
École Polytechnique Fédérale de
Lausanne

Improving Byzcoin

DEDIS LAB
Semester Project

Students : Louis Merlin and Hugo Roussel

Supervisor : Linus Gasser Professor : Bryan Ford
June 5, 2020

Contents

1 Introduction . 2
2 The Byzcoin protocol . 2

2.1 PBFT Consensus . 2
2.2 Scaling . 3
2.3 Use of the Byzcoin protocol 4

3 Measuring the current implementation 5
3.1 Improving the simulation 5
3.2 Throughput versus Latency 6
3.3 Measuring the throughput and the latency 6
3.4 Measuring the trie usage 6
3.5 Monitoring the current simulation 6
3.6 Profiling the simulation 9

4 Improving Byzcoin . 10
4.1 The Collect Transaction Protocol 10
4.2 The Rollup Transaction Protocol 11
4.3 Implementation timeline 11

5 Conclusion . 15
1 Appendix: Profiling Appendix 18

1

1 Introduction

Bitcoin’s original paper promised a new kind of decentralised network allow-
ing value exchange in a peer to peer way. While this promise was successful,
the original design is showing signs of age with many issues having creeped
out in the last few years. To name a few : voracious energy consumption
(as of today the equivalent of Switzerland energy consumption), high trans-
actions fees and long confirmation times. In 2016 an alternative protocol
called Byzcoin was proposed with the goal of improving both security and
performance of the original paper. Shortly after an implementation was de-
veloped by the DEDIS lab at EPFL. The goal of this semester project was
to study, measure and improve the state of the current implementation.

2 The Byzcoin protocol

Before dwelling into our work, it is good to remind to the reader some aspects
of the Byzcoin [1] protocol.

2.1 PBFT Consensus

The original Byzcoin paper starts by imagining the bitcoin protocol using
a different consensus protocol : the Practical Byzantine Fault Tolerant pro-
tocol (PBFT for short) [2]. Using such a protocol provides many different
advantages compared to the original Proof-of-Work consensus (PoW).

PBFT Advantages

The first advantage is energy efficiency. PBFT can achieve distributed con-
sensus without having to carry out the repeated hashing of a full block before
appending it to the chain. The second is deterministic transactions : the
transactions of the clients do not require multiple confirmations like the 6
block wait for Bitcoin (around 60 minutes) once the transaction have been
finalized and agreed upon.

PBFT Drawbacks

One of the drawbacks of PBFT is that it does not supports open networks
and that the communication complexity does not scale out. Indeed we need
O(n2) messages for reaching consensus since each member of the consensus
group authenticates to the other members using Message Authentication
Codes.

2

2.2 Scaling

To circumvent these issues that prevents the system to scale out to a large
system of nodes, the paper suggest multiple solutions.

Replacing MACs by Digital Signatures

Digital signatures reduces the communication complexity to O(n) from O(n2)
as the leader can collect and distribute the digital signatures to other par-
ticipants.

Collective Signing

Eventhought the protocol is already more scalable, the original paper presents
another improvement. Indeed it will be costly to the leader to distribute 1000
digital signatures and wait for everyone to verify them. To fix this the proto-
col builds upon the CoSi protocol in a two round fashion to recreate the two
phases PBFT, prepare and commit. This allows for for each participant to
receive only a O(1)-size rather than O(n)-size message and to expend only
O(1) rather than O(n) computation effort by verifying a single collective
signature instead of n individual ones. This reduces both computation and
bandwidth costs associated with each round of consensus.

Two chains

Finally a last improvment comes from the realisation that the Proof of Work
from the Nakamoto consensus serves two purposes : transaction verification
and leader election. Here those two uses are decoupled through the creation
of two types of blocks, microblocks which contain transactions and keyblocks
that represent leader election. This idea is taken from the Bitcoin-NG paper
[3].

The use of such a design allows for the microblocks to be irreversibly
committed whatever the behavior of the leader might be. This is an im-
provement compared to Bitcoin-NG protocol where a malicious leader could
rewrite history in between blocks [3].

3

Figure 1: Figure from the original Byzcoin paper that showcases the two
paralled chains storing information abouth the transactions (microblocks)
and about the leaders (keyblocks)

2.3 Use of the Byzcoin protocol

Smart-Contracts

The Byzcoin data is organized in Smart Contracts, where a smart contract
can be seen as a class and an instance of this class. In ByzCoin, one can
Spawn a new instance of a contract, Invoke a command (or method) on an
existing instance, or Delete an instance. Spawn, Invoke, and Delete represent
all the possible actions a user can do to update the ledger. Every request
to update the ledger is a transaction made up of one or more instructions.
The transaction is then sent to one of the nodes. All instructions in the
transaction must be approved by a quorum of the nodes, or else the entire
transaction is refused. Current smart-contracts implemented on the Byzcoin
protocol can serve different functions :

• A simple coin contract for value transfer

• Proof of Personhood contracts [4]

• Emulation the Ethereum Virtual Machine to support solidity contracts
[5, 6]

4

3 Measuring the current implementation

After having studied and understood the current protocol, we start on trying
to improve the current Golang implementation [7]. Luckily for us, a simula-
tion of the protocol was already defined in the implementation which let us
monitor the system by altering multiple parameters such as the block time,
the number of hosts, servers, the number of transactions and the number
of instructions per transactions. This simulation creates a ”coin” contract,
registers multiple account and then transfers coins between those accounts.

3.1 Improving the simulation

We improved the current simulation by making new functions that makes it
direct to :

• Create accounts

• Mint coins

• Transfer coins

We then created a new variable in the simulation : ”accounts” that
creates the given number of accounts and then transfers coins in a non
deterministic way to simulate a real world scenario.
Once we had a satisfactory simulation we could start on measuring the
ground truth of the protocol, which will serves us as a comparative point
for the end of the project.

Improvements Areas

Byzcoin is a complex machine with many moving parts, as such we had
multiples areas to check where improvements could be made.

• Database storage. Byzcoin uses a trie internally to store data from the
ledger. Therefore we should monitor the trie usage (creation, insertion,
update of values)

• Network usage : which heavy structures are sent around the network,
are they all necessary?

• Is the state change application made more than once a block?

5

3.2 Throughput versus Latency

We define here the difference between throughput and latency in the case of
a distributed system.
Throughput is the number of actions executed produced per unit of time.
For a transaction based distributed system this would correspond to the
number of transactions per second. Latency is the time to perform some
action or finish a result. In our case this would be the time a transaction
would take to be sent through the network and appended to a block.
Latency is measured in units of time, throughput in number of actions per
unit of time.

3.3 Measuring the throughput and the latency

To measure the throughput we can use the simulation and compute the over-
all time. If the overall time is lower with the same number of transactions
we know that we will have increased the throughput.
To measure the latency we can create a simulation with a single transaction
and the same parameters as above. If the time to process a single transaction
is lower, we will know that we have decreased the latency.

3.4 Measuring the trie usage

Golang Benchmarking

The Golang benchmarking is an integrated tool of the native go test frame-
work. Our goal was to examine a specific part of the stack : the use of
the trie structure as the main data storage system. You will find the final
trie benchmarks in Figure 2. As we can observe the benchmarks are split
between Memory and Disk; indeed, some operations are stored in the ram,
and others are put on disk. The goal of this benchmarking was to both
measure the current performance, see if there was a point where the system
would break under the load and see potential improvements.

Overall the trie structure was quite resilient under pressure. What’s
more, we felt (rightly, as you can see in the profiling graph), that it was
already quite efficient. We moved on to see if there were other improvements
possible in other parts of the stack.

3.5 Monitoring the current simulation

We then decided to monitor more closely the actual protocol code by using
the onet monitor tool. [8]

6

BenchmarkOverwriteOne/Memory-8 19731 ns/op

BenchmarkOverwriteOne/Disk-8 4788971 ns/op

BenchmarkOverwriteMany/Memory-8 2446634 ns/op

BenchmarkOverwriteMany/Disk-8 383921557 ns/op

BenchmarkCopy/1-8 1611 ns/op

BenchmarkCopy/50-8 22628 ns/op

BenchmarkCopy/500-8 100455 ns/op

BenchmarkCopy/2000-8 102197 ns/op

BenchmarkBatchSetDel/1000/Memory-8 65863324 ns/op

BenchmarkBatchSetDel/1000/Disk-8 89311748 ns/op

BenchmarkBatchSetDel/10000/Memory-8 767646219 ns/op

BenchmarkBatchSetDel/10000/Disk-8 816768896 ns/op

BenchmarkBatchSetDel/100000/Memory-8 6440816948 ns/op

BenchmarkBatchSetDel/100000/Disk-8 6770227394 ns/op

Figure 2: Benchmark of trie operations

Figure 3: High level overview of function wall time and finer grained obser-
vations

7

As we can see in this graph, on the left part we have the number of
seconds taken by the overall simulation, split between three parts : the
“preparation” phase, the “send” phase and the “confirm” phase. As we can
see, it is the “confirm” phase that takes up the biggest chunk of our time.
The right part is a zoomed-in view of the “confirm” phase of the left part. It
takes a greater total number of seconds to complete because it was computed
in a multiprocessor fashion. We can clearly see from this graph that we need
to continue to zoom in on the “process one tx” part (which corresponds to
the call to the ProcessOneTx method), which is what we did.

For the second graph we decided to dig in more on why the processing
of one transaction was so long. We suspected that the time was mostly
spent on cryptographic operations, which we considered out of the scope of
this project since the dedicated libraries are already optimized. To verify
our intuition we recursively graphed each function. We obtain the following
graphs, and indeed we can see that on the last graph that most of the
time is spent on checking the configuration of the user and checking the
cryptographic signatures.

Figure 4: Recursively graphing costly functions

We can analyse the graphs from left to right :

• This is the exact same left part of the first graph. We see that we need
to zoom into “confirm”

• This is the zoomed in part of ProcessOneTx. We see that “execute”

8

Figure 5: Recursively graphing costly functions II

(which is the ExecuteInstruction method) takes up most of the time.

• We now zoom into ExecuteInstruction. Here too, most of the time
is spent doing one thing : VerifyInstruction. If we go see what that
method does, we find out that it calls another method, called Verify-
WithOptions.

• Inside VerifyWithOptions we find that the “signatures” part (crypto-
graphic signature computation” takes up more than half of the com-
pute time, and “config” takes a quarter of the time. This “config” part
is actually the code that loads up the configuration from the trie data
structure.

3.6 Profiling the simulation

To finally confirm our observations we used a go profiler to understand better
the flow of execution and memory allocation.

Pprof

We used the pprof tool to generate a graph of functions calls of the simula-
tion. Pprof [9] is a tool created by Google for visualization and analysis of
profiling data. The tools reads profiling samples and creates visual reports

9

that helps analyze the data. By running this tool on the simulation we ob-
tain the following graph : 1. The graph shows the different function calls of
the program during the simulation. Each box is a function and each arrow
represents a call from this function. A dashed line represents that some
function calls were skipped. We can see quickly what we saw earlier, that
the ProcessOneTx is very costly and leads to functions which are equally
costly : cryptographic functions related to the Edwards25519 Elliptic Curve
(also used in the Monero key pair generation [10]).

This confirmed our intuition on two parts : first the time taken by the
trie is not a significant one and that most of the CPU time is spent on
cryptographic operations.
We then decided to try a different approach and actually modify the protocol
instead of improving the current code of the implementation.

4 Improving Byzcoin

After the observations from the measurement parts, we had to chose the
best way to improve the Byzcoin protocol. We decided to work on the
latency part and particularly change the way transactions are sent through
the network.

4.1 The Collect Transaction Protocol

In the Byzcoin protocol transactions are not transferred between nodes using
a gossiping protocol as it is the case in the Ethereum or Bitcoin blockchain.
Here the sharing is made using communication tree through the use of the
collect transaction protocol. The collect transaction protocol works as fol-
lows : the leader of the current round periodically sends empty transaction
”requests” and the children will respond with the transaction in their trans-
action pool.

This scheme is useful to have a simple way to get the transactions at the
right place, and insures that only the leader gets the transactions that he
needs before creating a new block. However the drawback is that it generates
a lot of network traffic only for those empty request transactions. Under the
advice of our supervisor we started designing a new type of protocol for the
transaction propagation.

10

Figure 6: The way the transaction are propagated between the nodes using
the collect transaction protocol

4.2 The Rollup Transaction Protocol

We came up with a different approach to replace the collect transaction
protocol. The new protocol would be very simple, getting away with the
request transactions and working as follows :

• If you are the current leader, you have nothing to do and can process
the transaction in a new block directly

• If a you are not the leader, forward the transaction to your parent in
the communication tree which will then transmit its own parent until
reaching the leader

Such a simple scheme hides many caveats that we will cover after.

4.3 Implementation timeline

We detail here the implementation timeline as well as the challenges encoun-
tered when creating this new protocol.
We first had to understand the way the collect transaction protocol was im-
plemented and integrated in the rest of the stack.

11

Figure 7: The way the transaction are propagated between the nodes using
the roll up transaction protocol

Then we used the cothority template repository to create a toy protocol
which was added alongside to the old one. After that we implemented the
actual protocol. We then removed all the references from the old one, re-
moving for example the structures corresponding to the old request packets
and creating new types of replies. After a while we realized we had regis-
tered the protocol in a non functional way and had to use a different way,
like the protocols of the skipchain.
The integration was tricky since we had not only to change the protocol but
also change the actual integration to the system. Indeed we had to modify
functions related to the service part of the byzcoin protocol which serves
the client API. For example registering the object txPipeline used by the
leader to propose new block in the Byzcoin service file instead of doing it in
the protocol directly. We were finally able to make the simulation run again
and we had to make sure that the tests would all pass to be able to make a
pull request on the main repository at the end of the project.
The first tests we had to fix were related to transactions not being sent cor-
rectly, after debugging for a while we found that there was a race condition
and we were able to fix it using the ---race option of the go test suite.
The other tests that then started failing were related to the update of the

12

version those were fixed quickly.
We then encountered issues with the tests of the transaction pipeline txPipeline
and we realized that those tests were broken by the new implementation.
We had to skip them and we did not rewrite them since it would have been
too time consuming at this point of the project.
Eventually we last tests failing were related to the view change requests that
were triggered uselessly by the children. In fact this happened because the
requests packets used in fact two purposes : one for polling and the other
one as a ”heart beats” monitor to insure that the leader of the round was not
down. Since those packets were removed, the children always thought that
the leader was failing and triggered view change requests. The fix was to
replace this function by instead using the response from the request to add a
transaction which usually contains an acknowledgment that the transaction
was indeed included as well as the hash of the block etc.

Implementing this new protocol was very challenging and we had to
modify a lot of the parts of the Byzcoin protocol while insuring that the
development tests would still run correctly.
We had a lot of trouble understanding the code, and it was difficult to
apprehend on how to register correctly a protocol in the system, since there
was two ways to do it and the one appropriate was not the same as the one
used by the collect transaction protocol. Once we had something that made
the old simulation run we had to insure every test from the local test suit
would pass, as well as making the online Jarvis tool happy with both the
formatting and the linting of the code to keep the standard at the level of
the implementation.
All in all we spent a considerable time working on the understanding of
the old implementation, the creation of the protocol, its inclusion in the
implementation and the debugging afterwards. Hopefully with the help of
our supervisor as well as a code review, we were able to create a pull request
that could be added on the current repository.

Challenges and risks

The new protocol comes with some drawback as discussed earlier. For ex-
ample some future work should think about the following points :

• Transaction flooding to ddos the current leader

• Edge cases that might not be covered by tests

• Optimality of the protocol

13

• Measuring using a cluster of nodes/not in localhost

Results

It was now time to verify if our work had any influence on the latency of
the protocol. We created this graph which measures the difference of the
latency of transactions locally on both of our computers.

Figure 8: Comparing the latency difference of the two protocols

We generated this graph using a simple simulation of the protocol, that
is creating one block after a child node submits a transaction.

We can clearly see from the graph that the new protocol actually de-
creased the latency with an improvement of around 1.5. It would now be
interesting to perform such an analysis on a large cluster with many more
nodes. Also it would be interesting to measure the total number of packets
used for a sample run and compare them with the new protocol to see if
there was a decrease in the network usage. We we rerunned pprof to check
for possible changes in the data and there seem to be some changes but
nothing substantial.

14

5 Conclusion

To conclude we first had to learn about Byzcoin and its protocol. We then
had to measure the current implementation and get used to the codebase
which revealed to be a significant challenge. We then designed, implemented
and debugged a new protocol to be added to the current code and measured
its performance compared to the old one. We were happy to achieve a
decrease in the latency of Byzcoin by the use of our new Rollup Transaction
protocol. Despite the context of this semester which made our work harder,
we would have liked spending more time on writing code and we were often
blocked by bugs which slowed us significantly all along the project. Still we
learned a lot both in the field of distributed systems but also in development
best practices, on how to apprehend a large codebase and on how to maintain
its quality over time.

15

Bibliography

[1] Enhancing Bitcoin Security and Performance with Strong Consistency
via Collective Signing,
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16 paper kokoris-kogias.pdf

Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford, 2016.

[2] Practical Byzantine Fault Tolerance,
http://pmg.csail.mit.edu/papers/osdi99.pdf Miguel Castro and
Barbara Liskov, 2016

[3] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van
Renesse Bitcoin-NG: A Scalable Blockchain Protocol
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

[4] Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Bryan Ford
Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies
https://ieeexplore.ieee.org/document/7966966

[5] Byzcoin Ethereum Virtual Machine
https://github.com/dedis/cothority/tree/master/bevm

[6] Ethereum Whitepaper
https://ethereum.org/whitepaper/

[7] Cothority implementation
https://github.com/dedis/cothority

[8] Onet Monitoring tool
https://github.com/dedis/onet/blob/master/simul/monitor/monitor.go

[9] Pprof
https://github.com/google/pprof

16

[10] Monero Whitepaper
https://cryptonote.org/whitepaper.pdf

17

1 Appendix: Profiling Appendix

The first graph profiles the simulation with the same parameters as in his-
tograms, i.e : 200 transactions, 5 instructions by transaction, 5 hosts and a
one second block interval.

The second graph profiles the simulation with the following parameters
: 1 transaction, 1 instruction by transaction, 5 hosts and a one second block
interval.

We put them in full page otherwise they are too small to read.

18

Type: cpu
Time: Jun 4, 2020 at 12:14pm (CEST)
Duration: 8.56s, Total samples = 2.78s (32.47%)
Showing nodes accounting for 2.17s, 78.06% of 2.78s total
Dropped 149 nodes (cum <= 0.01s)
Showing top 80 nodes out of 324

syscall
syscall

0.55s (19.78%)

byzcoin
(*Service)

createStateChanges
0 of 0.88s (31.65%)

byzcoin
(*Service)

processOneTx
0 of 0.92s (33.09%)

 0.78s

bbolt
(*DB)
Update

0 of 0.25s (8.99%)

 0.05s

edwards25519
(*point)

MarshalBinary
0 of 0.11s (3.96%)

 0.04s

byzcoin
(*Service)

executeInstruction
0 of 0.77s (27.70%)

 0.77s

log
Lvlf2

0 of 0.50s (17.99%)

 0.14s

v3
(*Overlay)

TransmitMsg
func1

0 of 0.55s (19.78%)

messaging
(*Propagate)

Dispatch
0 of 0.29s (10.43%)

 0.23s

protocol
(*SubBlsCosi)

dispatchSubLeader
0 of 0.30s (10.79%)

 0.30s

skipchain
(*SkipBlockDB)

GetByID
0 of 0.08s (2.88%)

 0.02s

runtime
systemstack

0 of 0.38s (13.67%)

runtime
usleep

0.11s (3.96%)

 0.02s

runtime
madvise

0.11s (3.96%)

 0.11s

runtime
semasleep

0 of 0.38s (13.67%)

 0.01s
runtime

scanobject
0.04s (1.44%)

of 0.06s (2.16%)

 0.06s

runtime
(*mheap)

alloc
0 of 0.06s (2.16%)

 0.01s

runtime
wakep

0 of 0.11s (3.96%)

 0.10s

 0.02s

skipchain
(*ForwardLink)

VerifyWithScheme
0 of 0.12s (4.32%)

 0.06s 0.01s

protobuf
Encode

0 of 0.08s (2.88%)

 0.01s
trie

(*Trie)
SetWithBucket

0 of 0.11s (3.96%)

 0.11s

byzcoin
Instruction

VerifyWithOption
0 of 0.44s (15.83%)

 0.44s 0.31s

protobuf
Decode

0 of 0.13s (4.68%)

 0.01s

 0.01s

runtime
mallocgc

0.02s (0.72%)
of 0.19s (6.83%)

 0.02s

runtime
stkbucket

0.06s (2.16%)

 0.06s

runtime
memclrNoHeapPointers

0.04s (1.44%)

 0.01s

skipchain
(*Service)

bftForwardLinkLevel0
0 of 0.77s (27.70%)

 0.01s

byzcoin
(*Service)

verifySkipBlock
0 of 0.75s (26.98%)

 0.75s

 0.01s

bbolt
(*DB)
View

0 of 0.11s (3.96%)

 0.02s

schnorr
Verify

0 of 0.28s (10.07%)

 0.28s

goparsec
doParse

0 of 0.06s (2.16%)

 0.06s

log
lvl

0 of 0.51s (18.35%)

 0.50s

edwards25519
feSquare

0.19s (6.83%)

runtime
pthread_cond_wait

0.33s (11.87%)

edwards25519
(*point)

Mul
0 of 0.34s (12.23%)

edwards25519
geScalarMult

0 of 0.21s (7.55%)

 0.21s

edwards25519
geScalarMultBase
0 of 0.13s (4.68%)

 0.13s

edwards25519
feMul

0.17s (6.12%)

runtime
mstart

0 of 0.34s (12.23%)

 0.27s

protocol
(*SubBlsCosi)

makeVerification
0 of 0.52s (18.71%)

 0.52s

runtime
mcall

0 of 0.44s (15.83%)

runtime
schedule

0 of 0.45s (16.19%)

 0.43s

protobuf
(*decoder)
message

0.01s (0.36%)
of 0.22s (7.91%)

runtime
memmove

0.11s (3.96%)

 0.02s

protobuf
(*decoder)
putvalue

0 of 0.16s (5.76%)

 0.16s

 0.05s

 0.14s

runtime
newobject

0 of 0.06s (2.16%)

 0.01s

protobuf
(*decoder)

slice
0 of 0.15s (5.40%)

 0.15s

byzcoin
(*Service)

updateTrieCallback
0 of 0.19s (6.83%)

 0.02s

 0.09s

 0.02s

 0.04s

runtime
pthread_cond_signal

0.15s (5.40%)

bn256
(*gfP6)

Mul
0.01s (0.36%)

of 0.12s (4.32%)

bn256
(*gfP2)

Mul
0 of 0.11s (3.96%)

 0.06s

bn256
gfpAdd

0.05s (1.80%)

 0.04s

 0.01s

runtime
growslice

0 of 0.09s (3.24%)

 0.01s

 0.71s

 0.01s

platform
(*Localhost)

Start
func1

0 of 0.21s (7.55%)

 0.02s

simulation
(*SimulationService)

Run
0 of 0.19s (6.83%)

 0.19s

protobuf
DecodeWithConstructors

0 of 0.22s (7.91%)

 0.22s

 0.09s 0.02s

 0.03s

 0.01s

 0.09s
edwards25519

feCMove
0.09s (3.24%)

 0.02s

edwards25519
(*projectiveGroupElement)

Double
0.02s (0.72%)

of 0.08s (2.88%)

 0.08s

v3
(*Overlay)

CreateProtocol
func1

0 of 0.11s (3.96%)

 0.06s

runtime
findrunnable

0 of 0.42s (15.11%)

 0.07s

runtime
stopm

0 of 0.34s (12.23%)

 0.32s

 0.13s

skipchain
(*SkipBlockDB)

StoreBlocks
0 of 0.28s (10.07%)

 0.28s

v3
(*TreeNodeInstance)

SendTo
0 of 0.06s (2.16%)

 0.01s

 0.05s

 0.04s

bn256
gfpMul

0.11s (3.96%)

edwards25519
(*extendedGroupElement)

ToBytes
0 of 0.15s (5.40%)

 0.11s

 0.09s

 0.19s

 0.23s

bdn
Verify

0 of 0.20s (7.19%)

 0.07s

 0.42s

 0.01s

poll
(*FD)
Write

0 of 0.51s (18.35%)

 0.03s

 0.01s

bn256
optimalAte

0 of 0.20s (7.19%)

bn256
finalExponentiation
0 of 0.11s (3.96%)

 0.11s

bn256
miller

0 of 0.09s (3.24%)

 0.09s

bdnproto
BdnSignature

Verify
0 of 0.15s (5.40%)

 0.13s

 0.20s

edwards25519
feInvert

0 of 0.14s (5.04%)

 0.14s

 0.25s 0.01s

byzcoin
(*txPipeline)
processTxs

func2
0 of 0.18s (6.47%)

byzcoin
(*defaultTxProcessor)

ProcessTx
0 of 0.18s (6.47%)

 0.18s

byzcoin
(*txPipeline)
processTxs

func2
1

0 of 0.18s (6.47%)

byzcoin
(*Service)

createNewBlock
0 of 0.18s (6.47%)

 0.18s

 0.51s

 0.15s

 0.01s

 0.01s

 0.10s

 0.12s

 0.06s

 0.08s

 0.06s
bn256

(*gfP12)
Square

0 of 0.07s (2.52%)

 0.04s 0.03s

 0.33s

 0.14s

protobuf
(*encoder)

value
0 of 0.08s (2.88%)

 0.08s

 0.34s

 0.05s

 0.07s

 0.02s

 0.04s

 0.02s

 0.04s

 0.13s

 0.11s

 0.03s

runtime
startm

0 of 0.14s (5.04%)

 0.14s

 0.02s

 0.03s

 0.03s

trie
(*Trie)

set
0 of 0.10s (3.60%)

 0.05s 0.02s

 0.48s

 0.11s

 0.04s

 0.01s

 0.10s

Type: cpu
Time: Jun 5, 2020 at 6:57pm (CEST)
Duration: 8.54s, Total samples = 850ms (9.95%)
Showing nodes accounting for 740ms, 87.06% of 850ms total
Showing top 80 nodes out of 268

runtime
systemstack

0 of 200ms (23.53%)

runtime
madvise

80ms (9.41%)

 80ms

runtime
usleep

20ms (2.35%)

 10ms

runtime
wakep

0 of 80ms (9.41%)

 70ms

runtime
semasleep

0 of 50ms (5.88%)

 10ms

runtime
gentraceback
10ms (1.18%)

of 20ms (2.35%)

 20ms

bn256
gfpMul

160ms (18.82%)

v3
(*Overlay)

TransmitMsg
func1

0 of 160ms (18.82%)

messaging
(*Propagate)

Dispatch
0 of 100ms (11.76%)

 80ms

protocol
(*SubBlsCosi)

dispatchSubLeader
0 of 80ms (9.41%)

 80ms

bn256
(*gfP2)

Mul
10ms (1.18%)

of 150ms (17.65%)

 130ms

bn256
(*gfP)

Set
20ms (2.35%)

 10ms

syscall
syscall

90ms (10.59%)

runtime
mstart

0 of 190ms (22.35%)

 180ms

runtime
nanotime

20ms (2.35%)
of 30ms (3.53%)

 10ms

byzcoin
(*Service)

createStateChanges
0 of 110ms (12.94%)

bbolt
(*DB)
Update

0 of 80ms (9.41%)

 10ms

byzcoin
(*Service)

processOneTx
0 of 100ms (11.76%)

 80ms

protobuf
Encode

0 of 30ms (3.53%)

 10ms

byzcoin
(*stagingStateTrie)

LoadConfig
0 of 30ms (3.53%)

 10ms

edwards25519
feSquare

70ms (8.24%)

runtime
pthread_cond_signal

110ms (12.94%)

skipchain
(*ForwardLink)

VerifyWithScheme
0 of 220ms (25.88%)

bdnproto
BdnSignature

Verify
0 of 230ms (27.06%)

 220ms

bn256
(*gfP6)

Mul
0 of 130ms (15.29%)

 110ms

bn256
(*gfP2)
MulXi

10ms (1.18%)
of 20ms (2.35%)

 20ms

 10ms

skipchain
(*SkipBlockDB)

StoreBlocks
func1

0 of 40ms (4.71%)

 40ms

bbolt
(*Tx)

Commit
0 of 30ms (3.53%)

 30ms

bdnproto
BdnSignature

VerifyWithPolicy
0 of 230ms (27.06%)

bdn
Verify

0 of 200ms (23.53%)

 180ms

bn256
(*twistPoint)

Mul
0 of 50ms (5.88%)

 50ms
bn256

optimalAte
0 of 190ms (22.35%)

bn256
miller

0 of 60ms (7.06%)

 60ms

bn256
finalExponentiation

0 of 130ms (15.29%)

 130ms

v3
(*Client)

SendProtobufParallelWithDecoder
func2

0 of 170ms (20.00%)

v3
(*Client)

SendProtobufParallelWithDecoder
func1

0 of 170ms (20.00%)

 170ms

bn256
(*gfP12)

Exp
10ms (1.18%)

of 120ms (14.12%)

bn256
(*gfP12)
Square

0 of 80ms (9.41%)

 60ms

bn256
(*gfP12)

Mul
0 of 60ms (7.06%)

 50ms

log
Lvlf2

0 of 50ms (5.88%)

 30ms
byzcoin

(*Service)
executeInstruction
0 of 70ms (8.24%)

 70ms

runtime
notewakeup

0 of 110ms (12.94%)

 110ms

 20ms

bn256
(*gfP2)
Square

0 of 30ms (3.53%)

 10ms

protobuf
(*decoder)
putvalue

0 of 50ms (5.88%)

 30ms

protobuf
(*decoder)
message

0 of 50ms (5.88%)

 50ms

protobuf
(*decoder)

slice
10ms (1.18%)

of 40ms (4.71%)

 40ms

runtime
mcall

10ms (1.18%)
of 70ms (8.24%)

runtime
schedule

0 of 70ms (8.24%)

 60ms

 10ms

skipchain
(*Service)

propagateForwardLinkHandler
0 of 90ms (10.59%)

 90ms

byzcoin
(*Service)

verifySkipBlock
0 of 100ms (11.76%)

 70ms

 20ms

edwards25519
(*point)

MarshalBinary
0 of 20ms (2.35%)

 10ms

 70ms

bn256
(*gfP2)

Add
10ms (1.18%)

of 20ms (2.35%)

 10ms

bls
Verify

0 of 200ms (23.53%)

 200ms

skipchain
(*Service)

bftForwardLinkLevel0
0 of 100ms (11.76%)

 100ms

runtime
pthread_cond_wait

40ms (4.71%)

byzcoin
(*txPipeline)
processTxs

func2
0 of 40ms (4.71%)

 10ms

byzcoin
(*defaultTxProcessor)

ProcessTx
0 of 30ms (3.53%)

 30ms

log
lvl

0 of 60ms (7.06%)

 50ms

protobuf
DecodeWithConstructors

0 of 50ms (5.88%)

 50ms

protobuf
(*encoder)
message

10ms (1.18%)
of 30ms (3.53%)

protobuf
(*encoder)

value
0 of 20ms (2.35%)

 20ms

 20ms

 60ms

skipchain
(*SkipBlockDB)

StoreBlocks
0 of 80ms (9.41%)

 60ms
byzcoin

(*Service)
updateTrieCallback
0 of 20ms (2.35%)

 20ms

byzcoin
(*txPipeline)
processTxs

func2
1

0 of 60ms (7.06%)

byzcoin
(*Service)

createNewBlock
0 of 60ms (7.06%)

 60ms

bn256
gfpAdd

20ms (2.35%)

 230ms

v3
(*Overlay)

CreateProtocol
func1

0 of 30ms (3.53%)

 20ms

 40ms

byzcoin
Proof

VerifyFromBlock
0 of 170ms (20.00%)

 170ms

 10ms 160ms

 120ms

 10ms

edwards25519
geScalarMult

0 of 50ms (5.88%)

edwards25519
feMul

20ms (2.35%)

 20ms

edwards25519
(*projectiveGroupElement)

Double
0 of 20ms (2.35%)

 20ms

 10ms

 50ms

 20ms
bn256

(*twistPoint)
Double

0 of 30ms (3.53%)

 30ms

 30ms

 80ms

 80ms

runtime
findrunnable

0 of 60ms (7.06%)

 10ms 40ms 10ms

schnorr
Verify

0 of 60ms (7.06%)

 60ms

 10ms

 60ms

simulation
(*SimulationService)

Run
0 of 20ms (2.35%)

 10ms

sha256
block

10ms (1.18%)

 10ms

 60ms

 50ms

edwards25519
(*extendedGroupElement)

ToBytes
0 of 30ms (3.53%)

 10ms

 60ms 40ms

 40ms

 30ms 10ms

protocol
(*SubBlsCosi)

makeVerification
0 of 30ms (3.53%)

 30ms

 10ms

runtime
bgscavenge

0 of 30ms (3.53%)

runtime
scavengeSleep

0 of 30ms (3.53%)

 30ms 20ms 10ms

 30ms

 30ms

 30ms

 10ms 20ms

 10ms

 20ms

 10ms

 10ms

 20ms

 20ms

 10ms

 10ms

 190ms

 20ms

