
DEDIS

École Polytechnique Fédérale de Lausanne

Hacking Sovereign Identity

by Alexandre Ivan Délèze
CS-Cybersecurity MA2

Master Project Report

Approved by the Examining Committee:

Prof. Bryan Alexander Ford
Thesis Advisor

Jeffrey Richard Allen
Thesis Supervisor

EPFL IC IINFCOM DEDIS
BC 210 (Bâtiment BC)

Station 14
CH-1015 Lausanne

June 5, 2020

Acknowledgments

I want to give a special thanks to my advisor Jeffrey Allen for his help throughout this project.
Auditing the security of a system like Sovrin can be hard work requiring much experience in
distributed and decentralized systems. He helps me during our weekly meetings to understand
where are the most valuable targets, not to lose myself in non-important details, and keep my
motivation high for my project during this COVID-19 period.

I also want to thank Prof. Bryan Ford for his supervision and all the DEDIS team for their
feedback during the two midterm meetings.

Lausanne, September 22, 2020 Alexandre Ivan Délèze

2

Abstract

Electronic identities become a trendy topic for our governments and companies. In this
report, we analyze the security of the decentralized identity system of the Sovrin Foundation.

We first analyze their organization’s policies. In the second phase, we evaluate their compo-
nents and threat model. Then we select the main targets and use industry-standard auditing,
fuzzing, and other hacking attacks to find vulnerabilities.

This report presents theoretical attacks against the setup of a client and the node’s upgrade
procedure. We also find vulnerabilities in the consensus algorithm, which can simplify amplifi-
cation attacks and also permit a user with no privilege to write illegitimate information on the
blockchain.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 6

2 Background 7
2.1 Sovrin . 7
2.2 Practical Illustration . 7

3 Coverage 9
3.1 Sovrin’s policies . 9
3.2 Indy Ledger . 9
3.3 Out of Scope . 10

4 Attacks and Results 11
4.1 Sovrin’s policies . 11
4.2 Technical Attacks . 12

4.2.1 Test Environment . 12
4.2.2 Quorums . 12
4.2.3 Nodes switched down . 13
4.2.4 Control Nodes . 13
4.2.5 Fuzzing . 14
4.2.6 Replay Attacks . 14
4.2.7 Amplification Attack . 15
4.2.8 Update DID with Non-Privileged Signature 16

5 Related Work 17

6 Future Work 18

7 Conclusion 19

Bibliography 20

4

A Consensus Diagram 24

B Auth-Rules MainNet 29

5

Chapter 1

Introduction

Numeric identities are a significant challenge for the digitization of our governments and
companies. Some countries already have a numeric identity solution, like Denmark [1], or want
to acquire one in the future, like Switzerland [2]. Sovrin [3] is a foundation that offers a self-
sovereign identity based on a blockchain. The government of British Colombia in Canada has
decided to use Sovrin technology to implement their eID solution [4].

The Decentralized and Distributed Systems Lab (DEDIS) at EPFL develops the ByzCoin
distributed ledger [5]. DEDIS is currently investigating using Sovrin decentralised identities in
Byzcoin. This work is motivated by DEDIS’ need to integrate only well designed and correctly
implemented identity systems into their system.

The main challenge in these eID technologies is the trust of the population. To reinforce it,
we need to ensure that these systems are secured and that privacy is respected.

In the best practices to ensure a good level of security, we have the requirement that we have
to expect that an attacker knows the source code and that the project is regularly audited. Sovrin’s
source code and all its dependencies are open-source, and so we can make in-depth security
analysis. In this project, we audit Sovrin’s security by analyzing their components and their threat
models. Then we target some components with industry-standard auditing, fuzzing, and other
hacking techniques.

In this report, we present our findings on some vulnerabilities in their organization’s policies
and their technical implementation.

6

Chapter 2

Background

2.1 Sovrin

The sovereign identity system we will focus on during this project is Sovrin [3]. Three Hy-
perledger projects from the Linux Foundation: Aries [6], Indy [7], and Ursa [8] compose Sovrin.
Sovrin is a public-permissioned blockchain.

Ursa is the cryptography library used by all other components for their cryptographic op-
erations [9]. Indy implements interactions between a client and the blockchain, and it also
implements all the behaviors of the ledger. Indy SDK [10], Indy Node [11], and Indy Plenum [12]
compose Indy. A diagram of the custom RBFT implementation of Indy Plenum is in Appendix A.
Indy SDK is the toolbox for interactions between a client and ledger’s nodes. Indy Node is the
library that implements the business logic of the blockchain and uses Indy Plenum for its cus-
tom PBFT consensus algorithm implementation. Aries [13] manages peer-to-peer interactions
between agents based on decentralized identities (DID) and verifiable credentials.

Sovrin has three different ledgers: BuilderNet, StagingNet, and MainNet. MainNet is the
ledger in production. Without contraindication, every time we will speak about Sovrin ledger, we
will speak about Sovrin MainNet. We have four different levels of permission: Trustee (all rights),
Steward (can manage a Validator Node and sign transactions), Endorser (can sign transactions),
and no role with no write permission.

2.2 Practical Illustration

To describe the interactions between all these projects which build Sovrin, we will go through
a practical example illustrated in Figure 2.1. Harry (Holder) wants to receive a numeric passport
from his government (Issuer). He requests a new credential to the government using Aries. He

7

Figure 2.1: Sovrin Model

can know the DID of the issuer because this one already registered his identity on the blockchain.

To write his public DID on the ledger, the government asks an Endorser to sign his DID
record, composed by an identifier, a public key, and by other extra information if needed. Then
the Endorser sends the DID to all nodes composing the ledger. The nodes verify if the signature is
correct and if the Endorser has the right to write on the ledger. If all conditions are fulfilled, nodes
send an acknowledge message to the Endorser and write the DID record of the government on
the blockchain. The issuer can use the same process to save a credential definition, which he
will use to issue credentials to his clients.

One time that the government has a public DID and a credential definition for a numeric
passport, it can create a credential for Harry using the credential definition registered on Sovrin
Network. Then it sends the numeric passport to the holder, Harry.

When Harry wants to buy a flight ticket, the airline company (Verifier) asks him to provide
proof of his identity. Harry sends his numeric passport or a part of it, so the company can
control if this credential is legit. The verifier asks a node of the Sovrin Network to send the DID
record of the government and the credential definition of a numeric passport issued by this
government. The verifier checks if the credential’s signature is correct and if all fields are identical
to the credential definition. If all conditions are fulfilled, the company accepts Harry’s numeric
passport.

8

Chapter 3

Coverage

3.1 Sovrin’s policies

We first want to analyze the internal Sovrin Foundation organization and to determine the
responsibilities inside the Foundation. We also desire to see what are the risks inherited from
their business architecture. Then, we will see how trust is distributed. To achieve this goal, we
will look at the authorization rules and determine which are the most critical DID on the ledger
and who is permissioned to write on Sovrin MainNet.

We will also go through the upgrade process and what are the policies of Sovrin to manage
this task. Finally, in this part, we will speak about the setup of a new Sovrin client. We will see how
a client can know how to connect to the MainNet and retrieve the address of all nodes involved
in this blockchain.

3.2 Indy Ledger

We think that the most major surface of attack is the consensus algorithm because it imple-
ments a custom algorithm of PBFT represented in Appendix A. We will try to slow down the
consensus process. We will also try to write illegitimate transactions on the ledger. To reach
these goals, we want to launch the attack from the client side with and without a corrupted node
controlled by the attacker.

One risk can also be how the nodes at their interface handle the messages. We will try to fuzz
the methods which handle messages coming from the outside world.

9

3.3 Out of Scope

In this project, we will not work on the Aries project, because we have decided to focus on
the blockchain and the communication with this one. We will also not focus on the revocation
registry of credentials, which is a zero-knowledge proof. The reason is that revocation registries
can use different cryptographic accumulators [14]. To have a general point of view on revocation,
we have to study every accumulator separately, and it can cause a large amount of work. Because
we have decided not to focus our research on Aries, which is the sharing of credentials, we have
decided that the time needed to analyze the revocation of credentials is not worth it.

The last point we will not cover is the Decentralized Key Management System (DKMS) be-
cause this technology is for the moment not implemented, and only the wished architecture is
published on GitHub [15].

10

Chapter 4

Attacks and Results

4.1 Sovrin’s policies

We analyzed first the node’s upgrade process. We saw in the Steward Technical Policies [16]
that a Steward has to upgrade its node within three business days. Furthermore, to order an
upgrade, the Board of Trustee (BoT), which is the overall governing body of the Sovrin Founda-
tion, writes a POOL_UPGRADE on the sub-ledger Config and three Trustees have to sign this
transaction. It contains the version number of the upgrade, an SHA-256 integrity check of the
package, and a scheduling for each node to balance the connection to the upgrade server [17, 18].
Each node writes on the sub-ledger Config their state in the upgrade process (start, in_progress,
complete) in a NODE_UPGRADE transaction. A risk is that the attacker may have an attack
window of up to five days (if update on Friday) if a critical vulnerability exists in the nodes.

Another aspect we had to discuss was the composition of the Board of Trustee (BoT), com-
posed by the Trustees. On their website [19], they say that BoT members are selected across
multiple industries and geographies. We observed that height Trustees over the ten composing
BoT live in the US. We noticed that the Sovrin Foundation is registered in Utah, US. We have
seen in the FBI-Apple encryption dispute [20] that the US Supreme Court can use the All Writs
Act of 1789 to force US citizens or companies to provide information and help them to solve
cases [21]. Because the majority of the Trustees and the Foundation are under US regulation, it
can create a risk that they will have to install back doors on the ledger to comply with a writ of
the Supreme Court. Another issue is that Sovrin may not be compliant with EU GDPR Section
3 [22] because rectification and erasure of personal data on a blockchain are not possible. Sovrin
mitigates this risk by not allowing to write personal data on the ledger. However, we can see in
the sub-ledger Pool that node’s transactions contain the name of the node, its IP address, its
country, its geographic location, and its time zone [23].

We looked then at the policy of permission to write on the ledger and to run a Validator Node.

11

To obtain information about the authorization rules, we had to connect to MainNet with an
Indy client and type the command ledger get-auth-rule. We observed that we need the signature
of three Trustees to acknowledge a new Trustee or Steward. We also need the signature of one
Trustee to add a new Endorser. We need a signature of a Trustee, a Steward, or an Endorser to
write a new DID on the ledger (see the extract of auth-rule of MainNet in Appendix B).

Lastly, we wanted to analyze how an Indy client can retrieve information about nodes to be
able to interact with the ledger. To connect to the Pool, we have to furnish to the Indy client
a genesis block. We can find the one for Sovrin MainNet on GitHub [24]. The client will then
retrieve information from the node listed in the genesis block. There are two possible issues with
this implementation. The first is that the Sovrin Foundation does not sign the genesis block, and
there is no integrity check. A malicious person can publish a fake genesis block online and can
use a social engineering attack to redirect his victims to this fake genesis block. To avoid this
issue, we can sign the genesis block with the private key of the Sovrin Foundation and hard code
the certificate of the Sovrin Foundation in the Indy client. We can also add an SHA-256 hash of
the package to check its integrity.

The second issue is that this genesis block contains the ten first nodes of the ledger. These
nodes must be up and running to retrieve all pool transactions to find all of the ledger’s nodes. It
means that these nodes cannot change their IP address, because the client can then not find
them, or be revoked in the case that a node becomes malicious. We can solve this problem by
writing a DNSSec record signed by the Sovrin Foundation containing the IP address of all nodes
permissioned to run the ledger. The client can then contact the addresses of the DNS record to
retrieve all information about the nodes.

4.2 Technical Attacks

4.2.1 Test Environment

For all our experiments, we set up an environment with a host on Ubuntu 18.04 using Docker
version 19.03.9. To install our test environment, we use the Dockerfile given in Hyperledeger
Indy SDK [25]. This Dockerfile creates an image with four nodes running indy-plenum version
1.12.1 and indy-node version 1.12.1 in one Docker container. In this environment, we have n = 4
and f = 1.

4.2.2 Quorums

Our first question was, what is the quorum in the RBFT to go to the next step in the 3
phase commit. The messages listed in Table 4.1 are the messages described in the RBFT con-
sensus protocol (see Appendix A for the diagram). We can find this quorum specification in

12

plenum.server.Quorums [26].

We can see in plenum.server.Node [27] in the method setPoolParams that we have to call this
method each time we add a node to the pool to update the quorum. We can have a risk at the
moment of adding a new node that we can write a transaction with f malicious node because
the quorum is not up-to-date in some nodes.

Quorum

Propagate f + 1
Prepare n -f - 1
Commit n - f
View Change n - f
BLS signatures n - f

Table 4.1: Quorums

4.2.3 Nodes switched down

We switched down one node, and we tried to pass a legitimate transaction to the ledger. We
observed that the ledger had recorded the transaction correctly. Sometimes it took more time to
register if the node we had switched down was the Master. In this case, the other nodes had to
do a view change and continue the consensus process.

In the next experiment, we switched down two nodes and wrote a legit transaction on the
ledger. We observed that we had a timeout, and nothing was written on the ledger. It was normal
behavior because we need n-f COMMIT messages to write on the ledger (see Table 4.1). In our
experiment, only two nodes sent this message instead of the three needed, and the ledger could
not reach the consensus and never answer to the client.

4.2.4 Control Nodes

We wanted to write a new DID on the ledger without having the signature of an Endorser.
For that, we controlled one node, which did not check the signature of the write request. This
technique did not work because we need, according to Table 4.1, f+1 PROPAGATE messages to
go to the next step, and here only the malicious node sent a PROPAGATE message.

In a second tentative, we modified two nodes out of four. Here our strategy worked because
f+1 nodes validated the transaction’s signature, and the signature is not checked at a later stage.

Then we made another trial with one node which did not check the signature and one crashed
node. What we wanted to see was how the system handles a missing node in the consensus
process. We observed that the nodes refused the write request because f did not change by the

13

fact that one node was switched down. An Indy client considers a transaction as refused when it
receives f+1 NACKs from the nodes [28].

The last experiment we did in this section was to create a loop in the Master node, which sent
the PROPAGATE message indefinitely to the other nodes when it received a write request. This
attack implied that we could not write anything on the blockchain for two minutes. The nodes
could not go through the 3 phase commit if the Master did not send a PRE-PREPARE message
like in Figure A.2. After this period, the other nodes asked a view change and voted for a new
Master. It was possible then to write new transactions.

4.2.5 Fuzzing

The first fuzzing experiment we did was against two methods at the interface between
plenum.server.Node [27] and the queue of messages which took input from ujson parser. It
was handleOneClientNodeMessage and handleOneNodeMessage. We fuzzed these two functions
with python-afl [29] for two hours. We noticed after this experiment that both methods catch all
exceptions of type Exception. It means that plenum.server.Node caught all runtime errors, and
so our fuzzer would never crash.

We decided after this trial to fuzz the function load from the library ujson [30]. This method is
used to transform the payload of all exchanged messages to a JSON object and passed that objects
to handleOneClientNodeMessage and handleOneNodeMessage. We also ran python-afl [29] for
two hours against the load method. Because in state of the art we execute fuzzing during days or
weeks, we found no bug within two hours [31]. Because testing ujson was not in the scope of our
project, we have decided not to continue to search vulnerabilities in ujson.

4.2.6 Replay Attacks

We made two different replay attacks. In the first one, we built a write request with the
signature of an Endorser. We sent it to the ledger to be registered. Then we sent this transaction
again. We observed that this second order was acknowledged but with the sequence number of
the previous write request. We concluded that our attack failed because we did not see a double
write on the ledger.

Our second replay attack was with a read request. This time we checked if a malicious node
can send an old record to the client. We observed that the client sent a read request to f+1, and
so our attack failed. We can see in the read request specifications [32] that the client asks one
node a DID record. If the reply contains a correct BLS signature and a fresh-enough timestamp,
then the client accepts this DID record. If it is an old timestamp, the client sends a read request
to f+1 nodes. In conclusion, a malicious node can only reply with a previous version of a DID if
this one was written on the ledger recently.

14

4.2.7 Amplification Attack

We sent a transaction signed by a DID with no writing permission. We observed that nodes
marked the message as incorrect after the PROPAGATE, but they still put this transaction in the
batch for consensus for ordering purposes. The nodes sent NACKs for our transaction at the end
of the 3 phase commit.

We can see some drawbacks in this role check process. In the implementation of
plenum.server.Node, a client can be blacklisted if he sends fake write requests. Nevertheless, this
mechanism works only if the request is malformed or if the signature is incorrect. The nodes
checked these conditions before sending a PROPAGATE message (see Figure A.1). However,
because the role is checked only after reaching the quorum of PROPAGATE, the client will not be
blacklisted if he sends too many orders with wrong roles.

It allows us to imagine a kind of amplification attack. For this attack, we needed to have a
DID record on the ledger with no particular role. It was a requirement because we needed that
our public key was on the blockchain to check the signature field of our write requests. Then
we sent a write transaction signed with our private key. Because the transaction was correctly
signed, the ledger entered in the 3 phase commit. Each node sent to the other three messages
(PROPAGATE, PREPARE, and COMMIT), and the Master node also sent a PRE-PREPARE to the
other. We can see in Table 4.2 how many messages each node received for three kinds of inputs
coming from the client. If the client sends an empty message, an incomplete one, or a message
with a wrong signature, then each node will receive only this unique message for this transaction.
However, if the client sends a write request signed by a regular DID, then each node will receive
that message and ten other coming from the other nodes.

We can derive a formula to find how many messages each node receives depending on the
number N of nodes involved in the consensus process. We find #messages received

Node = (N − 1) ∗
3 + 1 + 1 because we have N-1 PROPAGATE/PREPARE/COMMIT, one PRE-PREPARE, and one
message coming from the client (see Appendix A). We searched on Uniresolver [33] the DID
did:sov:bPTNiLzWPFHKr7mJGaump to found out that 14 Stewards signed a single DID record on
Sovrin MainNet. If we apply now the formula, we find that for a single message sent by the client,
each node receives traffic of 41 messages. The definition of the amplification factor we found in
a meta-analysis [34] was Amplification factor = Size of response

Size of request . Because each message in our
experiment has approximately the same size, we can approximate our amplification factor as 41,
which is comparable with the one of a DNS amplification attack [35].

Lastly, we measured the delay between the moment a client sends a write request, and when
he receives an ACK from the ledger. Because we ran this experiment on our computer, we can
consider the propagation and transmission delay as negligible. We ran ten times each experiment
separately to take into account the OS queuing delay. With these precautions, we can estimate
that the node’s processing time is proportional to the answering delay. The time amplification
factor was 120 between an incomplete message and a message with a wrong role (see Table 4.2).

15

Messages received by each node Time to receive answer (ms)

Incomplete payload 1 19.4
Wrong signature 1 42
Wrong role 11 2340

Table 4.2: Number of messages received by each ledger’s node and time to receive an answer
depending on the type of malicious request.

4.2.8 Update DID with Non-Privileged Signature

We have seen in the previous section that nodes checked the roles only at the end of the 3
phase commit. In our last experiment, we wanted to go further with this property. We wanted to
see how the nodes check the role and how we can exploit this check.

In Sovrin, the Owner or the Endorser of a DID can update this DID [36], and an unprivileged
user shall not be able to update the DID of another user [37]. We tried to violate this rule.

Firstly, we registered a regular DID on the ledger. Then we looked in the genesis block to find
the DID of a TRUSTEE. According to the specs, the regular DID shall not be able to update the
DID of the TRUSTEE. We sent a write request for the TRUSTEE signed by the regular DID, which
is the standard operation to do an update according to Sovrin Specs [36]. We observed that our
write request was accepted. When we made a read request, we saw that the signing DID of the
TRUSTEE was the regular DID and that the sequence number and the timestamp were changed.

The risk of this attack is that an unprivileged user can write on the ledger. The consequence
is that an attacker can write a large amount of illegitimate data on the ledger. The second
consequence is that the traceability of who endorsed who can be more difficult, and we can not
trust the last DID record to retrieve that information. If we want to find out who gives permissions
to a particular DID, we have to look at all occurrences on the ledger to find the oldest one.

This bug was responsible disclosed to the Hyperledger Indy Security team. At the moment
I write these lines, the security team has not yet fixed the bug, but they have created a draft
security advisory on GitHub with CVE identifier CVE-2020-11093. They also have created unit
tests corresponding to this bug.

A possible fix can be the usage of Sovrin Tokens. StagingNet and BuilderNet implement Sovrin
Tokens. In the future, we will be supposed to spend a token to write on the ledger, which makes
the above attack costly. However, it is not, for the moment, mandatory to spend a token to write
on the ledger. We do not know if the token will also be spent if a write request fails. If it is the case,
it will also mitigate the amplification attack. The Indy security team’s fix proposition is to reject a
DID update if the submitting DID is not the same as the DID being updated and if neither the
role neither the verkey are changed.

16

Chapter 5

Related Work

The company Nettitude published in November 2018 a penetration test report about Hyper-
ledger Indy [38]. They analyzed in particular Indy Node, Indy Plenum, and Indy SDK. Nettitute did
a white box testing and found two medium severity bugs and six low severity bugs. They revealed
vulnerabilities with the cryptographic libraries, deserialization, and access to the filesystem.

Our approach differs with the one of Nettitude because we focused our work on finding bugs
in an end-to-end scenario and not to do a code review component by component.

Concerning the fuzzing, a member of Sovrin’s technical governance board tried to fuzz the
Indy client using libfuzzer for Rust [39]. In the Indy Contributors Call of September 23rd, 2019, he
said that he was worried about the unsafe code of libindy, which is one of the main components
of the Indy client. He said that more fuzzing was necessary because the code looked bad [40].

In our approach, we wanted to fuzz the interfaces of the Indy Plenum nodes. Nevertheless,
to reach this goal, we need fuzzing tools for safe languages. High-level languages guarantee
the absence of low-level flaws, like buffer overflows [31]. However, these languages have some
similar vulnerabilities as the low-level languages such as crashing inputs, null pointer excep-
tion, excessive resource utilization. Fuzzing high-level languages like Python is a new field of
research [41] and will take more importance in the future.

17

Chapter 6

Future Work

In the Indy Contributor Call of October 10th, 2019, the Indy contributors discussed the oppor-
tunity to migrate the consensus algorithm of Indy Node from their custom RBFT to Aardvark [42].
The reason is that RBFT is slower than Aardvark. When we get the new consensus algorithm in
Indy Plenum, it can be interesting to test it and audit it to find possible new vulnerabilities.

Another new feature to follow is the Sovrin Token [43]. As explained in subsection 4.2.8, we
have to see if the contributors of Sovrin will use them as security against a specific form of DOS
by asking a token for each transaction, whatever it fails or succeeds.

We did not focus on the Schemas and Credential Definitions. These two concepts are essential
in a decentralized identity system because they allowed organizations to create verifiable claims.
It can be part of future work to check how these Schemas and Credential Definitions are created
and sent to the ledger and also see how a verifier can use a Credential Definition to check the
validity of a claim. It is also crucial to analyze how a credential’s holder can create a proof and if
this proof does not leak information about the original credential [44].

As said in subsection 4.2.5, it can be interesting to continue to fuzz the interfaces of the nodes.
To fuzz efficiently, we have to adapt the code of plenum.server.Node by removing the catch of
exceptions of type Exception. Furthermore, we have to adapt the fuzzers to allowed them to
pass fuzzed tuples to the methods handleOneClientMessage and handleOneNodeMessage. It
can also be worth to fuzz the methods which write the transaction on the ledger to see if we
can corrupt the information stored on the blockchain, like the method updateSeqNoMap in
plenum.server.Node.

18

Chapter 7

Conclusion

We have seen some weaknesses in the organization model of Sovrin. We have found some
risks of independence in the Foundation’s governance. It is due to the concentration of the
majority of the Trustees and the Foundation in one country. Another point was the upgrade
policy allowing a node to take three working days. If the Board of Trustees issues an upgrade
transaction a Friday, then the upgrade process must be done on Tuesday. It means that an
attacker can have a window of five days to exploit a vulnerability. The last problematic point is
how a client can retrieve information about the ledger’s nodes. Therefore, Sovrin must guarantee
the authenticity and integrity of the genesis block.

On the technical side, we have seen some vulnerabilities in their implementation. The first
one is that each node has to update the quorum of the RBFT manually each time a node is
added or removed from the ledger. The most severe vulnerability is the check process of the
authorization/role of the signing DID. It can imply two types of attacks. In the first one, we can
have an amplification attack comparable to a DNS amplification attack. The second one allows a
regular DID to have limited write permission. We can change the parent DID of every transaction
with a regular DID and so write on the ledger.

Nevertheless, Sovrin has the advantage of being a fully open-source project as well as its
dependencies. Another positive aspect is their good reactivity on the Sovrin chat to give explana-
tions and to debate their architecture’s choices. The last point is that their responsible disclosure
procedure is efficient. We received a confirmation within one day, and a member of the security
team reviewed the disclosure in three days. Then a GitHub security advisory was created, and
the security team gave us the right to observe and comment on their fix process.

As a result of the different aspects of the work I described above, the overall analysis is that
Sovrin is not mature enough to be used in sensitive applications like an eID infrastructure. Key
features like the DKMS are not yet implemented, and the consensus algorithm is not standard
and thoroughly audited. Aries needs to be reviewed before issuing official credentials for critical
operations like e-banking, voting, or patient’s consent for DNA research.

19

Bibliography

[1] Nem ID. Introduction to NemID. U R L: https://www.nemid.nu/dk-en/about_nemid/
introduktion_til_nemid/index.html (visited on May 31, 2020).

[2] egovernment. Implementing eID. U R L: https://www.egovernment.ch/en/umsetzung/
schwerpunktplan/elektronische-identitat/ (visited on May 31, 2020).

[3] Sovrin Foundation. Sovrin. U R L: https://sovrin.org (visited on May 22, 2020).

[4] Sovrin Foundation. Use case spotlight: The Government of British Columbia uses the Sovrin
Network to take strides towards a fully digital economy. U R L: https://sovrin.org/use-
case-spotlight-the-government-of-british-columbia-uses-the-sovrin-network-
to-take-strides-towards-a-fully-digital-economy/ (visited on May 31, 2020).

[5] DEDIS. ByzCoin. U R L: https://github.com/dedis/cothority/blob/master/byzcoin/
README.md (visited on June 5, 2020).

[6] Linux Foundation. Hyperledger Aries. U R L: https://www.hyperledger.org/use/aries
(visited on May 22, 2020).

[7] Linux Foundation. Hyperledger Indy. U R L: https://www.hyperledger.org/use/hyperled
ger-indy (visited on May 22, 2020).

[8] Linux Foundation. Hyperledger Ursa. U R L: https://www.hyperledger.org/use/ursa
(visited on May 22, 2020).

[9] Hyperledger. Ursa. U R L: https://github.com/hyperledger/ursa (visited on May 22,
2020).

[10] Hyperledger. Indy SDK. U R L: https://github.com/hyperledger/indy-sdk (visited on
May 22, 2020).

[11] Hyperledger. Indy Node. U R L: https://github.com/hyperledger/indy-node (visited on
May 22, 2020).

[12] Hyperledger. Indy Plenum. U R L: https://github.com/hyperledger/indy-plenum (visited
on May 22, 2020).

[13] Hyperledger. Aries. U R L: https://github.com/hyperledger/aries (visited on May 22,
2020).

[14] Hyperledger. Indy Project Enhancements Documentation. U R L: https://readthedocs.
org/projects/indy-hipe/downloads/pdf/latest/ (visited on May 22, 2020).

20

https://www.nemid.nu/dk-en/about_nemid/introduktion_til_nemid/index.html
https://www.nemid.nu/dk-en/about_nemid/introduktion_til_nemid/index.html
https://www.egovernment.ch/en/umsetzung/schwerpunktplan/elektronische-identitat/
https://www.egovernment.ch/en/umsetzung/schwerpunktplan/elektronische-identitat/
https://sovrin.org
https://sovrin.org/use-case-spotlight-the-government-of-british-columbia-uses-the-sovrin-network-to-take-strides-towards-a-fully-digital-economy/
https://sovrin.org/use-case-spotlight-the-government-of-british-columbia-uses-the-sovrin-network-to-take-strides-towards-a-fully-digital-economy/
https://sovrin.org/use-case-spotlight-the-government-of-british-columbia-uses-the-sovrin-network-to-take-strides-towards-a-fully-digital-economy/
https://github.com/dedis/cothority/blob/master/byzcoin/README.md
https://github.com/dedis/cothority/blob/master/byzcoin/README.md
https://www.hyperledger.org/use/aries
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/ursa
https://github.com/hyperledger/ursa
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/indy-node
https://github.com/hyperledger/indy-plenum
https://github.com/hyperledger/aries
https://readthedocs.org/projects/indy-hipe/downloads/pdf/latest/
https://readthedocs.org/projects/indy-hipe/downloads/pdf/latest/

[15] Hyperledger. DKMS (Decentralized Key Management System) Design and Architecture V3.
U R L: https://github.com/hyperledger/indy-sdk/blob/5f9144feab5b9e969389e325da
47d7218f87081e/docs/design/005-dkms/DKMS%5C%20Design%5C%20and%5C%20Architect
ure%5C%20V3.md (visited on May 22, 2020).

[16] Sovrin Foundation. Sovrin Steward Technical Policies. U R L: https://sovrin.org/wp-
content/uploads/2019/03/Sovrin-Steward-Technical-Policies-V1.pdf (visited on
May 25, 2020).

[17] Hyperledger. Requests. U R L: https : / / github . com / hyperledger / indy - node / blob /
master/docs/source/requests.md (visited on May 25, 2020).

[18] Indyscan. POOL UPGRADE TX 9315. U R L: https://indyscan.io/tx/SOVRIN_MAINNET/
config/9315 (visited on May 25, 2020).

[19] Sovrin Foundation. People. U R L: https://sovrin.org/team/ (visited on May 25, 2020).

[20] Amy Davidson Sorkin. “The Dangerous All Writs Act Precedent in the Apple Encryption
Case”. In: The New Yorker (2016). U R L: https://www.newyorker.com/news/amy-davidson/
a-dangerous-all-writ-precedent-in-the-apple-case.

[21] govinfo. 28 U.S.C. 1651 - Writs. U R L: https://www.govinfo.gov/content/pkg/USCODE-
2011- title28/pdf/USCODE- 2011- title28- partV- chap111- sec1651.pdf (visited on
May 25, 2020).

[22] European Union. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). U R L: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN (visited on May 25, 2020).

[23] Indyscan. NODE TX 88. U R L: https://indyscan.io/tx/SOVRIN_MAINNET/pool/88 (visited
on May 25, 2020).

[24] Sovrin Foundation. Pool Transactions Live Genesis. U R L: https://github.com/sovrin-
foundation/sovrin/blob/master/sovrin/pool_transactions_live_genesis (visited on
May 25, 2020).

[25] Hyperledger. indy-pool.dockerfile. U R L: https://github.com/hyperledger/indy-sdk/
blob/9a382f418b65b8ad7476f57f64d362f65686887f/ci/indy-pool.dockerfile (visited
on May 25, 2020).

[26] Hyperledger. quorum.py. U R L: https://github.com/hyperledger/indy-plenum/blob/
master/plenum/server/quorums.py (visited on May 26, 2020).

[27] Hyperledger. node.py. U R L: https://github.com/hyperledger/indy- plenum/blob/
master/plenum/server/node.py (visited on May 26, 2020).

[28] Hyperledger. Write Requests. U R L: https://github.com/hyperledger/indy-plenum/
blob/master/docs/source/diagrams/write-requests.png (visited on May 26, 2020).

[29] Jwilk. python-afl. U R L: https://github.com/jwilk/python-afl (visited on May 26, 2020).

21

https://github.com/hyperledger/indy-sdk/blob/5f9144feab5b9e969389e325da47d7218f87081e/docs/design/005-dkms/DKMS%5C%20Design%5C%20and%5C%20Architecture%5C%20V3.md
https://github.com/hyperledger/indy-sdk/blob/5f9144feab5b9e969389e325da47d7218f87081e/docs/design/005-dkms/DKMS%5C%20Design%5C%20and%5C%20Architecture%5C%20V3.md
https://github.com/hyperledger/indy-sdk/blob/5f9144feab5b9e969389e325da47d7218f87081e/docs/design/005-dkms/DKMS%5C%20Design%5C%20and%5C%20Architecture%5C%20V3.md
https://sovrin.org/wp-content/uploads/2019/03/Sovrin-Steward-Technical-Policies-V1.pdf
https://sovrin.org/wp-content/uploads/2019/03/Sovrin-Steward-Technical-Policies-V1.pdf
https://github.com/hyperledger/indy-node/blob/master/docs/source/requests.md
https://github.com/hyperledger/indy-node/blob/master/docs/source/requests.md
https://indyscan.io/tx/SOVRIN_MAINNET/config/9315
https://indyscan.io/tx/SOVRIN_MAINNET/config/9315
https://sovrin.org/team/
https://www.newyorker.com/news/amy-davidson/a-dangerous-all-writ-precedent-in-the-apple-case
https://www.newyorker.com/news/amy-davidson/a-dangerous-all-writ-precedent-in-the-apple-case
https://www.govinfo.gov/content/pkg/USCODE-2011-title28/pdf/USCODE-2011-title28-partV-chap111-sec1651.pdf
https://www.govinfo.gov/content/pkg/USCODE-2011-title28/pdf/USCODE-2011-title28-partV-chap111-sec1651.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://indyscan.io/tx/SOVRIN_MAINNET/pool/88
https://github.com/sovrin-foundation/sovrin/blob/master/sovrin/pool_transactions_live_genesis
https://github.com/sovrin-foundation/sovrin/blob/master/sovrin/pool_transactions_live_genesis
https://github.com/hyperledger/indy-sdk/blob/9a382f418b65b8ad7476f57f64d362f65686887f/ci/indy-pool.dockerfile
https://github.com/hyperledger/indy-sdk/blob/9a382f418b65b8ad7476f57f64d362f65686887f/ci/indy-pool.dockerfile
https://github.com/hyperledger/indy-plenum/blob/master/plenum/server/quorums.py
https://github.com/hyperledger/indy-plenum/blob/master/plenum/server/quorums.py
https://github.com/hyperledger/indy-plenum/blob/master/plenum/server/node.py
https://github.com/hyperledger/indy-plenum/blob/master/plenum/server/node.py
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/write-requests.png
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/write-requests.png
https://github.com/jwilk/python-afl

[30] ultrajson. ultrajson. U R L: https://github.com/ultrajson/ultrajson (visited on May 26,
2020).

[31] Mathias Payer. Software Security: Principles, Policies, and Protection. Apr. 2019, pp. 31, 32,
67. U R L: http://nebelwelt.net/SS3P/softsec.pdf.

[32] Hyperledger. Read Request. U R L: https://github.com/hyperledger/indy-plenum/blob/
master/docs/source/diagrams/read-requests.png (visited on May 26, 2020).

[33] Universal Resolver. Universal Resolver. U R L: https://uniresolver.io (visited on May 26,
2020).

[34] Ryba et al. “Amplification and DRDoS Attack Defense – A Survey and New Perspectives”.
In: arxiv (May 2016). U R L: https://arxiv.org/pdf/1505.07892.pdf.

[35] Anagnostopoulos et al. “DNS Amplification Attack Revisited”. In: Computer & Security
39 (Dec. 2013). U R L: https://www.researchgate.net/profile/Marios_Anagnostopou
los/publication/258403326_DNS_Amplification_Attack_Revisited/links/59de6c8f
458515376b29df28/DNS-Amplification-Attack-Revisited.pdf.

[36] Sovrin Foundation. Sovrin DID Method Specification. U R L: https://sovrin-foundation.
github.io/sovrin/spec/did-method-spec-template.html (visited on May 26, 2020).

[37] Hyperledger. Default AUTH_MAP Rules. U R L: https://github.com/hyperledger/indy-
node/blob/master/docs/source/auth_rules.md (visited on May 26, 2020).

[38] Nettitude. Penetration Testing Technical Report. 2018. U R L: https://wiki.hyperledger.
org/download/attachments/13862116/TECHNICAL_REPORT_Hyperledger_Indy_Linux_
Foundation_2018-10-31_v1.0.pdf?version=1&modificationDate=1560353100000&api=
v2 (visited on May 24, 2020).

[39] Axel Nennker. Fuzzing Libindy. U R L: https://github.com/AxelNennker/indy-sdk/tree/
fuzzing/libindy/fuzz (visited on May 24, 2020).

[40] Hyperledger. 2019-09-23 Indy Contributors Call. U R L: https://wiki.hyperledger.org/
display/indy/2019-09-23+Indy+Contributors+Call (visited on May 28, 2020).

[41] Daniel Kroening. “Fuzz Testing Java and Other Managed Languages”. In: Medium (Feb.
2019). U R L: https://medium.com/javarevisited/fuzz- testing- java- and- other-
managed-languages-289a0be0a9c5.

[42] Hyperledger. 2019-10-07 Indy Contributors Call. U R L: https://wiki.hyperledger.org/
display/indy/2019-10-07+Indy+Contributors+Call (visited on May 29, 2020).

[43] Sovrin Foundation. Sovrin Foundation Launches Test Token for Decentralized Identity
Network. U R L: https://sovrin.org/sovrin-foundation-launches-test-token-for-
decentralized-identity-network/ (visited on May 29, 2020).

[44] Hyperledger. Negotiate Proof. U R L: https://github.com/hyperledger/indy-sdk/tree/
master/docs/how-tos/negotiate-proof (visited on May 29, 2020).

[45] Hyperledger. Consensus Protocol. U R L: https://github.com/hyperledger/indy-plenum/
blob/master/docs/source/diagrams/consensus-protocol.png (visited on May 25, 2020).

22

https://github.com/ultrajson/ultrajson
http://nebelwelt.net/SS3P/softsec.pdf
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/read-requests.png
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/read-requests.png
https://uniresolver.io
https://arxiv.org/pdf/1505.07892.pdf
https://www.researchgate.net/profile/Marios_Anagnostopoulos/publication/258403326_DNS_Amplification_Attack_Revisited/links/59de6c8f458515376b29df28/DNS-Amplification-Attack-Revisited.pdf
https://www.researchgate.net/profile/Marios_Anagnostopoulos/publication/258403326_DNS_Amplification_Attack_Revisited/links/59de6c8f458515376b29df28/DNS-Amplification-Attack-Revisited.pdf
https://www.researchgate.net/profile/Marios_Anagnostopoulos/publication/258403326_DNS_Amplification_Attack_Revisited/links/59de6c8f458515376b29df28/DNS-Amplification-Attack-Revisited.pdf
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://github.com/hyperledger/indy-node/blob/master/docs/source/auth_rules.md
https://github.com/hyperledger/indy-node/blob/master/docs/source/auth_rules.md
https://wiki.hyperledger.org/download/attachments/13862116/TECHNICAL_REPORT_Hyperledger_Indy_Linux_Foundation_2018-10-31_v1.0.pdf?version=1&modificationDate=1560353100000&api=v2
https://wiki.hyperledger.org/download/attachments/13862116/TECHNICAL_REPORT_Hyperledger_Indy_Linux_Foundation_2018-10-31_v1.0.pdf?version=1&modificationDate=1560353100000&api=v2
https://wiki.hyperledger.org/download/attachments/13862116/TECHNICAL_REPORT_Hyperledger_Indy_Linux_Foundation_2018-10-31_v1.0.pdf?version=1&modificationDate=1560353100000&api=v2
https://wiki.hyperledger.org/download/attachments/13862116/TECHNICAL_REPORT_Hyperledger_Indy_Linux_Foundation_2018-10-31_v1.0.pdf?version=1&modificationDate=1560353100000&api=v2
https://github.com/AxelNennker/indy-sdk/tree/fuzzing/libindy/fuzz
https://github.com/AxelNennker/indy-sdk/tree/fuzzing/libindy/fuzz
https://wiki.hyperledger.org/display/indy/2019-09-23+Indy+Contributors+Call
https://wiki.hyperledger.org/display/indy/2019-09-23+Indy+Contributors+Call
https://medium.com/javarevisited/fuzz-testing-java-and-other-managed-languages-289a0be0a9c5
https://medium.com/javarevisited/fuzz-testing-java-and-other-managed-languages-289a0be0a9c5
https://wiki.hyperledger.org/display/indy/2019-10-07+Indy+Contributors+Call
https://wiki.hyperledger.org/display/indy/2019-10-07+Indy+Contributors+Call
https://sovrin.org/sovrin-foundation-launches-test-token-for-decentralized-identity-network/
https://sovrin.org/sovrin-foundation-launches-test-token-for-decentralized-identity-network/
https://github.com/hyperledger/indy-sdk/tree/master/docs/how-tos/negotiate-proof
https://github.com/hyperledger/indy-sdk/tree/master/docs/how-tos/negotiate-proof
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/consensus-protocol.png
https://github.com/hyperledger/indy-plenum/blob/master/docs/source/diagrams/consensus-protocol.png

[46] DEDIS. DEDIS - Decentralized and Distributed Systems. U R L: https://www.epfl.ch/labs/
dedis/ (visited on May 31, 2020).

23

https://www.epfl.ch/labs/dedis/
https://www.epfl.ch/labs/dedis/

Appendix A

Consensus Diagram

Credit for consensus protocol diagram: indy-plenum [45].

24

Figure A.1: Consensus Protocol Propagate

25

Figure A.2: Consensus Protocol Pre-Prepare

26

Figure A.3: Consensus Protocol Prepare

27

Figure A.4: Consensus Protocol Commit

28

Appendix B

Auth-Rules MainNet

29

Figure B.1: Auth-Rule ADD

30

Figure B.2: Auth-Rule EDIT

31

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Sovrin
	Practical Illustration

	Coverage
	Sovrin's policies
	Indy Ledger
	Out of Scope

	Attacks and Results
	Sovrin's policies
	Technical Attacks
	Test Environment
	Quorums
	Nodes switched down
	Control Nodes
	Fuzzing
	Replay Attacks
	Amplification Attack
	Update DID with Non-Privileged Signature

	Related Work
	Future Work
	Conclusion
	Bibliography
	Consensus Diagram
	Auth-Rules MainNet

