
Streamable Encryption
Aleksandar Hrusanov

Mentored by Simone Colombo and David Lazar

DEDIS lab @ EPFL
21.01.2021



Motivation: working with large ciphertexts

Safe:

gpg -d largefile.enc > largefile.tmp

tar xz < largefile.tmp

Slow and wastes space

Unsafe:

gpg -d largefile.enc | tar xz

2



Contributions

Secretstream, a Go library for streaming cryptography

Ported from libsodium

Working to merge upstream into x/crypto: Go issue #43774

Sage, a new tool for safe, streamable cryptography:

./sage largefile.enc | tar xz

3



Challenge 1: ciphertext tampering

Unsafe:

gpg -d largefile.enc | tar xz

Bitflips in the ciphertext will be detected by GPG…
...but only at the end, when it might be too late:

gpg -d script.enc | sh

4



Solution: secretstream

Classic secretbox API

Seal(file) → ctxt

Open(ctxt) → file, ok

secretstream: split file into chunks and authenticate along the way 

file = (chunk1, chunk2, …, chunkN)

Push(chunk1) → ctxt1; Push(chunk2) → ctxt2; ...

Pull(ctxt1) → (chunk1, ok); Pull(ctxt2) → (chunk2, ok); ...

5



golang.org/x/crypto/secretstream

● Based on ChaCha20-Poly1305 AEAD scheme
○ Constant-time, hardware-independent, fast

● Two interfaces: Encryptor & Decryptor

● Full test suite with > 90% code coverage

● Known Answer Tests ensure compatibility with Libsodium

6



Challenge 2: sender authentication

Safe:

gpg --verify largefile.enc.sig && gpg -d ...

Slow and not streamable!

How do we ensure a stream comes from a trustworthy source?

7



Authenticating streams in various contexts

Stream to yourself

Encrypt(privateKey, msg)

Stream to a friend

Encrypt(passphrase, msg)

Encrypt(myPrivateKey, theirPublicKey, msg)

Stream anonymously

Encrypt(theirPublicKey, msg)?

This doesn’t seem possible to do safely!
(attacker can substitute the ciphertext)

8



Anonymous streaming is unsafe

Stream anonymously

Encrypt(theirPublicKey, msg)?

This doesn’t seem possible to do safely!
(attacker can substitute the ciphertext)

The popular Age tool supports this unsafe mode of operation:

age -r recipient.pub largefile

Conclusion: avoid streaming anonymous ciphertexts
9



Sage, a better tool for file encryption

● Simple CLI tool for file encryption, inspired by Age
● Uses secretstream under the hood
● Key generation functionality

○ X25519 Diffie-Hellman key-agreement protocol
● Support authenticated streams in various contexts (work-in-progress)
● Tries to avoid unsafe use cases (work-in-progress)
● .sage format expands on .age format

10



Related work

STREAM

Streaming encryption algorithm published in a paper [HRRV15]

No widely established API

Used in Age, but no official implementations

Secretstream

Well-established API

Supported by many languages

Supports ratcheting for forward secrecy

11



.sage File Format

-> X25519 encode(X25519(ephemeral secret, basepoint))

encrypt[HKDF[salt, label](X25519(ephemeral secret, public key))](file key)

+++ encode(stream_header)

=== [encode(additional_data)]

--- encode(HMAC[HKDF["", "header"](file key)](file header))

SECRETSTREAM[HKDF[nonce, "payload"](file key)](plaintext)

12



DEMO

13



Conclusion

Open-source contribution provides a high-level API for streaming encryption in Go

Sage is an MVP of a file encryption tool built on top of it which supports safe 
streaming and avoids unsafe use cases

Future work

Extend Sage to support other use cases

Explore workarounds to the to anonymous streaming problem

14


