
Building an HTML/JS app to visualize the
contents of a Skipchain

Jeanne Chaverot

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Semester Project

January 2018

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Jeffrey R. Allen
EPFL / DEDIS

Contents

1 Introduction 1

2 SkipChain Explorer 1
2.1 Cothority Framework . 1
2.2 Choosing the right components 1
2.3 Talking to a SkipChain . 1
2.4 Changing the Roster . 2
2.5 Fetching the Blocks . 3
2.6 Block Information . 4

2.6.1 Backward and Forward links 5
2.6.2 Payload and Data . 5
2.6.3 Verifiers . 8
2.6.4 The Roster . 8
2.6.5 Additional informations 9

2.7 Unit Testing . 9
2.8 Issues . 10

3 SkipChain Graph 10
3.1 Blocks and Links Representation 10
3.2 Usability . 11
3.3 Issues . 13

4 Measurements 14
4.1 Incentive . 14
4.2 Results . 14

5 Future Implementations 15
5.1 Look for a block . 15
5.2 Add blocks . 15
5.3 Optimizations . 15

6 Personal SkipChain Explorer 15
6.1 Clone the project directory 15
6.2 Project setup . 16
6.3 Setup your personal Roster 16

7 Conclusion 16

1 Introduction

SkipChains are cryptographically-traversable, offline and peer-to-peer-verifiable
blockchain structures. A SkipChain is traversable in both directions, such
that one party can efficiently prove the correctness of a transaction anywhere
in time with respect to the other party’s reference point on the blockchain,
in a logarithmic number of steps, regardless of which party has a more up-
to-date view of the blockchain [1]. Today, we have the public Cothority
status dashboard at http://status.dedis.ch/, which gives no detail into what
blocks and data are stored on the SkipChain. How do we inspect and verify
the data that is stored in a given SkipChain? The goal of this project is to
develop a platform allowing users to navigate through a SkipChain’s blocks
and their content.

2 SkipChain Explorer

2.1 Cothority Framework

The Cothority project (collective authority) is a decentralized cryptogra-
phy Framework developed by the Decentralized and Distributed Systems
lab (DEDIS) at EPFL. The Framework [2] will be used in the context of
this project. In particular, the code in this repository allows the user to
access the services of a cothority and/or run its own conode.

2.2 Choosing the right components

Before jumping into what Cothority has to offer, it is important to have an
idea in mind of what we are working towards. This project uses Vue.js and
Vuetify for the application rendering. First of all, several existing Blockchain
Explorer tools have been analyzed and reviewed, such as etherscan.io and
blockexplorer.com, to help choosing the best features to be implemented.

The first draft contains the home page, where the latest blocks from the
given SkipChain would be displayed with some of the most interesting and
general information about each of these blocks.

In order to recreate this draft, it was necessary to do some initial re-
search on which Vuetify components to use and then on how to interact
with SkipChains.

2.3 Talking to a SkipChain

As a first step, everything needs to run locally to make sure it works as
expected. A local Roster is set up (i.e a group of Cothority servers) with

1

https://vuejs.org/
https://vuetifyjs.com/en/
https://etherscan.io/
https://blockexplorer.com/

three running nodes:

1 $./ run_conode.sh local 3 3

Once the local Roster is all set, it is possible to start generating SkipChains
via the SkipChain Manager (scmgr) tool. Using the SkipChain Manager,
the user can set up, modify and query SkipChains. The scmgr will be
running on the local machine and it will communicate with one or more
remote conodes. For it to work, the user needs the public.toml of a running
cothority where he has the right to create a SkipChain or add new blocks.
This command allows the user to generate interesting SkipChains (in this
example, a SkipChain with base 3 and height 4 is created):

1 $ scmgr s c -b 3 -he 4

2 ~/go/src/github.com/dedis/cothority/conode/public.toml

Once the SkipChain is created, scmgr will print out its ID, and the user can
start adding data into the chain:

1 $ scmgr s b add --data ’Hello’ { skipchain id }

2 $ scmgr s b add --data ’World’ { skipchain id }

2.4 Changing the Roster

As mentioned previously, the Roster is the group of Cothority servers which
will sustain the SkipChains. A button on the upper right of the page allows
the user to change the Roster he wishes to connect to via a simple text field.
In this project, the default Roster is set to be the following:

1 ‘

2 [[servers]]

3 Address = "tls :// gasser.blue :7002"

4 Public = "036 bf316e1ea6e7e99e0bb713419d16

5 c0b6794bf9dc442cc4cf36c3f935e93cf"

6 Description = "EPFL Cothority -server"

7 ‘

which allows the user to have access to the DEDIS’ SkipChains.

2

2.5 Fetching the Blocks

In this step, the https://www.overleaf.com/project/5c238c1dddbc4b53474c059cgoal
is to interact with a SkipChain. However, as the web front-end is writ-
ten in JavaScript using Vue.js and the back-end is written in Go, Proto-
col Buffers are needed. Protocol Buffer messages are a fast way to allow
back-end/front-end communication [3]. To access a SkipChain’s blocks the
method GetUpdateChain is used. A first surprise was to see that it didn’t
seem to load all of the chain’s blocks. After some research, it was realized
that this method returns all the blocks from the highest layer of forward
links. In other words, all the blocks from the fastest SkipChain’s traversal.

Another option would have been to call GetSingleBlockByIndex.
Although this method returns all the blocks, it is based on an iterative call,
and would therefore kill the essence of the SkipChain: a logarithmic chain
traversal. Only the ”main blocks” from these highest links were then kept.
In the home page, (status.dedis.ch/ng) the user is given the possibility to
choose the SkipChain that he wishes to connect to. After selection, the latest
blocks are displayed from the selected SkipChain, which are the blocks from
the response of GetUpdateChain.

Figure 1: Homepage after SkipChain selection. Blocks and their main info
are displayed

3

http://status.dedis.ch/ng/

2.6 Block Information

The ”Block Information” page is different for each block. It displays all the
information considered interesting about the selected SkipBlock.

First of all, a method called getBlockByHash has been created, which,
given a hash, returns the corresponding SkipBlock. This method will be
particularly useful when working with Backward and Forward links.

Once the user has selected the desired SkipChain, he can navigate through
its blocks, which is where it becomes interesting. What information is
contained in a given block? How many blocks are reachable via the For-
ward/Backward links? The Block Information page gives the user the fol-
lowing:

Figure 2: Information page for a selected block

4

2.6.1 Backward and Forward links

The Backward and Forward links of a block are displayed in function of
their level. The higher the level the faster the SkipChain will be traversed,
as it implies a bigger hop. The user can click on the link and he will be
redirected to the correspondent block page. As Forward and Backward links
are represented as hashes (and not SkipBlocks) of the block they point to,
getBlockByHash had to be used.

Figure 3: Forward and Backward Links of a given block

2.6.2 Payload and Data

The Payload and Data correspond to the Data Body and Data Header
of a SkipBlock. In the context of this project, there were two types of
SkipChains: ByzCoin and non-ByzCoin chains. A ByzCoin, by definition
[4] is a Bitcoin-like crypto-currency enhanced with strong consistency, based
on the principles of the well-studied Practical Byzantine Fault Tolerance
(PBFT) [5] algorithm. First of all, in the case of non-Byzcoin SkipBlocks
the Payload field of the block is null and the Data field is left as a hex dump.

Figure 4: Data Body (Payload) and Header (Data) of a non-ByzCoin Skip-
Block

5

ByzCoin SkipBlocks are particularly interesting as they can hold multi-
ple transactions per block. As a second step of the project, once everything
was working, ByzCoin blocks have been decoded by recognizing whether
there is a ByzCoin Verifier among the SkipChain’s Verifiers set. In order
to work with ByzCoin, it was necessary to stay on the byzgen 1810 branch,
as it was stable. Decoding the Payload and Data of the SkipBlock becomes
now more interesting.

ByzCoin Data

The following command allows us to inspect a block’s Data (Data Header):

1 const headerLookup = protobuf.root.lookup(’DataHeader ’)

2 const header = headerLookup.decode(this.block.data)

The Data Header field for ByzCoin blocks contains four elements: three
hashes: client transaction hash, state change hash and the trieroot defined
as the following:

• client transaction hash: a hash of all the client transactions listed in
the Data Body (Payload) part of the SkipBlock

• state change hash: hash of the state change, which is either Create,
Update or Remove

• Trieroot: hash of the Merkle trie root of Global State (whose value is
determined by StateChange)

and one timestamp.
These values were left as they are, except for the timestamp which has been
converted into readable format.

Figure 5: Data Header of a ByzCoin SkipBlock

6

ByzCoin Payload

As for the Data Body (Payload), we can inspect it with a similar command:

1 const bodyLookup = protobuf.root.lookup(’DataBody ’)

2 const body = bodyLookup.decode(this.block.payload)

The payload is displayed as a list of transactions, which can either be
accepted or rejected. We have two types of transactions: Spawn and Invoke
(we haven’t worked with Delete transactions, as there were none available).
Spawn and Invoke transactions both contain a list of instructions and a
signature. The signature for each transaction is represented as a tuple of
a Signature (UUID) and a Signer. Spawn instructions are characterized
by a contract id and an instance id (Figure 6). Invoke instructions are
characterized by a command (Figure 7). All instructions then contain their
arguments with name and value, which has been left under hexadecimal
format.

Figure 6: Payload of a ByzCoin SkipBlock as a Spawn Transaction with
contract id ”config” and instance id ”0”

7

Figure 7: Payload of a ByzCoin SkipBlock as list of Invoke transactions with
”transfer” commands

2.6.3 Verifiers

Verifiers tell the user whether this is a ByzCoin block or not. So far, the
block information page displays two kinds of Verifiers: Base Verifier and
ByzCoin Verifier. Each Verifier is displayed as a UUID.

Figure 8: List of Verifiers for a ByzCoin SkipBlock

2.6.4 The Roster

In this part, we display the information relative to the Roster. A Roster is
defined by its id and a set of conodes. Each conode has an id, an address,
and a potential description. Each id is displayed as a UUID.

8

Figure 9: The Roster of a given block

2.6.5 Additional informations

Additional information such as height, max height and base height give
details about the current SkipChain and SkipBlock. The bigger the base
height, the longer the links between the blocks get. The bigger the maximum
height, the longer the longest link gets and the more links a SkipBlock can
have.

Figure 10: Other informations about the given block

2.7 Unit Testing

Part of this project was to implement unit tests in order to verify that
everything is displaying accordingly.

Although Vue.js suggests its users to use Karma, this project uses Mocha
for unit testing as it is more straightforward and the most used library.
Mocha has proven to be useful to cover the basic tests that were needed in
this project. Two SkipBlocks that are connected to each other were saved
in a ‘blocks.js‘ file. Overall, it has been certified that the Block Informa-
tion page displays every item correctly, for instance the block’s hash, the
UUIDs of the Roster and Verifiers. It was also checked that the hashes of
the Forward and Backward links were displayed as expected in the Block
Information page.

A test coverage has also been implemented. Once the tests passed cor-
rectly, Travis was added into the project. Travis is a great way to check
whether all tests pass without forcing the user to run them himself. If the
user wishes to test the code before pushing its changes, the following com-
mands can be used:

1 $ yarn pretest --fix

2 $ yarn test

3 $ yarn coverage

9

At the end, creating tests was a great learning. Knowing that every-
thing works as expected and leaving the code in a good state for the next
programmer is rewarding and necessary.

2.8 Issues

One idea was, in the Forward/Backward links part of the block information
page, to show next to each link to which block index it redirects to. This
way, it would allow the user to know that with a click he can go from block
0 to block 1000, for instance. However, as Forward/Backward links are
represented as hashes and not SkipBlocks, it would be necessary to fetch
the SkipBlock (using getBlockByHash) to have access to its index, which
would be time consuming. As a result, the index of the SkipBlocks are not
displayed.

In this part, the reactivity of the components has major importance.
The user must be able to navigate quickly between the blocks and the page
design must be intuitive. Some bugs have been resolved, they resulted from
a keying problem. Indeed, in Vue.js the pages update themselves based on
a key given as input. If the programmer doesn’t choose the right one it will
result in a static page.

3 SkipChain Graph

The goal of this part is to create a visual identity to each SkipChain, allowing
the user to see its format and interact with it. First of all, we looked for
different libraries that could help reaching this goal. At the end, it has
been decided to use D3, a JavaScript library that helps bringing data to
life. Although there is a lot to take from D3, it was important to stick to
the basics and work from there. A method called getBlockByIndex will be
helpful in this part.

3.1 Blocks and Links Representation

To create the blocks and links, many instances have been used such as
rectangle, line, polyline and polygon. The design has been inspired on the
original paper [6]. For more usability, the graph has been changed from
horizontally to vertically. This way, the user can scroll through the blocks
more easily. As a first step, all the blocks that had been fetched were
displayed, that is the blocks that have been returned by the getUpdateChain
call. Indeed, as we remember, getUpdateChain only returns the blocks from
the highest Forward link traversal (see Figure 11 (a)). In the graph, each
block’ size is represented as a multiple of its height and the blocks are ordered
in function of their index.

10

https://d3js.org/

Once that was in place, the rest of the blocks (the un-fetched ones, non
returned by the getUpdateChain call) were displayed. The user has the
possibility to fetch any of these blocks by clicking on it. These unloaded
blocks are represented as grey squares. Unloaded blocks from higher layers
(i.e they have forward links of level 1 or higher) are represented in light-pink.
When the user clicks on a square, it fetches the corresponding block via a
getBlockByIndex call. The user can also have access to the information of
a certain block by double-clicking it: he will be redirected to the information
page of the block in question. We only display links from blocks that have
been fetched.

3.2 Usability

A user might want to have an easy access to the latest block. As the graph
visualization starts with the Genesis block, a button that allows the user to
go directly to the bottom of the page was added. This way, one can directly
access the end of the SkipChain (i.e the latest SkipBlock). The opposite
has also been implemented, once at the bottom of the page, the user can go
back to the top with a simple click.

One might also want to load the whole SkipChain, i.e all the grey squares,
or at least its majority. For this purpose, two buttons were added:

• Load Higher Traversal Blocks (see Figure 11 (b))

– This button will fetch all the blocks from the non-zero link layers
(represented in light-pink). That is, the only resulting unfetched
blocks are the ones from the lowest layer.

– This feature allows the user to have a good visualization of the
SkipChain without having to load it entirely.

• Load All Blocks (see Figure 11 (c))

– This button will fetch every single block form the corresponding
SkipChain.

– A pop-up will appear to confirm the action. Indeed, if the Roster
isn’t potent enough, the web-browser might crash.

11

(a) (b) (c)

Figure 11: The current SkipChain’s graph after (a) loading the Graph page
(b) fetching most SkipBlocks from highest link layers (c) fetching the whole
Chain.

12

3.3 Issues

One issue has come up when creating all blocks. Indeed, once getUpdateChain
returned some blocks, it was necessary to artificially create the rest of the
blocks (the unloaded ones) of the SkipChain in order to be able to display
them as well on the graph. Meaning that there is an array called allBlocks
containing either blocks (that have been fetched) either simple objects with
the following definition:

1 { loaded: false , index: i, height: 1 }

The height is preset to 1 so they can be displayed as squares, but once the
SkipBlock is fetched its real height is assigned to it. At this moment, an
indexing issue has been discovered: instead of showing a block’s index i, it
showed 2*i. After some research and re-reading of the code, to conclusion
that has been made was that the problem came from the Protocol Buffering
on the lab’ side. Once this issue was taken care of, indexes were displayed
as expected.

Some work has been done so that the SkipChain’s Graph displays cor-
rectly on mobile platforms, by adapting its dimensions.

13

4 Measurements

4.1 Incentive

So far, a visualization tool has been created for the SkipChains from a given
Roster and their content. The SkipChain technology promises a faster chain
traversal in logarithmic time in comparison to other BlockChain technolo-
gies. Has this development been able to keep that feature? Are SkipChains
still profitable and time-saving? To verify these hypothesis, a series of mea-
surements has been conducted. The following is being computed:

• First of all, how much time does it take to traverse every Forward link
layer. That is, how much time it takes to go from the Genesis block to
the latest block on the given layer of Forward link. This is computed
based on the getBlockByHash method.

• Then, it is interesting to see how long it takes to fetch every single
block from the chain index by index, using getBlockByIndex.

• Finally, we measure how much time it takes to traverse the whole
chain, how long it takes to get to the latest block starting at the
Genesis block. To do so, we stay on the highest Forward link layer at
all times. The search is done using GetBlockByHash.

4.2 Results

We will observe the results in the largest SkipChain we have so far, which
has 1’058 blocks to this date, and four different layers of Forward Links. It
is relevant to note that this SkipChain has base 10 and height 10.

Figure 12: Measurements for a 1’058 SkipBlocks SkipChain

As we can see it takes up to 2 minutes (129.757 s) to traverse the lowest
layer and 0.096 seconds to traverse the highest one with the getBlockByHash
call. It also takes up to 2 minutes (152.998 s) to fetch all blocks using
getBlockByIndex. Finally, it takes a total of 1.43 seconds to traverse the

14

whole chain. It can indeed be concluded that using higher level Forward
Links brings efficiency to the chain’s traversal. More precisely, using the
highest Forward links rather than sticking to the lowest level Forward link
is more than ninety times more efficient (129.7571.43 = 90.73). Of course, these
numbers are not static and will change form one measurement to the other.

5 Future Implementations

In this part, we will make a list of suggestions to improve this project.

5.1 Look for a block

A first feature could be to give the user the possibility to find a block based
on its hash. This would allow any user to verify a certain information is
indeed stored on the SkipChain. This feature could have the format of a
search bar to which we could even add different filters.

5.2 Add blocks

It could be interesting to give the user the possibility to add informations,
transactions, on the current SkipChain directly from this interface.

5.3 Optimizations

Finally, we could agree to optimize some of the already implemented func-
tionalities. For instance, we could change the Roster button. If many Ros-
ters exist, we could show a list of popular Rosters to which a user would
choose to connect to. When we have really large SkipChains, the Graph
part might be a little blurry and confusing. It could be interesting to have
a mini-map that allows the user to have an overview of the SkipChain’s
format.

6 Personal SkipChain Explorer

How to run this project to visualize your own SkipChains.

6.1 Clone the project directory

First of all, clone the project in the desired location

1 $ git clone https:// github.com/dedis/student_18_explorer

15

6.2 Project setup

In the command line of the project directory, run the following commands:

1 $ yarn install

2 $ yarn run serve

3 $ yarn run build

And open the project in your navigator (default http://localhost:8080)

6.3 Setup your personal Roster

By default, you’ll be connected to DEDIS’ Roster and have access to its
SkipChains. If you want to interact with your own SkipChains which are
running on your personal Roster, click on the Roster button on the top-right
of the page, and paste the data from your .toml file into the text component.
The page should directly load all your SkipChains.

7 Conclusion

SkipChains are strongly connected components that allow a fast content
retrieval. Although this technology is still under heavy development, we were
able to see and measure its efficiency. Far more than being able to store data
into SkipChains, we are now able to inspect its content. Even better, we can
now also interact with ByzCoin SkipChains and verify if a transaction has
indeed been stored with an interactive and visual application. An interesting
next step would be to fully optimize this implementation for mobile users
and keep it up to date with already existing projects, as e-voting for instance.
On a personal note, this project has allowed me to discover many aspects
of software development: From working with Vue.js, Vuetify and D3 in the
front-end to interacting with the Cothority Framework and creating unit
tests on the back-end, it has definitely been enriching. As a last comment
I would like to thank all the engineers that have to this day worked on the
Cothority Framework. A special thank you to Linus Gasser who’s kept his
conodes available so I could work with his SkipChains, and to my mentor
Jeff Allen who’s fed my journey with honest opinions and good advices.

16

References

[1] Bryan Ford: How do you know it’s on the blockchain? With a SkipChain
(2017)

[2] DEDIS: Scalable collective authority original documentation and project

[3] @dedis/cothority: Cothority client library in Javascript

[4] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan FordEnhancing Bitcoin Security and
Performance with Strong Consistency via Collective Signing

[5] CASTRO, M., AND LISKOV, B. Practical Byzantine Fault Tolerance.
In 3rd USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (Feb. 1999).

[6] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ismail Khoffi, Justin Cappos and Bryan Ford:
CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds

[7] Jeanne Chaverot: SkipChain Explorer: original project

17

https://bford.github.io/2017/08/01/skipchain/
https://github.com/dedis/cothority
https://www.npmjs.com/package/@dedis/cothority
https://arxiv.org/pdf/1602.06997.pdf
https://arxiv.org/pdf/1602.06997.pdf
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://eprint.iacr.org/2017/648.pdf
https://eprint.iacr.org/2017/648.pdf
https://github.com/dedis/student_18_explorer

	Introduction
	SkipChain Explorer
	Cothority Framework
	Choosing the right components
	Talking to a SkipChain
	Changing the Roster
	Fetching the Blocks
	Block Information
	Backward and Forward links
	Payload and Data
	Verifiers
	The Roster
	Additional informations

	Unit Testing
	Issues

	SkipChain Graph
	Blocks and Links Representation
	Usability
	Issues

	Measurements
	Incentive
	Results

	Future Implementations
	Look for a block
	Add blocks
	Optimizations

	Personal SkipChain Explorer
	Clone the project directory
	Project setup
	Setup your personal Roster

	Conclusion

