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Abstract

Decentralized cosigning protocols have the main purpose of col-
lecting digital signatures of a message from many peers. This type of
protocols is used in two existing implementations. The first one is BLS
CoSi which uses trees to get the signatures and aggregate them, the
second one is a gossip protocol.

This semester project develops and compares alternative implemen-
tations of the gossip-based aggregation. The main goal of the new
implementations is to reduce the bandwidth used and to be relatively
fast.

Furthermore, this project adds an hybrid implementation of trees
and gossiping inside Cothority’s ONet library, which is used for a new
implementation of signature aggregation. Finally, there is an analysis
of this protocol, measuring its performance and finding possible future

improvements.
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1 Introduction

Decentralized cosigning protocols collect signatures of a message, these sig-
natures come from a group of many distributed peers. The collected sig-
natures are then aggregated and cosigning (collective signing) protocols are
used to validate the message. This type of protocol has many uses, for
example a network authority (e.g. a certificate authority) can release an
statement and have it validated by many other witnesses to improve secu-
rity. This could prevent a malicious third party to abuse stolen private keys
of the authority [1]. Another example is software updates signatures, which
can have the added security of many witnesses for software builds [2], and
protect users from updates that introduce backdoors or malware that could
be provided by a compromised update server, or even by law enforcement
intrusion [3].

The ByzCoin protocol [4] developed at the DEDIS lab at EPFL uses
a cosigning protocol as the core of its blockchain and cryptocurrency im-
plementation. In ByzCoin, a proposed block has to be signed by a mini-
mum threshold number of nodes to be accepted as part of the blockchain.
Using the cosigning protocol allows faster transaction confirmations, since
blocks that contain transactions are appended to the blockchain much faster.
Therefore message confirmation latency is very low, and this is one of the
main improvements of ByzCoin over other cryptocurrencies such as Bitcoin.
For fault tolerance, the cosigning protocol must tolerate a certain number of
offline or malicious nodes. No single node should process an overwhelming
amount of messages in order for the protocol to scale well, and the size of
messages should be kept low.

The goal of this semester project is to implement and evaluate alter-
native gossip protocol models for cosigning messages, and also a protocol
in ONet (The Cothority Overlay Network Library) to use for building col-
lective signatures. An existing cosigning protocol built at the DEDIS lab,
BLS CoSi [5] is used as the reference for performance comparison. Another
existing gossip-based cosigning protocol [6] is also used as a starting point
for the implementation. BLS CoSi uses the Boneh-Lynn-Shacham signature
scheme [7], which supports multi-signatures [8]. Multi-signatures are short
signatures that can be used to verify the signing of a common message by a
large number of parties.

All cosigning protocols, existing and new, use a multi-signature scheme
based on BLS signatures to reduce the amount of data transferred and
stored, this type of signatures are relatively recent and proposed by Boneh,
Drijvers and Neven [9]. The existing BLS CoSi implementation is not effi-
cient when some of the nodes fail, and the existing Gossip-based cosigning
protocol fixes this problem, but has a increase of bandwidth and propaga-
tion time, so there is plenty of room for improvement. A gossip protocol is
well-suited for the task of improving fault tolerance, but has some downsides



that will be analyzed. This report introduces new cosigning protocols and
then analyzes them based on an experimental evaluation using Cothority
simulations.

The main goal of the new protocols is to improve the efficiency when
compared to the existing BLS CoSi and gossip-based protocol. The protocol
should be fast, while avoiding overwhelming participating nodes and being
fault tolerant. The new protocol is designed mainly for the use case of
ByzCoin, although other applications are certainly possible.

Section 2 of this report gives some background on gossip protocols and
the cryptographic tools used both in the old and new cosigning protocols,
and outlining how the old protocols work. Section 3 presents the new gossip
protocols’ design and implementation. In Section 4, the evaluation method-
ology and setup used in the simulations is shown. Plots of the results are
included. Finally, Section 5 is the conclusion, which discusses the findings,
mentions the limitations, gives some insight on future work and improve-
ments, and closes the report.

2 Background

2.1 Gossip protocols

Gossip protocols are often used for information dissemination and computing
an aggregate between many nodes [10]. Generally, they can be used for
a range of tasks where information needs to be shared between different
nodes. They provide many useful properties while maintaining reasonable
efficiency. One important such property is logarithmic mizing time: if the
number of nodes is n, a correctly designed gossip protocol propagates a new
piece of information to all peers in O(log(n)) time, assuming nodes are not
overwhelmed by the rate of information transfer [10]. In addition to this, the
number of messages that a single node sends and receives is constant among
the existing peers. Another advantage is the simplicity of gossip protocols:
all participating nodes will usually run the same code.

A typical basic gossip protocol repeatedly runs three steps in a loop: peer
selection, data exchange and data processing [11]. The first step consists
of peer selection, here the node chooses one or more peers to exchange
information with, typically this selection is random. Choosing a new set of
random peers on every gossip round is a simple and effective way to achieve
fault tolerance. In the second step, data exchange, data is sent to or received
from the peers according to the selection made in the previous step. There
are two types of data exchange models, push and pull. The push model
sends information to the peer and no reply is expected. In the pull model, a
request is sent, to which the peer responds with the information they know.
Is is also possible to combine both of the models in one protocol. The third
step in the gossip protocol is data processing, this step is optional. Here the



new information is processed or passed to a higher application layer. Type
of processing and how it is done depends on the domain and application of
the protocol.

A gossip protocol that is concerned with information dissemination can
be analyzed by looking at the different states in which a node can find
itself in regards to an update [12]. In this context, an update is a piece
of information that is being spread. There are usually up to three states
called susceptible (S), which means the node does not know about the up-
date, infected (I), meaning the node is actively spreading the update, and
removed (R ), which means that the node knows about the update, but is no
longer actively spreading it. Using these definitions, some gossip protocols
use a SI model, where a node starts in state S and switches to state I when
it learns about an update, after which it can no longer change its state with
regards to this update. Another possible model is the SIR model, where a
change to state R can happen after the node transitions to state I.

2.2 Multi-signatures

A digital signature is a tool of asymmetric cryptography (also called public-
key cryptography), which is computed from a message and a private key,
and can be verified using the corresponding public key and the message.
Cosigning or collective signing, as used in this project and report, means
that multiple nodes digitally sign the same message or statement. For this
purpose, a multi-signature can be used. This is a compact value that proves
that multiple nodes have signed the same message [9]. A multi-signature
is computed by aggregating many signatures from different nodes. The
advantage of assigning a multi-signature to the message, instead of a list of
the signatures from different nodes, is that a multi-signature is smaller. This
is especially important in protocols where many cosignatures are exchanged
between nodes, as is the case in ByzCoin [4] (a decentralized cryptocurrency
using a Byzantine consensus protocol).

The multi-signature scheme used in the new protocol is based on work
by Boneh, Drijvers and Neven [9] and is implemented under the name BDN
in the cryptographic library Kyber [13]. BDN multi-signatures are based on
the Boneh-Lynn-Shacham (BLS) signature scheme [7] and use commutative
groups of prime order both for the signatures and the public keys. In the
version of the BDN scheme that is used in the existing cosigning protocol
and that will also be used in the new protocols implemented, the public
keys of all nodes have to be known in advance, even if not all of them end
up signing the message. The public keys are collectively used to create a
unique integer coefficient for each signatory: «a; for the first node, ao for
the second, and so on. In a set of three nodes signing the same message,
where S; is the signature of node 4, the multi-signature S is then computed
as S = a1 * S1 + ag * S2 + a3 * Sz (using additive group notation). A multi-



signature from just part of the nodes, such as a; * S1 + ag x S3, is equally
possible. Thanks to the associative and commutative properties (order of
operands and grouping of operands does not alter the result), partial multi-
signatures from two or more disjoint sets of peers can be added to form a
new valid multi-signature. A more in-depth explanation of BDN is found
in the paper presenting the scheme [9], and BLS is explained in a relevant
article by Snigirev [14].

To verify a multi-signature the verifier must know the public keys of all
the nodes that are part of the group, including those who did not end up
signing. In the context of the cosigning protocols relevant to this project,
this is not a problem, since all nodes know the public keys of all peers. The
verifier must also know which nodes contributed to a multi-signature, so it
uses the corresponding public keys for the verification process. This is solved
by storing a bitmap together with each multi-signature that indicates the
contributing nodes.

2.3 Existing protocol implementations
2.3.1 BLS CoSi protocol

In BLS CoSi [5], a protocol instance is initiated when a cosignature is re-
quested on some node by a client from a higher application layer. BLS CoSi
is a part of the Cothority framework [15], which handles authenticated com-
munication between nodes, and also is in charge of the distribution of public
keys and membership of nodes. Therefore, it can be assumed that all nodes
know all public keys from the start and that the set of peers is known
and constant for the duration of the protocol. Generally, there is a certain
threshold of nodes that must sign a message it before it is considered a valid
cosignature. For this project and report, we assume that Byzantine consen-
sus is needed, which requires the assumption that up to f out of n = 3f +1
nodes may be faulty (this includes both offline and malicious nodes) and we
require 2 f+1 nodes, i.e. just above two thirds of nodes, to sign a message [4].

BLS CoSi works by arranging all participating nodes in a tree of depth 3.
The root of this tree is the node where the protocol instance is initiated,
which is simultaneously the node where the cosignature needs to be returned
to an application layer in the end. An initial signature request containing
the message to be signed is sent by the root to all its child nodes in the tree.

These internal nodes then send a signature request to their children,
which are leaf nodes. The leaf nodes reply by sending their signature to their
parent nodes, who then aggregate the received signatures. They add their
own signature and return the aggregated signature to the root, who then
combines the aggregates and its own signature to form the final cosignature.
Each node can also choose not to sign the message, and in that case, instead
of a signature, it sends a refusal message.



One problem of BLS CoSi is that if a child of the root is faulty and does
not return the expected aggregate, the root potentially misses out on a lot
of signatures. To mitigate this problem, the root rearranges the tree and
tries again if, for example, it has not heard back from a child after a few
seconds. However, this solution is not ideal, as it is possible that multiple
attempts are needed, which can cost a lot of time and bandwidth.

2.3.2 Gossip aggregation protocol

As the result of a previous project [6], there is an implementation of message
cosigning that uses a gossip protocol. The interface for calling this protocol is
the same as for BLS CoSi. As before, the protocol starts with a single node,
the root, needing a cosignature. Any node can start a protocol instance and
will then be the root for this instance. The root has a special role in the
protocol, as the root needs to return a cosignature to an application layer
in the end.

During the main part of the protocol, only one type of message is ex-
changed between nodes, called a rumor message. It contains the statement
to be signed as well as all the signatures the sender has seen so far. At the
moment the protocol starts, only the root knows about the protocol. The
other nodes start participating after they receive a rumor message for the
first time.

The behavior of each node during this initial phase of the protocol is
simple. After receiving a rumor message for the first time, the node adds
its own signature to its collection of known signatures (assuming that the
node chooses to sign the statement). A node also adds all signatures to its
collection when they are received for the first time. Each node periodically
sends a rumor message, containing the full collection of known signatures,
to a set of r different randomly selected peers (r is smaller than the number
of nodes n). This sending of rumor messages happens at a regular interval ¢,
typically a fraction of a second in a context like ByzCoin. The parameters
r and t have the same fixed value for all nodes.

This implementation also has two variations on how the aggregation is
done. The first and the more simple one, aggregates signatures at the root
node after enough signatures from peers have been received. The second
variation, aggregates signatures earlier along a conceptual binary tree. Each
leaf in this tree stands for a signature from a single signatory. All other nodes
in the binary tree stand for the aggregation of their children. For example,
with four potential signatories A, B, C' and D, there are four leaves, one for
each of them. One level up, we might have one parent for the aggregation
{A, B} and one for {C, D}. At the top of the binary tree is the aggregation of
these two: {A, B, C, D}. The second protocol variant aggregates signatures
if and only if the aggregation exists in this binary tree. This way, there are
never any two multi-signatures from disjoint sets of signatories.



As soon as the root node has received a threshold number of signatures
through this process of gossip, it sends an aggregated cosignature to the
application that requested it. At this point, the protocol has fulfilled its
task, and all that is left to be done is to wind down the protocol. This
needs to be done with some care; after all, the other nodes do not know
when the protocol is done. To signal that the protocol is finished, the
root sends a shutdown message to s different randomly selected peers and
enters shutdown mode, where s is another parameter with the same fixed
value for all nodes. In shutdown mode, incoming rumors are answered with
a shutdown message and incoming shutdown messages are ignored. The
stored collection of signatures is no longer needed in shutdown mode. When
a node receives a valid shutdown message, it sends the message on to s
different randomly selected peers and enters shutdown mode.

The rumor messages act as push messages most of the time. However,
when they reach a node in shutdown mode, they act more like a pull mes-
sage, pulling the shutdown message. The protocol is designed to spread
information quickly, with efficiency only being a secondary concern. This is
why entering shutdown mode is only possible after it has been proven that
the root has received a valid cosignature.

This implementation is more efficient in a scenario with failing nodes
than the BLS Cosi protocol, but at the cost of a higher protocol duration,
and increased bandwidth use. It will be used as a benchmark for alternative
implementations of gossip-based aggregation by trying variants of the gossip
model used.

2.4 Cothority Overlay Network Library - ONet

The Overlay-Network (ONet) is a library for simulation and deployment of
decentralized, distributed protocols. For this purpose, it offers a framework
for research, simulation, and deployment of crypto-related protocols; with
a special emphasis on decentralized, distributed protocols. It is used in
research for testing out new protocols and running simulations, as well as in
production to deploy those protocols as a service in a distributed manner.

ONet is developed by DEDIS/EFPL as part of the Cothority project that
aims to deploy a large number of nodes for distributed signing and related
projects. In cothority, nodes are commonly named conodes. A collective
authority or cothority is a set of conodes that work together to handle a
distributed, decentralized task. ONet offers an abstraction for tree-based
communications between thousands of conodes.

ONet allows you to set up protocols, services and apps. Protocols are
a short-lived set of messages being passed back and forth between one or
more conodes, Services define an API usable by client programs and instan-
tiate protocols, and apps communicate with the service-API of one or more
conodes [16].



3 Design and implementation

3.1 Alternative gossip-based aggregation protocols

Similar to the existing BLS CoSi and Gossip with aggregation implementa-
tions, the new cosigning protocol is written in Go and fits into the Cothority
project [15]. It makes use of different tools developed by the DEDIS lab,
including Kyber [13].

The interface for calling the new protocol is the same as for BLS CoSi.
As before, the protocol starts with a single node, which is called the root,
requesting a cosignature. Any node can start a protocol instance and will
then be the root for this instance. The root has a special role in the protocol,
as the root needs to return a cosignature to an application layer in the end.

The parameters r (number of randomly selected nodes for each gossip
round), s (number of randomly selected nodes for shutdown message prop-
agation) and ¢ (time interval between gossiping rounds) are sent along with
rumor messages in our current implementation to help us test the effects
of these parameters in experiments. In a real-world implementation, they
would be fixed in advance.

For this part of the project, the following alternative gossip protocol
models were implemented.

3.1.1 Mask protocol

The most important change for this gossip implementation when compared
to the existing aggregation gossip one is the use of both push and pull
messages. This is achieved by adding a bitmap mask of all the signatures
known by the node who is sending the message, so the receiving node can
compare this mask with the signatures it has already seen, and then send a
pull message to request the specific signatures they still need. In theory this
will increase the number of messages sent by nodes, but could potentially
reduce the total bandwidth used, since we are reducing the impact of a
failing node when compared to the previous tree based implementations. It
should also reduce the propagation time needed, since nodes will be able
to ask for the signatures they need, and they can be sent not only by the
signing peer, but any peer who has seen this signature.

During the main part of the protocol, only one type of message is ex-
changed between nodes, called a rumor message. It contains the statement
to be signed, the sender’s signature, and a bitmap of all the signatures the
node knows and are available for requests.

Similar to the previous gossip protocol, after receiving a rumor message
for the first time, the node adds its own signature to its collection of known
signatures (assuming that the node chooses to sign the statement). A node
also adds all signatures to its collection when they are received for the first
time. Each node periodically sends a rumor message (with the mentioned



contents), to a set of r different randomly selected peers (r is smaller than
the number of nodes n). This sending of rumor messages happens at a
regular interval ¢. These parameters r and t have the same fixed value for
all nodes.

As soon as the root node has received a threshold number of signatures
through this process of gossip, it sends an aggregated cosignature to the
application that requested it. At this point, the protocol has fulfilled its
task, and for the final shutdown step, the root sends a shutdown message
to s different randomly selected peers and enters shutdown mode, where s
is another parameter with the same fixed value for all nodes. In shutdown
mode, incoming rumors are answered with a shutdown message and incom-
ing shutdown messages are ignored. When a node receives a valid shutdown
message, it sends the message on to s different randomly selected peers and
enters shutdown mode. To prevent an attack where a malicious node causes
other nodes to enter shutdown mode prematurely, shutdown messages have
to be signed by the root. Invalid messages are simply ignored.

3.1.2 Mask aggregation protocol

For this variation on the mask protocol explained in the previous paragraphs,
we also use both push and pull message and a bitmap mask of the signatures
known. The difference is in the signature being sent, which instead of being
a single one, is a multi-signature, the aggregation of all the signatures known
by the sender. The receiving node will store this aggregated signature, see if
it comes from a disjoint set of signatories when compared to the signatures
it knows. If the received multi-signature does not conflict with the signa-
tures known by the receiver, it will aggregate them. If it does conflict, it will
be compared with other received and stored multi-signatures, aggregated if
possible and stored. All signatures and multi-signatures received are com-
bined in all the possible aggregations, until a node creates a multi-signature
with enough signatures to satisfy the protocol.

After the aggregation and storing of multi-signatures, if it doesn’t have
enough signatures yet, the node will compare the received bitmap mask
with the signatures it has already seen, and send a pull message to request
the combination of signatures they are missing. In theory this will increase
the number of messages sent by nodes, but could potentially reduce the
total bandwith used, since we are reducing the impact of a failing node
when compared to the previous tree based implementations. It should also
reduce the propagation time needed, since nodes will be able to ask for the
signatures and/or multi-signatures they need, and they can be sent not only
by the signing peer, but any peer who has seen this signature.

The rumor message for this version of the protocol contains the statement
to be signed, the sender’s multi-signature, and a bitmap of all the signatures
the node knows and are available for requests.



Similar to the previous gossip protocol, after receiving a rumor message
for the first time, the node adds its own signature to its collection of known
signatures (assuming that the node chooses to sign the statement). A node
also adds all signatures and multi-signatures to its collection when they are
received for the first time. Each node periodically sends a rumor message,
to a set of r different randomly selected peers (r is smaller than the number
of nodes n). This happens at a regular interval ¢, and both r and ¢ have the
same fixed value for all nodes.

As soon as the root node has received a threshold number of signatures
through this process of gossip, it sends an aggregated cosignature to the
application that requested it, shutdown messages are propagated, and then
the protocol is finished.

3.1.3 Aggregation protocol with homomorphic subtraction

In this variation of the gossip protocol, both push and pull messages are sent.
The rumor message contains the statement to be signed, the sender’s multi-
signature, and a bitmap mask of the signatures known by the sender. On
the receiving end, the peer will try to aggregate the multi-signature received
with its own multi-signature. Any overlapping signatures are subtracted
using the scalar point homomorphic subtraction in the Kyber library [13],
so the result of this subtraction can be aggregated with the received multi-
signature. If for the subtraction operation the node needs some specific
signatures that they don’t know, they will reply with a pull message to the
sender. This will only be done if the needed signature is available according
to the bitmap mask they received in the message.

Each node periodically sends a rumor message, to a set of r different
randomly selected peers, at a regular interval £, until the signature minimum
threshold is reached, then the protocol is shutdown and completed with the
delivery of the aggregated cosignature to the application to requested it from
the root node.

Because of time constraints, this implementation couldn’t be completed,
so the evaluation chapter of this report doesn’t contain results for this im-
plementation.

3.2 Hybrid protocol in ONet

For the implementation of cosigning in the Cothority Overlay Network Li-
brary, the first design tried to insert the gossip logic into the treenode layer
of ONet, since this layer had access to the TreeNodelnstance class, which
represents a Cothority protocol instance, which is the main type of protocol
that would use this library. Here we identified a problem with trying to
add the gossip protocol in the ONet library. The shutdown of the gossiping
would be problematic, since it requires a shutdown message to be propa-



gated to enough peers, and this would affect all the metrics we are using to
measure efficiency (duration time, number of messages sent and bandwith
used). Then we decided that to keep the best of both protocols (tree based
propagation and gossip based propagation), we would implement a hybrid
of both, having a sendHybridRumor() function in the overlay layer of ONet.
This function can be used for the implementation of cosigning in a protocol
external to ONet that has it as a dependency.

Consequently, the new type of message added to the overlay layer of
ONet, would be a hybrid between a rumor message and a tree-based mes-
sage. For this hybrid-rumor propagation, there are two sub-rounds in every
gossiping round. First, we create a m-ary tree with a depth of 2. The
root node and all intermediary nodes would have a maximum of m children
nodes, which is a parameter received by the hybrid-rumor function. Then,
once this tree is created, for the first sub-round the root sends the rumor
to the intermediary nodes. They sign the message, send a response, and
forward the rumor received to the leaf nodes. These leaf nodes just send
their response to the intermediary node, which in turn forwards it to the
root. After time ¢ (which is also a configurable parameter), the root node
checks how many responses it has received. If it has received all the sig-
natures from the tree, it finishes the gossiping round. If it is missing any
signatures, the second sub-round starts, here it tries to contact the missing
nodes directly, so a failing intermediary node doesn’t affect the effectiveness
of the propagation as much.

The rumor message is stored in all the instances of overlay of the nodes
that have received it. The responses received are stored only in the root
node. There is also a static function added in the overlay, that has as input
the rumor message that a node received, and the output of this function
is sent as the response message. By default this function just returns the
same message it received, but it can be customized by a Cothority protocol
with its own implementation. This function will allow us to use the hybrid-
rumor in a gossip protocol, since the signature of the message can be placed
in this place, so the overlay layer doesn’t need to know about Kyber suites
or signature schemes.

After this was completed inside ONet, we developed a cosigning proto-
col that simply runs many rounds of Hybrid Rumors being sent, until the
threshold of received signatures is met. Finally these signatures are ag-
gregated, the multi-signature is validated and sent to the application that
requested the cosigning.
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Table 1: Number of nodes used in simulations

Total number of nodes | Number of Failing nodes
7 0-2
16 0-5
25 0-8
36 0-11

4 Evaluation and results

4.1 Methodology used for experimentally evaluating the pro-
tocol

To evaluate the new gossip protocols, they were tested in Cothority simu-
lations and compared to the previous implementation under varying condi-
tions. These conditions include the number of nodes, the number of failing
nodes, and an artificial message delay, which is used to simulate real-world
network delays. The delay for any given message was randomly picked from
a uniform distribution between a fixed minimum and maximum delay. A
failing node, in our simulations, drops all incoming messages and sends no
messages, effectively causing the node to be offline. If a node is not failing,
it is considered active and functions correctly, the root was active in all sim-
ulations. All experiments were run on a single machine with six 2.20 GHz
Intel Core i7 processors under Ubuntu 18.04.

Three metrics were used to evaluate the protocols. The most important
metric is the time it takes until the root returns the cosignature, called the
protocol duration. The other two metrics we measured are the number of
messages sent per active node and the amount of data sent per active node.
Both rumor messages and shutdown messages (when existing) are included
in these metrics.

4.2 Parameter values used in simulations

The parameters come in two groups: environment parameters that are not
within the node’s control, and protocol parameters that affect how the nodes
behave.

For the environment parameters, we simulated different combinations of
total number of nodes and number of failing nodes, as explained in Table 1.

In addition to this, a small range of possible delays (0.01 seconds between
the minimum and maximum delay) is specified to prevent unnatural effects
where, for example, messages from different nodes always arrive at the same
time.

e Minimum message delay: 0.095 seconds
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o Maximum message delay: 0.105 seconds

The threshold of signatories for a valid cosignature is always set to
n — [25] because this is the value that is used in ByzCoin. The de-
fault values for the other protocol parameters are as follows.

e Number of recipients for each rumor message: r = 3
e Interval between sending out rumor messages: ¢ = 0.07 seconds

e Number of initial shutdown-message recipients: s = 2

These default values for protocol parameters were chosen as a compro-
mise between protocol speed and efficiency.

The evaluation done has two parts, the first one is the comparison be-
tween the gossip protocol implementations, to see how the efficiency per-
formance has improved or decreased. The second part compares the ONet
Hybrid protocol with the existing gossip protocol, for evaluation of the dif-
ference that the implementation approach makes in the performance.

4.3 Comparison of the gossip protocol implementations

For the first part, the new gossip protocol was compared to BLS CoSi with
varying numbers of nodes and failing nodes, using the parameters mentioned
in the previous paragraphs. The duration of the mask protocol was fairly
stable, always measuring below 1.5 seconds in this set of experiments. With
very few failing nodes, it performs similar to the existing implementation,
and with a high number of failing nodes, the mask protocol is only slightly
slower (around 0.1 seconds).The mask aggregation protocol had a larger
protocol duration in all the scenarios. The timings are shown for n = 36 in
Figure 1. Each box goes from the first quartile to the third quartile. The
horizontal line is the median.
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Comparison of protocol duration (n = 36)
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Figure 1: Timings until a cosignature was returned using the different vari-
ations of gossip protocol.

For n = 36, if we compare the number of messages sent by every node,
as seen in Figure 2, both mask protocol and mask aggregation protocol
send more messages than the existing implementation, since they send pull
messages when possible, to get the signatures they need from other peers.
Nevertheless, if we compare the amount of data transferred (bandwidth
used) by every node, the mask protocol performs slightly better than the
existing gossip aggregation, with a consistent improvement of 100kb per
node, this can be observed in Figure 3. The mask aggregation protocol has
a larger amount of bandwidth used, this might be caused by the constant
pulling of all the different combination of multi-signatures that are available,
so when a node has k signatures, there are 2¥—1 possible sets of combinations
(excluding an empty set), and all of these are propagated by nodes requesting
them when they know about them. This explains the increased bandwidth
for the mask aggregation implementation.
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Comparison of message count (n = 36)
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Other results for simulations with different number of nodes, are available
in the form of plots in Appendix B.

4.4 Comparison of the ONet implementation with the exist-
ing gossip aggregation

In the second part, the new ONet hybrid protocol is compared to the existing
gossip protocol implementation with the same parameters mentioned earlier.
We can observe that the performance is improved in all the metrics, the
number of messages and bandwidth used is decreased significantly, and the
protocol duration also has a considerable improvement. Here we can see
the benefits of the Hybrid implementation, where we keep a low protocol
duration (except for a single outlier that takes 0.2 seconds longer than the
existing gossip implementation) and still have good efficiency in the quantity
of messages and data sent when some nodes are failing. These values are
shown for n = 36 in Figure 4, Figure 6, and Figure 5.

Comparison of protocol duration (n = 36)
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Figure 4: Timings until a cosignature was returned using ONet Hybrid
protocol vs Existing Gossip Aggregation.
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Comparison of message count (n = 36)
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5 Conclusions

Among the alternatative gossip-based aggregation implementations in the
first part of the project, the new mask protocol is the best performing, since
it keeps the same reasonably short time to produce a cosignature, doesn’t
have extreme outliers in the protocol duration. and while the number of
messages exchanged is higher, the amount of data transferred is lower than
the previous implementation. Taking into account the gossip protocol model
change from a push-only to a push and pull one, the performance improve-
ments on these metrics are reasonable. With the mask implementation we
have also experimentally backed up the property of gossip protocol theory
where it grows roughly like a function O(log(n)) of the number of nodes n.

For the mask aggregation protocol, the results are not good because of
the mentioned constant propagation of all possible combinations of multi-
signatures, which creates many unnecessary messages being sent around.
The model had good intentions of trying to find the multi-signatures that
can be aggregated to reach the threshold much faster by pulling these com-
binations, but this created not only an increase in the number of messages
and bandwidth used, but also the duration of the protocol. This is because
not only single signatures are being propagated, but also all possible multi-
signature combinations are being passed around between nodes. In Figure 1,
we can observe that with more nodes, the duration increases almost in an
exponential way, which is not good at all.

For the second part of the project, the hybrid protocol implemented using
ONet has a better performance than the existing gossip protocol, since it
creates trees in the first part of a propagation round, and then gossips the
message in the second part of it. This allows the new protocol to send less
messages if the tree part of the propagation doesn’t fail. If failure in an
internal node causes it to block their children in the tree part, this problem
will be overcome in the gossip part of the propagation.

The newly implemented protocols still have some limitations. They do
not adapt to the properties of the network, such as the network message de-
lay, because ideally, a gossip protocol would send fewer messages per second
in a slower network. Due to the inherent randomness in the gossip protocol
and the unpredictability of network message delays, there is no definite up-
per limit for the protocol duration. Membership needs to be closed for the
duration of the protocol, and all nodes need to know each other’s identities
and public keys beforehand. For security against man-in-the-middle attacks,
the protocol needs authenticated channels for messages.

There are some improvements that could be future work to expand the
possible uses and improve the speed and efficiency of the protocols. The se-
lection of peers who will receive a rumor in a gossiping round could be done
in a different way than random picks. There is also the pending completion
of the implementation of the protocol that uses homomorphic subtraction of
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signatures to use in a different aggregation. This would allow earlier aggre-
gation and in theory this would reduce the bandwidth used. Finally, formal
proof of all of the protocol’s properties, and a more complete statistical
analysis would be useful to make these implementations more attractive to
applications that could potentially use them.
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A Appendix: Installing and running the program

The code for the program is published on GitHub [17]. It can be installed
using Go 1.13 by running

go get github.com/dedis/student_19_elias

Make sure that go.mod is pointing to the correct version of ONet. If
needed, get the following ONet version (which has HybridRumor) and in
go.mod point to the directory where this was cloned:

go get github.com/dedis/student_19_elias_onet

Then navigate to the directory
student_elias/blscosi_hybrid_rumor/blscosi_hybrid_rumor/

and running this command:

go install

To launch a simulation, first install the simulation program in the directory
student_elias/blscosi_hybrid_rumor/simulation_bundle/

again with the same command as above:

go install

Then use a .toml file to set the parameters when running the command:

simulation_bundle local.toml

B Appendix: Full results

This appendix contains all the simulation results with the parameters
mentioned in chapter 4. The most important difference between graphs is
the number of nodes in the simulation. The y-axis starts at 0 in all graphs
for better readability. Results from Section 4 are repeated here for the sake
of completeness.
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Comparison of the gossip protocol implementations

Comparison of protocol duration (n =7) Comparison of protocol duration (n = 16)
12 pm Existing Gossip Aggregation " 25 mmm Existing Gossip Aggregation
B Mask B Mask
B Mask Aggregation B Mask Aggregation
10
20
3 3
<08 . M . @2
g ®
s 515
2 + . (] 5
2 c
2 0.6 ° .
@ @
z z *
@ @
2 : o 137 =l 22
= =] N "
0.5
0.2
0.0 0.0
0 1 2 0 1 2 3 4 5
failing nodes failing nodes
Protocol duration, n =7 Protocol duration, n = 16
Comparison of protocol duration (n =25) Comparison of protocol duration (n = 36)
35 EEE Existing Gossip Aggregation B Existing Gossip Aggregation
[ Mask [ Mask

5

30 EEE Mask Aggregation mmm Mask Aggregation

% 25 . % 4 s
g 20 % 5 PR
g . g ‘
o o 4+
£ 10 ﬁ + ﬂ é ﬁ £ i + i + i T ‘
F4E B R S ’ :
0.5-1-} lﬁﬁoﬁﬁﬂﬁgﬁﬁﬁéﬁ
0.0 0
0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 8 1 8 9 10 1
failing nodes failing nodes
Protocol duration, n = 25 Protocol duration, n = 36
Comparison of message count (n=7) Comparison of message count (n=16)
BB Existing Gossip Aggregation * EE Existing Gossip Aggregation T
B Mask 1200 g Mask
200  EEE Mask Aggregation mmm Mask Aggregation
8 8 1000
¢ . e ¢
'g 150 . . § 800 E}
. . P
‘g ‘g 600
3 100 a
£ s g . K 1
200 é * é ? = %
0 0
0 1 2 0 1 2 3 4 5
failing nodes failing nodes
Number of messages sent, n =7 Number of messages sent, n = 16

22



Comparison of message count (n =25)
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Comparison of the ONet implementation with the existing
Gossip aggregation
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Comparison of message count (n =25)
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