architecture overview

The architecture in its simplest form is a client-server architecture. It is designed to be usable
everywhere and only requires participant to be on the same local network. No Internet connec-
tivity is needed. When running a PoP event, the organizer starts a server. Every attendee client
connects to it and maintains a WebSocket (see section 2.1) connection with it.

10

On top of WebSocket, we use a publish-subscribe pattern (see section 2.2) to communicate.
Clients can subscribe to channels and publish messages on them. When a message is published
on a channel a client is subscribed to, the latter receives a notification containing the published
message.

The server in our architecture has two roles. The first one is routing messages according to
the publish-subscribe pattern. More precisely, when a client wants to publish a message on a
channel, it sends it to the server. The server then forwards it to every client subscribed to this
channel. The second role is logging every published message on a persistent key-value store, to
account for transparency. The log is then used to prove the event took place according to the
rules.

3.2.2 Witnesses

The role of witnesses is to make the system resilient against malicious users. If at least one
witness is honest, then a user can detect if someone sends invalid messages. Witnesses should
fulfill their role by verifying that messages are valid and digitally co-signing them if it is the case.

In the future, witnesses will also run a server. Every attendee client will be able to connect to
it the same way they connect to the organizer’s server (Figure 3.1). Like the organizer server, the
witness server records messages for transparency. It will also address connectivity and censorship
issues. If an attendee can not send messages to the organizer server, either because of network
issues or of a dishonest organizer censoring messages, they can send them to a witness server,
which will then forward them to the organizer server.

3.3 Messaging Protocol

Different participating instances - back-ends and front-ends - need to communicate between
each other. This communication follows the Publish-Subscribe pattern described previously,
but most importantly, it needs to be standardized. This is achieved by defining and agreeing on a
remote procedure call (RPC) protocol. A complete specification of the protocol can be found in
the proto-specs branch of the project’s GitHub repository [5].

3.3.1 JSON-RPC 2.0

The chosen RPC protocol is JSON-RPC 2.0 [6]. It is self-described as stateless and light-weight.
Messages using JSON-RPC are written in JSON [7] and can be either requests to perform an
action - such as subscribing to a channel - or responses announcing success or failure.

11

Figure 3.1 – The overall architecture with witnesses. Attendee clients try to maintain a WebSocket
connection with the organizer and witnesses servers.

12

3.3.2 JSON Schema

To standardize the representation of our RPC protocol, we use JSON Schema [8], which allows to
specify all three layers described below in JSON, without resorting to examples nor ambiguous
language. Instead, with JSON Schema, specifications are written in annotated JSON, expliciting
the type of the value expected in each field, potential constants or enumerations and avoiding
code duplication by allowing to refer to other JSON Schema files.

3.3.3 Other tools and relevant knowledge

• To sign messages and verify signatures, we are using Ed25519 (section 2.3), an EdDSA
signature scheme.

• As JSON does not support binary data, we are first encoding byte arrays in Base64. Note we
are only encoding byte arrays (cryptographic keys, signatures and hashes), but not regular
strings.

• To generate hashes, we are using SHA-256. As we often hash a combination of items, we
need to ensure that it is not possible to game it with tricks like "ab" concatenated with "c"
being equivalent to "a" concatenated with "bc". To achieve this we first convert byte arrays
to their Base64 string representation and integers to their decimal string representation.
Then each string is put between two " and added to a JSON array using compact represen-
tation. The hash is then computed on this whole JSON array. It is important to precise that
regular strings are not encoded in Base64 for the hash and as such, " and \ characters need
to be escaped by adding an additional \ before them.

3.3.4 Request object and layers

Base layer

A request object (also named query in the code) has four core name:value pairs as defined in
JSON-RPC 2.0:

• jsonrpc: A trivial pair which should always state "2.0".

• method: The name of the method to be called remotely. In our case, the five possible
values accepted are subscribe, unsubscribe, publish (message outgoing from a sender to
a channel), broadcast (message outgoing from a channel to its subscribers) and catchup
(requesting the message history of a channel).

13

• params: The parameters used to perform the action requested by method. In our case, it
always consists of channel, and for the publish and broadcast methods, it also contains the
message.

• id: The request identifier which allows to match a response to the request.

As a simple example, to subscribe to a channel, one would send a request with method = subscribe
and the relevant channel for the channel field of params.

Message layer

The message field of params contains messages sent by publish and broadcast. It is made of five
name:value pairs:

• data: The actual content of the message encoded in Base64, detailed below.

• sender: The sender’s public key encoded in Base64.

• signature: The Ed25519 sender’s signature on data, encoded in Base64.

• message_id: The hash of data concatenated with signature, encoded in Base64.

• witness_signatures: An array of JSON objects containing the witness’s public key and their
Ed25519 signatures on the message_id. Each public key, signature and their resulting object
are encoded in Base64.

Data layer

The final layer is the data layer. Part of every message, it is the information users want to send. It
always starts with the same two name:value pairs, action: and object: which define together the
purpose of the message, such as "create" "LAO" ; "close" "roll_call" ; or "witness" "message". As
different purposes require different name:value pairs in this layer, we will not explicit each of
them here, but they are defined in the proto-specs branch of the GitHub repository [5].

3.3.5 Response object

Every request made with a specified id awaits for a corresponding response. A response object
(also named answer in the code) has three core name:value pairs as defined in JSON-RPC 2.0:

• jsonrpc: A trivial pair which should always state "2.0".

14

• result: or error: Exactly one of those should be present. In case of success, the result
name:value pair should be used. If the method was catchup, then the value should be
an array with the message history, otherwise, it should simply state 0 as an ACK. In case
of error, the name:value pair contains an error object with an integer error code which
belongs to the [-5,-1] interval and a short matching description.

• id: The same request identifier as in the request which prompted this current response. If
the identifier couldn’t be decoded, null is used in this field.

3.3.6 Create Roll-Call Example

Here is an example of a request which would be sent to announce the creation of a Roll-Call
Event. The first JSON shows the base and the message layers, including the Base64 encoded data
layer.

{
"jsonrpc":"2.0",
"method":"publish",
"params":{

"channel":"/root/LAO_id",
"message":{

"data":"eyJvYmplY3QiOiJyb2xsX2NhbGwiLCJhY3Rpb24iOiJjcmVhdGUiLCJpZCI6Ik
kyTkhHemx5QlE2czdpVjdYdUtOMTJTOWp2RlRSenpUWFJGVUtHejFVeGs9IiwibmFtZSI6
Im15X3JvbGxfY2FsbCIsImNyZWF0aW9uIjoxNjEwNzI2NjMyLCJzdGFydCI6MTYxMDcyNz
YzMiwibG9jYXRpb24iOiJoZXJlIn0=",
"sender":"4VvizXZE/l77wUmq2e339L9TufzhBT94hofh4Mc/eQ8=",
"signature":"6Yr4jp835xegEfrKW/UnahycBZvsg0ZsVjugb7Nsl3ymew1ExydJ/gEx4
UlQRaByM2eU44y91/sPQughezu1Ag==",
"message_id":"Q1IgsAjomL93rPhQ8iIqm8KXUbMrPr4KfvgPcjTULPw=",
"witness_signatures":{}
}

},
"id":123

}

This second JSON shows the decoded data layer included in the previous JSON.

{
"object":"roll_call",
"action":"create",
"id":"9JsRFMjR5Jm7ukWEUlYOEWFwr4fFVcLhrjVwD1DqmuU=",

15

"name":"my_roll_call",
"creation":1610727291,
"start":1610728291,
"location":"here"

}

The back-end would then proceed to sent a nearly identical message to all subscribers of
the channel with only the method being changed to "broadcast". It would as well send the JSON
below as a response to the requester.

{
"jsonrpc":"2.0",
"result":0,
"id":123

}

3.4 Front-end

The front-end design consists of two main user interfaces (UI). The first one is the Home UI. This
view manages all actions that are not specific to a LAO. The other UI is used to interact with a
specific LAO. This is a general design, there can be minor differences between the implemen-
tations of the two front-ends. The design must be seen a goal to achieve. Some parts are not
implemented yet by one or the other front-end.

3.4.1 Home UI

The Home UI is the application’s initial screen. This is the UI that a user sees when they open
the application. It contains a tab bar on the top to navigate between the three screens of this
interface. The first one is the Home screen. This screen shows a text explaining the basic usage
of the application if the user has not joined any LAO yet. The rest of the time, it displays a list
of all LAOs the user created or joined. When the user clicks on one, the app navigates to the
Organization UI of this LAO. The figure 3.2 shows the structure of the Home UI.

The next one is the Connect UI. This one manages the connection to a LAO. There are four
different steps to connect. The first one asks for permission to use the camera in order to scan the
QR code of the LAO. This screen appears only when the application has no access to the camera.
Once the permission is obtained, the interface moves on to the next step. This one shows the
camera view and enables the user to scan a QR code. If it represents a valid LAO, the Connect
UI moves to the third step. This screen shows that the app tries to connect to the scanned LAO.

16

Figure 3.2 – The Home UI

The user can stop the process if it takes too long and will be redirected to the scanning step.
If the application receives an answer from the LAO, the user is redirected to the last step. This
screen shows some information about the LAO (the name, the organizer’s fingerprint and the
name of each witness along with their fingerprint) as well as buttons to accept or refuse the
connection. This connection setup is not a proof-of-presence. Its purpose is to let the user
retrieve information about the LAO and to verify that they can access it.

The Launch UI is the last on the Home UI tab bar. This screen allows the user to create and
launch a new LAO as its organizer. For now, the creation is very simple. It just asks the user for a
name. This screen has been kept simple to avoid feature duplication with the Organization UI.
In the future, there may be more requirements to create a LAO and the Launch UI will need to
adapt to them.

3.4.2 Organization UI

When the user clicks on a LAO in the Home screen, it opens the Organization UI. As in the
Home UI, there is a tab bar on the top to navigate between all the screens with four different
sections. The first one redirects to the Home UI. The second one links to the events’ list. The
information displayed differs with the role of the user, as detailed later. The third one is the
Identity UI, and the last one only shows the name of the LAO as seen by the user. The structure
of the Organization UI, set on the attendee screen, can be seen in figure 3.3.

17

Figure 3.3 – The Organization UI

A LAO contains two types of data: the properties and the events. Properties are time-
independent and, for now, there are two different types of them. The first one is the name
of the organization. The second one is a list of all the witnesses, with their name and signature.
The events are time dependent. Some of them have a specific behaviour in the UI:

• Roll-call: It has three different states: Future, Open and Closed. This event does not work the
same if you are an organizer, an attendee or a witness. Attendees and witnesses see the start
time and the status of the roll-call. When the roll-call is open, a QR code representing them
(pseudonymous and roll-call specific) is shown. When the status is Closed, the number of
participants appears on the screen. For the organizer, the same information, except for the
QR code, is displayed. The organizer opens the roll-call by clicking on the corresponding
button. A camera view appears to allow the organizer to scan the attendee’s QR code and it
also displays the number of people already scanned.

• Poll: The state of a poll depends on the start time and finish time. The results with progress
bar are displayed when the poll is closed.

A user can have one of the three roles: organizer, attendee or witness. As users can have dif-
ferent roles within the LAO, they won’t all see the same information. In the next three paragraphs,
the main differences are shortly pointed out.

The Attendee UI shows the properties of the LAO and all its events. The screen displays all
this information in a list divided into sections. Each of them can be revealed or hidden. The

18

first one contains all the properties of the LAO. The last three show the events in chronological
order: one section for past, one for present and one for future events. An event which start time
is included between the start and the end time of another event is shown nested in the other.
This chronological order is generated by the front-end. For simplicity, all the events in the system
are independents. They just contain the required information to create the order.

The structure of the Organizer UI is mainly the same as the Attendee UI. The first difference
is that there exists an edit button in the properties section to allow the organizer to change the
name of the LAO and to remove or add witnesses. When the user presses the button to add a new
witness, the application shows the camera view to scan the witness’ QR code. All modifications
occur only when the organizer validates the changes. The second difference concerns the events.
The organizer sees different information than the attendees, as explained in the description
of the events. The last one is a button on the future section to create new events. When the
user presses it, he is asked what kind of event he wants to create. The app then displays the
appropriate event creation screen.

The Witness UI is very similar to the Attendee UI. Above the list of events, the user sees a
button taking them to a screen with the possibility to take pictures and videos to attest that
the events took place and that the organizer has not falsified the roll-call neither prevented a
person to take part. In the future, this proof will be available to every attendee along with a hash
and timestamp to verify its authenticity. Below the button to navigate to the camera view, the
application displays the same list as the Attendee UI.

The Identity UI is a form the user can fill with their identity. They can also choose to be
anonymous. In this case, all the fields are disabled. If they chose to give their identity, they can
provide their name along with other personal information but only the name is mandatory. An
identity QR code is shown at the bottom of the screen once the user has set their name. This
form is mostly useful for the organizer and witnesses, as they can not remain anonymous. For
now, the identity is self-claimed and can be used only in the current LAO.

19

Chapter 4

Implementation

The project members are divided in four different groups, two working on the two front-end
and two working on the back-end. The approach of having multiple teams building the same
software in an independent way is called N-version programming. The advantage of this method
is to make the software more reliable, as two teams are unlikely to make the same mistakes. The
implementation details are explained for each of these groups.

4.1 Back-end 1 in Go

The implementation of the Go language package uses Go 1.15. The instructions to run the server
are in the README. The code documentation can be built using the godoc command.

4.1.1 Relevant packages

In this section we will talk about the packages that are relevant for the report. Packages defining
functions like scanning an array to check if it contains a specific element or packages defining
the different message structures as they are defined in the protocol will not be discussed.

Network

As mentioned in subsection 3.2.1, the different instances of the application communicate in a
Publish-Subscribe fashion over WebSockets. The network package mainly serves this purpose.
We chose to use the gorilla/websocket [9] package, as it offers more functionalities than the
Go standard library package. The library runs a HTTP server and then upgrades the HTTP
connection to a WebSocket connection.

20

In this package, we define a hub. This hub is going to route messages according to the publish-
subscribe paradigm. The hub maintains a list of opened WebSocket connections, and closes
them automatically if they have more than a 1 second timeout when trying to send them a
message. Upon message reception, the hub just forwards it to an actor. There is no checks done
on message validity at this step, the actor takes care of that.

Actor

The package actor is the package defining the logic behind every actor’s action. For the back-end,
there are only 2 types of actors: the organizer and the witness. This package implements the
actor’s reactions to received messages.

To that end, their core function receives an incoming message from the hub and returns the
response messages and, if applicable, a broadcast message. To do this, the actor will in turn use
the parser package to decode the received JSON string, then the security package to ensure the
validity of the data, followed by the database package to store the received message, and finally
the parser package again to serialize the messages to be returned. As it learns more about the
purpose of the request received, it will distribute the workload to more specific functions.

The features of the witness back-end are expected to evolve in the future, but in the current
state, its main use is to store the message history as a back-up and third-party proof. This also
implies that the organizer is the only broadcaster of messages for its LAO, so that a received
message with the broadcast method is considered invalid by an organizer’s back-end server.

Parser

The parser package is primarily focusing on converting JSON strings to Go structures back and
forth. Thanks to the encoding/json Go library and its json.Marshal() and json.Unmarshal()
functions, the task is simple as long as correct and relevant structures are defined in the message
package.

Parser.go decodes JSON strings into Go struct, at each layer of the protocol. As it sometimes
is impossible to know beforehand what struct type to use, it first parses the JSON string into an
intermediate struct used to determine what sort of struct is required to correctly decode the
full message. While Parser.go is responsible for checking that the JSON string follows the JSON
Schema we defined, it does not have to ensure that the contained information is valid: this is the
role of the security package.

Composer.go is in charge of creating relevant structures and serializing them into messages.
It is separated in two cases: Either it must compose a standard response or broadcast a message
received with the publish method, or it must compose an error response. In both cases the

21

Figure 4.1 – The database structure.

composer will create a message structure, fill it with the wanted information, and parse it with
the json.Marshall() function into a string before passing it to the hub.

As a side note, the Json-Schema isn’t directly incorporated in our system checking the va-
lidity of the message’s format. This choice was motivated by the fact that json.Marshall() and
json.Unmarshall() already return errors if the received message is invalid. Therefore adding
the Schema validation would just make the code slower and more complicated to maintain and
understand.

Security

Unsurprisingly, this package defines all the checks to apply on a received message to ensure its
validity.

ValidateMessage.go is the main file and serves multiple purposes. Upon message reception,
the server executes the following verification sequentially. It first checks the signature and the
message_id. This ensures authenticity and integrity as the data field of the message is a part of the
hash composing the message_id. Then, in the case of message containing witness signatures, all
of them are also verified and certified to come from people authorized to witness this message.

After having verified the message layer, the embedded data itself is checked according to
its type and components. For example, timestamps have to be coherent and to range between
defined limits. In the same way, the ids are also verified because all events have a different way
to compute it, as explained in the proto-specs branch on Github.

In the particular case of a witness message, which basically contains a witness signature in
its data field, the server also verifies that this signature is correct and then adds it in the witness
signatures list of the corresponding message in the database.

SecurityHelper.go implement the signing and verifying functions using the EdDSA digital
signature scheme embedded in the crypto/ed25519 Go library.

22

https://github.com/dedis/student20_pop/tree/proto-specs/query/method/message/data

Database

As explained in subsection 3.2.1, every message received on a channel needs to be stored, in a
key-value database. For the Go back-end, this means we have key-values pairs, stored inside
a container called "bucket". Of course it is possible to have more than one buckets in a single
database, and even to have nested buckets. This is then saved locally to the disk. To that end
we use the boltdb/bolt Go library. Even though it is not maintained anymore, it works well and
was simple enough to use to make a first prototype. Before updating it to an equivalent and
maintained library, it should be considered to switch to a relational database schema, in order to
change the storage engine only once. This change could be motivated by the possibility to index
the stored data by another field than the ID. A concrete use would be the ability to return the ten
most recent messages faster.

The database schema we developed uses no nested buckets, as it makes the whole process
less complex. Everything we store is in the form of a byte array. For each server instance, we
create a database with the following structure:

• The bucket "channel": This is a unique bucket that contains one key-value pair for each
existing channel, except for the root channel. The key is the channel’s ID, and the value is
the JSON string representing the current channel’s state.

• Channel’s bucket : There is one such bucket per channel. The bucket’s name is the channel
ID and the bucket contains one key-value pair for each message sent on this channel,
where the key is the message ID and the value the JSON representation of the message.

4.1.2 Message flow

The figure 4.3 shows how the server reacts upon message reception. The "process content
(Database level)" block refers to the process showed in figure 4.2. This flow concerns messages
that imply writing to the database. For methods like "catch up", that require reading past inputs,
the message flow stays the same. The database flow will read entries from the database, and may
return the desired content, nil, or an error. If the process encounters no bug, the hub will have
to send an array of response to the sender. In some rare cases, it is possible that the received
message implies a modification on both a previous message and a channel. If this is the case, we
will first edit the previous message, then insert the received message in the database, and finally
edit the channel’s information.

23

Figure 4.2 – The database flow in the Go back-end.

4.1.3 Debugging and testing

When the server runs, it also runs a simple and minimalist front-end, to do basic debug-
ging. It’s contained in the index.html file, and is accessible from a web browser on the URI
address:port/test where address and port are the address and the port the server is running
on. This lets you send text to the back-end over a WebSocket, and prints every received message.
We also log every error we encounter using the Go log library, as well as success messages upon
channel creation.

4.2 Back-end 2 in Scala

The implementation of the back-end in Scala uses Scala 2.13. Instructions to run the server can
be found in the README.

4.2.1 JSON parser

The purpose of our JSON parser is separated in two distinct points. Firstly, it should convert
any client query into an internal representation of the message which will later be used by the

24

Figure 4.3 – The message flow in the Go back-end. Blue shapes mean the action or result may
differ depending on actor type.

25

Figure 4.4 – Simplified overview of be2-scala architecture.

publish-subscribe module. Moreover, its second job consists of serializing generated answers to
these queries into a JSON string format according to JSON-RPC 2.0 specifications mentioned
before.

We started by defining the queries and answers’ internal representation as case classes
following the tree structure shown in Figure 4.5. First of all, every message is a subtype of
JsonMessage. This top-level trait branches off in two directions; a JsonMessageAnswer is the type
of a server answer the parser should serialize in order to be sent over the network. On the other
side, every client query is a subtype of JsonMessagePubSub. Finally, each publish query such as
“create a LAO” or “open a roll-call” is converted to an instance of the case classes that extend the
JsonMessagePublish class.

We then had to choose a parsing library. In our case, we decided to go for spray-json for two
main reasons: its API is simple and powerful and is adapted for a JSON-RPC structure. Spray-json
both encodes and decodes layer-by-layer which is perfect in order to handle JSON-RPC messages.
Moreover, this library is able to parse and serialize case classes automatically provided a single
line of code; this is why we prioritised defining query components as case classes over other
data structures. Some complex components require other data structures such as a standard
class or an enumeration. In this case we define the serialization and parsing procedure explicitly
ourselves in the JsonCommunicationProtocol.scala.

If the parser succeeds, it returns the serialized or parsed message back to the publish-
subscribe module; otherwise, it instead sends a custom message containing a custom error.

4.2.2 Networking and WebSocket

The server only needs to interact with clients using WebSocket. As WebSocket is not standard in
Scala, we choose to use the akka-http library, which is based on akka-stream. When creating a

26

Figure 4.5 – The background depends on the data structure: a purple background stands for a
Trait, a blue background represents a Class and green rectangles are used for children Case
classes.

WebSocket server, we need to pass it a function building a stream object. When a client connects
to the WebSocket server, the server creates a new stream for this client using the function. The
stream object receives messages from the client as input and then outputs messages that will be
sent back to the client. We explain how we create this flow object in the following section.

4.2.3 Publish-Subscribe

As our data flow is complex, we cannot use simple streams provided by akka-stream. Instead, we
use the Graph DSL functionality of akka-stream, which allows us to build arbitrarily complex
streams as if we were drawing a graph. The stream we built works as follows: when the stream
receives a message, it will first try to parse it using the JSON parser. If there is an error, it will send
back an error message to the client. If it is not the case, it will pass it to the publish-subscribe
module.

The publish-subscribe module is also a stream object built using Graph DSL. It handles all
the RPC defined in the protocol. It receives as input parsed JSON messages, and outputs answers
and messages published on a channel. A high-level view of the dataflow is given in Figure 4.6. As
most of the diagram is easy to understand, we will focus on more complex parts.

We use two actors common to all clients in our implementation. The Database Actor stores
information about the database and handles requests related to it. The Channel Actor does the
same for information about channels. The advantage of using actors is their strong integration
with akka-stream and that it makes concurrency easy to handle.

When the server receives a subscribe request, it will ask the Channel Actor for a reference to a
stream containing messages for a specific channel. This stream corresponds as a part of the hub
in the diagram. Then it will connect the output of this stream to the client output stream. Finally,

27

Figure 4.6 – The data flow of the publish-subscribe implementation for be2. Big arrows indicates
communication with actors. Streams handling the request of each client use the same instance of
the hub, the Channel Actor and Database Actor. In this example, the client subscribed to channel
1 and channel n.

28

the server stores information needed to disconnect the stream in the case of an unsubscribe
request (Unsub flow in the diagram).

When the server receives a publish request, there are multiple steps. First, it checks if the
message is valid. If it is valid, it writes it to the persistent key-value store. In some special cases,
it does special actions such as creating a channel. Finally, it sends the message to the hub and
sends an answer to the client.

4.2.4 Unit tests

We run a set of unit tests using scalatest to verify our code is working according to the specs.
For the publish-subscribe module, our tests works as follows: we have a list of messages corre-
sponding to a real use cases. For example creating a LAO and then creating a meeting event. The
testing code sends a message to the publish-subscribe and waits for an answer. Once it receives
an answer, it sends another message. We repeat this step until we sent all messages. Then we
verify if the received messages correspond to the expected answers. On the whole back-end 2,
we achieve a line coverage of 84%.

4.3 Front-end 1 in React native

This project is implemented with react-native 0.63 [10]. We have chosen to only support the web
version at the end of the semester because we faced some compatibility issues with the storage
and the cryptography library between the app on native platform and the web application. To
build the project, you need Node.js [11] in version 10 or later. It can be installed on any platform.
The detailed information to compile the project is in the READ.ME [12]. We use the coding
convention provided by Airbnb [13]. To enforce it, we use ESLint [13]. The list of all external
packages used in this project can be found in the package.json file in the fe1-web branch [12].

To ease the development process, we build our code with expo. With it we can easily run
on any IOS or Android device by just installing the expo app [14]. It is also possible to run the
application in a browser. This choice makes the use of all native components inaccessible, for
example the camera. With only one command you can switch to a react-native CLI app and
get access to the camera and the other native components. This action is irreversible and then
requires to compile the code with Android Studio for an android phone or Xcode for an IOS
device.

29

4.3.1 Navigation

The front-end uses react-navigation’s library [15] to allow the user to move between screens of
the application. We chose this library as it uses the native behaviour of the navigation on both
Android and IOS. We use two types of navigators: the tab bar navigator and the stack navigator.
In total there are six different navigators. The Home and the Organization UI both use a tab
bar navigator. One stack navigator to switch between the Home UI and the Organization UI. A
second one that implements the navigator of the Connect UI. Another navigator lets the witness
access the camera view to allow him to take pictures and videos. The last one shows the Organizer
UI, the roll-call scanning screen or the event’s creation screen for the organizer.

4.3.2 Storage

By default, react-native provides only non-persistent storage and the data is a one-way flow from
the parent to a child. It is sometimes complex when you need to give data to a deeply nested
child. Some data needs to be stored on the device to be reused later. For example, when the user
reopens the application, they must see the list of LAOs they previously connected to. So a global
persistent storage system was needed to simplify the management of the data in the application.

We chose to use Redux [16] with the addition of redux-persist [17] as global persistent storage.
Redux is perfectly incorporated in react native. The library works as follow. There is a store which
contains the data. Then you need to connect at least one reducer to this store. A reducer is a
function that receives a state and an action and returns a new state. It is used to modify the data.
You need one reducer by type of data that you store.

We use five different reducers. One to store the list of LAOs the user previously connected
to. Another one for the events of the current LAO. One for the current LAO data shown in the
organization UI. We also store the user’s private and public keys with a reducer and the last one
stores the id of the current open roll-call. The reducer managing the events is quite complex
because it needs to order the events in the correct section and to manage the nested events.

4.3.3 Networking and WebSocket

In order to initiate queries such as “create a LAO” or “open a roll-call” to a given server, our
app makes use of a set of functions defined in WebsocketApi.js. Given a minimal amount of
parameters, each of those functions creates the corresponding query, embeds it according to
the custom JSON-RPC protocol, and forwards the message to the entity responsible for packet
transmission: the WebSocket link.

We used two different libraries for the security related operations. Our hashing library is
js-sha256 which simply allows us to hash a string using SHA-256. To generate key pairs and sign

30

Figure 4.7 – Overview of the client-server communication mechanism

strings, we chose the npm package tweetnacl for its popularity, and because few other libraries
support ed25519. Tweetnacl is one of the two packages that prevents us from using the app on
native platforms. There exists an alternative named tweet-nacl-react-native-expo, but it does not
work on browsers. The second problematic package is related to the browser-only local storage. A
solution could be using the asynchronous storage available on all platforms. However, changing
from synchronous to asynchronous behaviour so late in the project would require a total rework
of the WebSocket section.

WebsocketLink.js provides a class that manages network communication, including setting
up the WebSocket connection, sending messages over the network and forwarding incoming
answers to the suitable entity. We decided to use the W3C WebSocket API for browsers to establish
WebSocket connections.

Any new message the link receives is directly transferred to the WebsocketAnswer.js module
which first checks that said message is valid according to the JSON protocol and then processes
the content depending on the type of the query. For instance, when handling a positive server
answer to a client query asking for the creation of a new LAO, the module will start by adding the
newly created LAO to the list of known LAOs in the local storage, and will then order the UI to
display it on the screen as an organizer.

The above hierarchy is represented in Figure 4.7

31

4.3.4 Date and time picker

For the date and time picker, two different libraries are used. One works only on IOS and Android
[18] and the other is for the web application [19]. In the second one, the user can directly set the
time and the date. In the native one, the user has to give the date first and then a second picker
is shown for the time.

4.3.5 Testing

To verify the type and the structure of objects, we use the prop-types library [20]. It allows us to
perform some checks on the validity of the object at runtime. This is useful to have more confi-
dence in the data we receive and helps us in debugging. This library is only used in development.

For unit testing, we used Jest [21] because it was created by the same community as React
Native. In addition Jest allows to take snapshots of components to verify that they do not change,
eases the testing of Redux and provides mock interfaces if needed. We also created the file
LocalMockServer which may be used for testing purposes to simulate a local back-end for our
application to connect to.

4.4 Front-end 2 in Android

This project is written in Java. All the information to compile the project is found in the
README.md [22]. The files are organized in three main packages:

• Student20_pop: contains the classes that compose the project.

– PoPApplication is the base class within the Android application. It is the main object
that centralizes all other components.

– Activities decide which UI needs to be displayed to the user.

– UI contains all the classes needed to represent the different UIs. All classes inside this
package are called fragments.

– Model contains classes used to model the different entities: Lao, Event, Person, Elec-
tion, Vote, Keys, etc. But also the publish/subscribe communication.

– Utility contains the classes used to represent various utilities like QR code scanning,
JSON parsing, network connection, security and the UI utilities.

• Android Test: contains the tests that are executed on an android device. This device can
be emulated.

• Unit Test: contains the tests that can be run without an android device.

32

4.4.1 PoP application

This class is used to maintain a global application state. It is instantiated before any other class
when the process for the package is created. Each instance of the application corresponds to
a unique user with their corresponding LAOs. It dispatches every updates of its state to the
activities and fragments.

4.4.2 Activities

Activities are the center of control of our application. It is there that we choose which fragment
should be displayed.

Main activity

Launched at the start of the app, the main activity shows the home fragment. This activity is
used when the user is not yet connected to any LAO, when they want to connect to a new LAO
(through the connect fragment) or when they want to create a new LAO.

Organizer activity

Launched when a user clicks on a LAO in the home UI of which they are the organizer or
when they create a new LAO (through the launch fragment). The organizer’s activity is the most
complex one as it handles addition of witnesses and creation of events.

Attendee activity

Launched when a user clicks on a LAO (in the home UI) in which they are attendee or when
they connect to a new LAO (through the connect fragment). It displays the different UIs of the
attendees.

4.4.3 Fragments

Fragments are used to manage the UIs described in the Design Front-end part (section 3.4).

33

Main fragments

Home, connect and launch fragments compose the main navigation part of the application.
HomeFragment displays the list of LAOs the user takes part to. By clicking on a LAO, the user opens
the organizer or attendee fragment, depending of their role in this LAO. Their role in each LAO
is indicated under the title. The user’s public key is compared with the LAO organizer’s key. If
there’s a match, the user is the organizer, otherwise an attendee. ConnectFragment simply shows
the QR code scanning fragment to let the user connect to a new LAO. We decided to define
LaunchFragment to create new LAOs and, as its name suggests, to launch them.

Organizer and attendee fragments

OrganizerFragment and AttendeeFragment are very similar: they are both related to a specific
LAO,they both show its properties and display past, present and future events. In addition to
that, they both have a button to access the user’s identity within that LAO.

The difference resides in the fact that an organizer can edit the LAO’s properties, add witnesses
and create new events, what attendees can not do.

Identity fragment

IdentityFragment is closely related to the LAO the user is currently seeing. For example, a user
could want to be anonymous in a LAO and not in another. This means that user’s information
are not the same for every LAO.

This fragment displays information such as name, email, phone, etc. It also displays a QR
code for an organizer to scan in order to add that user to a roll-call event. This QR code currently
contains a concatenation of the user’s private key and the LAO id but this is subject to change.

Event creation fragments

For each of the event types, we implemented a creation fragment. Each of these fragments
extends from an abstract class as events have multiple features in common, like a start date, a
start time, etc. These fragments allow the user to create an event with ease.

34

QR code scanning

When the user needs to scan a QR code, the app shows either the QRCodeScanningFragment if it
has the camera permission, or the CameraPermissionFragment if the permission is not granted
yet. Once the user grants the permission, they are redirected to the QRCodeScanningFragment.

The user needs to scan QR codes to join a LAO, add a witness to a LAO or add attendees in a
roll-call event.

The QR code reading is based on the Google Mobile Vision framework [23] and the classes
used in this process are located in the packages ui.qrcode and utility.qrcode.

Pickers

To let the users easily choose a date (or time respectively) when creating an event, we imple-
mented date and time pickers. If the user does not select a date or a time, the current date and
time will be used as default values. This is the reason why we did not add an explicit "now"
button as it is mentioned in the UI specification. By doing this, the UI stays simpler and easier to
use.

4.4.4 Models

We created classes to model the different events, a local autonomous organization (LAO), a set of
public and private keys, a person, a vote and an election. Some of these classes are not used yet
as the protocol is still a work in progress.

4.4.5 Protocol models

The package model.network contains classes used to model the protocol messages as java objects.
It is split into three categories based on the protocol definition: Base Layer, Message Layer and
Data Layer.

The base layer objects are located in the packages method and answer. The message layer
objects are located in the method.message package. And the data layer objects are in the
method.message.data package.

35

Base layer

Based on the protocol, we created five objects, one for each message. To modularize the code,
we added two more super classes, Message and Query.

Message defines the behavior of a base layer message and Query defines the behavior of a
message expecting an answer and thus sending a unique id.

In the protocol of the base layer, the field method is used to know which object is sent and
received. To easily map the values with their respective class types, we created the enumeration
Method which contains every possible method values and their types.

Figure 4.8 – The classes diagram

Answers

We defined two main objects: Error and Result. They are both children of the class Answer. We
also created the class ErrorCode to represent the error field of the Error object. It contains the
error code and its description.

Message layer

The message layer contains one object: MessageGeneral. It is held by the Publish and Broadcast
base layer messages and holds Data messages. It links the base layer and the data layer as stated
by the protocol.

36

Data layer

Based on the protocol, we created ten objects. Three for the LAO, two for the meeting, one for
witnessing and four for the roll-call. Each object extends the Data class which defines the abstract
methods getObject() and getActions() used to fill the respective JSON fields of the protocol.

The static map messages is used to convert the pairs (Object, Action) to the actual object
classes.

4.4.6 JSON parsing

The JSON parsing is based on Google’s Gson library [24]. We chose it mostly for convenience as it
is a library we had already worked with. But after achieving the JSON parsing, it is now obvious
that it was not the best choice.

The two main problems are that there is no clean way to differentiate which class should be
parsed based on the fields present in the JSON object and that there is also no way to mark a
field as required or optional.

To solve these issues, we had to create custom JSON serializers that are located in :
utility.json

As the protocol is defined in a JSON Schema, we created tests to validate the JSON generated
by the app with the schema. To achieve that, we used NetworkNT’s json-schema-validator library
[25].

4.4.7 Network

WebSocket connection

The WebSocket connection is built using the Project Tyrus [26]. It generates a client (or server)
endpoint with an annotated class. It makes the code very easy to read and write.

Parallelization

As WebSocket queries should not be made on the main thread, we chose to use
CompletableFutures from java.util.concurrent to handle parallel and blocking computations.

37

Requests

Some of the sent messages expect answers. So, as the protocol defines it, the app generates a
unique id for each of them, using an AtomicInteger. It then stores the requests while waiting for
the correct answer.

To avoid any memory leak due to lost messages, we implemented a timeout system to make
sure requests could not be stored forever.

The app calls a routine periodically that iterates over each pending request to check if their
waiting time does not exceed the threshold. As the threshold and the routine’s period are the
same in the app, let’s call it T , a request can timeout between T and 2T seconds, which is not
very precise. But this is not crucial and it is a lot lighter this way.

4.4.8 Testing

For standard testings, we are using the well known library that is JUnit [27] and a small project
called ConcurrentUnit [28] which is very helpful to test concurrent behavior.

For Android tests, they run on an Android device or emulator. We use the Espresso library
[29] that allows us to emulate human interactions with the interface.

38

Chapter 5

Evaluation

5.1 Cross testing

Now that we described our implementations, we can now explain our testing strategies. Given
that the work was done by four groups, two front-ends and two back-ends, cross testing was very
important. To ensure compatibility, we tested every back-end with every front-end. We decided
to test the LAO creation and roll-call event creation.

5.1.1 Major bugs found

As the LAO creation was the first implemented feature, it was also the first to be tested. And
therefore the one that made us discover most bugs. Many of these bugs came from the fact that
even though we had a precise protocol definition, every team had a different interpretation and
implementation of it.

This impacted mostly the message ID and the LAO or event ID, as they are computed by
hashing concatenated strings. However, it took us a long time to agree on a concatenation
standard, and to implement it correctly in every project.

5.2 Future work

There are obviously some improvements, enhancements, changes and new features to be added
in such a project. Cross-testing between the front-ends and back-ends as well as usability testing
are an important part of it. From user interface details to high-level features that will make the
app achieve its inherent goals, this part describes both short-term and long-term work that has

39

not been covered by our team, but will be required or desired in the future.

5.2.1 Events

There are many high-level objectives that the app aims to achieve. The first one is to support all
the event types. For now, the only event supported by both the front-ends and the back-ends of
the app is the roll-call, which is the heart of the proof-of-presence concept. In the future, the app
should also support the other types of events. The meeting event, which is called by the organizer
to make sure the attendees gather to a defined place. Poll events will offer the possibility to vote
on various subjects. At first, this feature will broadcast votes in clear text but should, as a later
extension, use cryptography to enforce privacy. Finally, discussion events will support messaging
in a gossip-based fashion. Ideally, this feature will support blocking of other attendees to avoid
spam and denial-of-service attacks in a way that encourages accountability and forgiveness. All
these events require protocol specifications, as well as models to be stored in the back-end and a
way to be created in the user-interface for the organizer, and displayed on the attendee’s side.

5.2.2 Other high level objectives

In the long term, a desirable feature could be to support multi-organizer LAOs. As other alterna-
tive or extension, the back-end could be enhanced to produce classic blockchains and having it
mirrored by witnesses to make it more transparent. Another alternative will be to make attendees
automatically become witnesses when they chose not to be anonymous, making sure that the
volunteer witnesses are distinct from the official witnesses chosen by the organizer.

It should also be mentioned that we plan on having a third front-end implementation for iOS
in Swift.

5.2.3 Low level

A lot of lower-level enhancements and features can be added to improve the app’s usability, and
to make it usable both as a minimal viable product and as an app used by the public. There
are some desirable features that have not been implemented this semester that could improve
the app in the short term. For example, there should be a way to join a LAO by entering an URI
instead of scanning a QR code. This feature is particularly useful for the web-based front-end, as
not all front-end devices have a camera. Less urgent features include, but are not limited to, a
way to set reminders for a particular event, the support of push notifications, a way to hide or
delete a LAO from the home screen, and more personalized ways to display a LAO with icons or
status messages. An important improvement will be to avoid name collision between LAOs, as

40

this could represent an attack. Some of these UI changes will have an impact on the back-end
and the protocol, which will have to be updated accordingly.

5.2.4 Testing

Testing constitutes an essential part of future work. Cross-testing should continue to be regularly
conducted to make sure every new step in the project works between every front-end and back-
end. As this app is aimed to have users, it is important to think about usability testing, giving
people who have not worked on this project a prototype of the app and gathering their feedback.
There should be a mock Proof-of-Presence event to test the app in real-life conditions.

41

Chapter 6

Related Work

6.1 A question of privacy and democracy

This idea of verifying people, rather than identifying them is not at its birth stage. In fact, in a
previous work [30], the DEDIS lab came up with a more complex version of PoP to bind physical
entities to virtual identities in a way that enables accountability while preserving anonymity.

Here, we touch a much bigger problem than privacy, and everyone is concerned as the world
is relentlessly going more and more digital.

6.1.1 Redemocratizing permissionless cryptocurrencies

In the previous version of Pop, the goal of the team was more blockchain oriented. Indeed,
permissionless blockchain-based cryptocurrencies commonly use Proof-of-Work (PoW) or
Proof-of-Stake (PoS) to ensure their security. These two protocols have some advantages, e.g.
they prevent double spending attacks but they also have drawbacks: PoW is a huge (wasted)
electricity consumer and PoS is a kind of shareholder corporation where people who possess
more assets are able to mint new coins faster than less-privileged participant. As a consequence,
the rich become even richer.

The problem to tackle was Sybil attack resistance, but also to ensure a fair and widely ac-
cessible wealth creation process. Thus they created a new cryptocurrency with a PoP protocol
a bit different from ours. The idea was to link virtual and physical identities in a real-world
event while preserving users’ anonymity. At the party every attendee is issued one and only one
Proof-of-Personhood token, without needing to disclose any identifying information.

To understand the differences between this protocol and ours, we will explain how it works.

42

Assumptions and Threat Model

The basis of the protocol was also the pseudonym party which was organized by a set of volunteer
organizers. Each organizer was an independent person in charge of an independent server
denoted as a conode, which together form a collective authority or cothority. They assumed an
any trust model in which attendees need to trust only one organizer and their conode. As we will
explain, the security was ensured by a protocol named Collective Signing (Cosi) which enables
an authority to request the validation of a statement by a decentralized group of witnesses.
The resulting collective signatures are comparable in size and verification cost to individual
signatures and can be correct only if every organizer co-signed.

Figure 6.1 – Configuration of a party

The reason why people don’t need to trust other conodes relies on the peer to peer network of
the cothority. Indeed, at the end of the party, the organizers send the collected data (that should
be the same for every one) to their respective conode. This data is then internally broadcasted
inside the cothority, ensuring that every conode received all the information. Finally, as we can

43

see in the figure 6.3 the token issued for each participant will be partly generated by a transcript
containing all the conodes’ signatures.

Party flow

First the organizer decides all the details about the party; e.g. the location, the start time, a set of
observers who will record the party. Then they write them out on a configuration file and make it
public for the people willing to join the party.

Figure 6.2 – Configuration of a party

Before their entry in the registration room each participant receives a set of three keys, one
public key and one private key, not to be used at the party and an ephemeral public key to be
used only at the party.

During the party, the whole process is really similar to what we did. There are two steps:

• A registration phase during which each participant is anonymously checked by all the
organizers collecting the attendee’s ephemeral public key.

• The party right after, where there might be an actual party or something incentive for
people to go there.

44

Figure 6.3 – Delivery of tokens

By the end, the organizers upload all the ephemeral public keys collected at the party to their
respective conodes. With them, a final transcript is created and a collective signature by the
cothority is inserted inside as mentioned before. Each attendee finally ends up with a PoP-Token,
generated by their private key and the party transcript.

This protocol was initially designed for PoPCoin, a newly created cryptocurrency that was
supposed to lead to a continuously fair and democratic wealth creation process paving the way
for an experimental basic income infrastructure. It was an ambitious project and, as said earlier,
what we did is based on a different approach. That is, offering this possibility to have a reliable
and secure system in any kind of organization, anywhere in the world and with the minimum
dependencies on external resources.

6.1.2 New perspective of democracy

The idea of democracy in a world constantly evolving is not something uniformly established. In
fact, even the definition of democracy is subject to debate. For example, The Council Of Europe
defined the idea of democracy with two key principles that are individual autonomy and equality
whereas Robert Dahl has a different approach that we will explain later.

Concerning the work that we made, one can see the links with this strong concept through
the possible uses of this application.

To have a glimpse of it, one can observe that the actual system that we have many democratic
countries is based on hierarchy. That is, everything needs to be approved by an authority estab-
lished (in general) by the people. But in the digital world, this authority itself can be avoided

45

by having a peer to peer system; e.g. the blockchain, ensuring itself the respect of the rules.
In the real world, one can barely imagine such a system. Nevertheless, thanks to the recent
technological advances we now can imagine a decentralized democracy.

Talking about politics, in his famous book [31], Pr. Robert A. Dahl came up with 5 criteria to
measure the ideal representative democracy. Here they are :

• effective participation

• equality in voting

• enlightened understanding

• control of the agenda

• inclusion

Without diving too much into the details, one can see that in a decentralized democracy,
everybody would have adequate and equal opportunities for placing questions on the agenda
and for expressing their preferences throughout the decision making process. One person one
vote. That is, thanks to the absence of authority, roughly all the criteria would be satisfied. Indeed,
the third one could lean to the problems that we are actually facing; e.g.all citizens should be
more or less equally aware of the pros and cons of subjects so they can make a choice that serve
best their interests.

It looks like an utopia but the advent of tools and protocols like the Proof-of-Personhood
could definitely lead to a decentralized and more democratic approach.

6.1.3 Other related Project

Without going through all the different works that have been done in this subject, especially in
the DEDIS lab. Here are two other papers that haven’t been published yet:

• The first one [32] explores how technology has failed to support robust democracy but could
eventually help us make better collective choices. Going through digital deliberation and
voting systems since making good decisions relies on the availability of good information.

• A related longer-term project to build on Proof-of-Personhood to create cryptocurrencies
(“PoPcoin”) implementing “democratic money” is already in progress. Some of the princi-
ples of the conceived PoP-based democratic money are informally developed in this draft
[33].

46

Chapter 7

Conclusion

In this project, we built an app reinforcing the privacy of users. By attending a PoP event, users can
obtain a digital identity which is not linked to their physical identity while still being accountable.
While the app offers very basic functionalities, we have a strong starting point which can be
easily extended. For example, we can easily add new features to the protocol by adding new
messages to the data layer. No change of other layers is needed. Future work is needed to add
missing functionalities such as other types of events and to improve the usability.

47

Bibliography

[1] WhatsApp LLC. WhatsApp Privacy Policy. U R L: https://www.whatsapp.com/legal/
updates/privacy-policy/?lang=en. 04.01.2021.

[2] Zoe Kleinman. WhatsApp users flock to rival message platforms. U R L: https://www.bbc.
com/news/technology-55634139. 12.01.2021.

[3] Serge Vaudenay. The Dark Side of SwissCovid. U R L: https://lasec.epfl.ch/people/
vaudenay/swisscovid.html. 04.07.2020.

[4] Bryan Ford and Jacob Strauss. An Offline Foundation for Online Accountable Pseudonyms.
U R L: https://bford.info/pub/net/sybil.pdf.

[5] JSON protocol specification. U R L: https://github.com/dedis/student20%5C_pop/tree/
proto-specs (visited on 01/15/2021).

[6] JSON-RPC Working Group <json-rpc@googlegroups.com>. JSON-RPC 2.0 Specification.
2013. U R L: https://www.jsonrpc.org/specification (visited on 01/15/2021).

[7] JSON. Introducing JSON. U R L: https : / / www . json . org / json - en . html (visited on
01/15/2021).

[8] JSON Schema. JSON Schema. 2019. U R L: https : / / json - schema . org/ (visited on
01/15/2021).

[9] Joachim Bauch Gary Burd. Gorilla WebSocket. U R L: https://github.com/gorilla/
websocket (visited on 01/15/2021).

[10] Facebook and community. React Native. https://reactnative.dev/. [Online; accessed
13-January-2021]. 2021.

[11] Ryan Dahl. Node.js. https://nodejs.org/en/. [Online; accessed 13-January-2021]. 2021.

[12] React-native Front-end. Readme. https://github.com/dedis/student20_pop/tree/fe1-
web. [Online; accessed 13-January-2021]. 2021.

[13] Airbnb. Airbnb JavaScript Style Guide. https://github.com/airbnb/javascript. [Online;
accessed 13-January-2021]. 2021.

[14] Expo’s team. Expo. https://expo.io/home. [Online; accessed 13-January-2021]. 2021.

[15] Community. React Navigation. https://reactnavigation.org/. [Online; accessed 13-
January-2021]. 2021.

48

https://www.whatsapp.com/legal/updates/privacy-policy/?lang=en
https://www.whatsapp.com/legal/updates/privacy-policy/?lang=en
https://www.bbc.com/news/technology-55634139
https://www.bbc.com/news/technology-55634139
https://lasec.epfl.ch/people/vaudenay/swisscovid.html
https://lasec.epfl.ch/people/vaudenay/swisscovid.html
https://bford.info/pub/net/sybil.pdf
https://github.com/dedis/student20%5C_pop/tree/proto-specs
https://github.com/dedis/student20%5C_pop/tree/proto-specs
https://www.jsonrpc.org/specification
https://www.json.org/json-en.html
https://json-schema.org/
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket
https://reactnative.dev/
https://nodejs.org/en/
https://github.com/dedis/student20_pop/tree/fe1-web
https://github.com/dedis/student20_pop/tree/fe1-web
https://github.com/airbnb/javascript
https://expo.io/home
https://reactnavigation.org/

[16] Dan Abramov. Redux. https://redux.js.org/. [Online; accessed 13-January-2021]. 2021.

[17] Zack Story. Redux-persist. https://github.com/rt2zz/redux-persist. [Online; accessed
13-January-2021]. 2021.

[18] Vojtech Novak and Luan Curti. React Native DateTimePicker. https://github.com/react-
native-datetimepicker/datetimepicker. [Online; accessed 13-January-2021]. 2021.

[19] hackerone. React Datepicker. https://reactdatepicker.com/. [Online; accessed 13-
January-2021]. 2021.

[20] Facebook. Prop-types. https://github.com/facebook/prop-types. [Online; accessed
13-January-2021]. 2021.

[21] Christoph Nakazawa and Facebook. Jest. https://jestjs.io/. [Online; accessed 13-
January-2021]. 2021.

[22] Android Front-end. ReadMe. [Online; accessed 13-January-2021]. U R L: https://github.
com/dedis/student20_pop/blob/fe2-android/README.md.

[23] Google. Mobile Vision. [Online; accessed 13-January-2021]. U R L: https://developers.
google.com/vision.

[24] Google. Gson Library. [Online; accessed 13-January-2021]. U R L: https://github.com/
google/gson.

[25] Network New Technologies Inc. Json Schema Validator. [Online; accessed 13-January-2021].
U R L: https://github.com/networknt/json-schema-validator.

[26] Community. Project Tyrus. [Online; accessed 13-January-2021]. U R L: https://tyrus-
project.github.io/.

[27] Community. JUnit. [Online; accessed 13-January-2021]. U R L: https://junit.org/.

[28] Jonathan Halterman. ConcurrentUnit. [Online; accessed 13-January-2021]. U R L: https:
//github.com/jhalterman/concurrentunit.

[29] Google. Espresso. [Online; accessed 13-January-2021]. U R L: https://developer.android.
com/training/testing/espresso.

[30] Maria Borg, Eleftherios Kokoris-Kogias, Philipp Jovanovica, Linus Gasser, Nicolas Gailly,
and Bryan Ford. “Proof-of-Personhood: Redemocratizing Permissionless Cryptocurren-
cies”. In: IEEE Security & Privacy on the Blockchain (IEEE S&B). 2017.

[31] Robert Dahl. “Democracy and Its Critics”. In: Yale University Press. 1989.

[32] Bryan Ford. Technologizing Democracy or Democratizing Technology?A Layered-
Architecture Perspective on Potentials and Challenges. https://bford.info/pub/soc/dt2-
chapter.pdf. [preliminary work-in-progress; may becomepart of a future book]. 2020.

[33] Bryan Ford. Democratic Value and Money for Decentralized Digital Society. https://arxiv.
org/pdf/2003.12375.pdf. [preliminary work-in-progress; may becomepart of a future
book]. 2018.

49

https://redux.js.org/
https://github.com/rt2zz/redux-persist
https://github.com/react-native-datetimepicker/datetimepicker
https://github.com/react-native-datetimepicker/datetimepicker
https://reactdatepicker.com/
https://github.com/facebook/prop-types
https://jestjs.io/
https://github.com/dedis/student20_pop/blob/fe2-android/README.md
https://github.com/dedis/student20_pop/blob/fe2-android/README.md
https://developers.google.com/vision
https://developers.google.com/vision
https://github.com/google/gson
https://github.com/google/gson
https://github.com/networknt/json-schema-validator
https://tyrus-project.github.io/
https://tyrus-project.github.io/
https://junit.org/
https://github.com/jhalterman/concurrentunit
https://github.com/jhalterman/concurrentunit
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://bford.info/pub/soc/dt2-chapter.pdf
https://bford.info/pub/soc/dt2-chapter.pdf
https://arxiv.org/pdf/2003.12375.pdf
https://arxiv.org/pdf/2003.12375.pdf

	Abstract
	Contents
	Introduction
	Background
	WebSocket
	Publish-Subscribe pattern
	EdDSA signatures

	Design
	Overview
	Local Autonomous Organization
	PoP event (roll-call)
	Other events

	Architecture
	Architecture overview
	Witnesses

	Messaging Protocol
	JSON-RPC 2.0
	JSON Schema
	Other tools and relevant knowledge
	Request object and layers
	Response object
	Create Roll-Call Example

	Front-end
	Home UI
	Organization UI

	Implementation
	Back-end 1 in Go
	Relevant packages
	Message flow
	Debugging and testing

	Back-end 2 in Scala
	JSON parser
	Networking and WebSocket
	Publish-Subscribe
	Unit tests

	Front-end 1 in React native
	Navigation
	Storage
	Networking and WebSocket
	Date and time picker
	Testing

	Front-end 2 in Android
	PoP application
	Activities
	Fragments
	Models
	Protocol models
	JSON parsing
	Network
	Testing

	Evaluation
	Cross testing
	Major bugs found

	Future work
	Events
	Other high level objectives
	Low level
	Testing

	Related Work
	A question of privacy and democracy
	Redemocratizing permissionless cryptocurrencies
	New perspective of democracy
	Other related Project

	Conclusion
	Bibliography

