
Blockchain Based Approach for Preserving
Car Maintenance History

Iva Najdenova

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Master Project

March 2019

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Linus Gasser

EPFL / DEDIS

External Supervisor
Alexandru Rusu

Swisscom

Abstract

Fighting frauds in the automotive industry is an ongoing challenge. Con-

cerned by this problem are not only the owners and potential buyers of second-

hand vehicles, but also entities like insurance companies, garages, car dealers,

police etc. In our work, we present a solution for establishing trust between

these parties, by keeping records of repairs and maintenance car checks in

a decentralized ledger. For this proof of concept, we use the ByzCoin [15]

blockchain protocol together with the Calypso [7] framework, which provides

a secure way of storing and sharing confidential data over a blockchain with

dynamic management of access policies and ownership of the vehicle’s biogra-

phy. The conducted evaluation of our implementation shows that the system

works correctly also with larger networks, and up to 500 simultaneous car

enrollments or report submissions.

Contents

1 Introduction 4

2 Background 5
2.1 Bitcoin Blockchain . 5
2.2 Ethereum Blockchain . 6
2.3 ByzCoin Blockcain . 7

3 Project Overview 11
3.1 Use Case . 11

4 Implementation 13
4.1 Access Control with DARCs 13
4.2 ByzCoin Contracts . 15
4.3 Calypso Interaction . 16
4.4 Client Application . 18
4.5 Integration with the ByzCoin Skipchain Explorer 21

5 Evaluation 23
5.1 Changing the Number of Car Enrollments 24
5.2 Changing the Number of Nodes 27

6 Conclusion and Future Work 30

7 Acknowledgements 31

8 Apendix 35
8.1 Step-by-step Guide for Installation 35
8.2 Repository . 35

1 Introduction

Upon buying a second-hand car, in most cases, consumers wonder whether
that particular car has been stolen in the past or holds some hidden flaws.
Frauds are very common when it comes to previously owned vehicles and
some examples include tampering with the readings of odometers, hiding
maintenance details as well as the history of accidents.

This problem in the automotive industry costs the consumers, car dealers,
manufacturers, insurance and leasing companies approximately between 5.6
and 9.6 billion euros per year in Europe [17]. Thus, the question that per-
sists is how to fight these criminal deceptions and establish trust among the
above-mentioned entities.

Our motivation is to create a solution that allows buyers to be confident
in their purchase and owners to increase the value of their car. We propose
a proof of concept that includes a blockchain for keeping maintenance data
of cars in form of a digital registry, where the records persist forever and are
resistant to manipulation.

The idea is to add maintenance reports for every regular vehicle inspec-
tion, as well as for every unexpected malfunctioning or car crash. Some
of the data used in these reports is generated by IoT devices that measure
mileage, score of well driving and other parameters when placed on a vehicle.

This documentation is structured to offer a background information about
the blockchain technology in section 2 and then introduce an overview of the
project in section 3.

Furthermore, in section 4, we cover the implementation details of our work,
including the management of access rights, creation of digital contracts for
enforcing specific performance, handling the private data and also the inter-
action between the users and the blockchain.

Finally, in section 5 we test and evaluate the behaviour of our system in
larger networks and with parallel transactions. We utilize visualized charts
in order to draw better conclusions and then we finish our work with future
possibilities for improvement.

In summary, this project shows how the blockchain technology can be applied
in other spheres of the real world (particularly in the automotive industry),
and not only in the well known financial area, with the purpose of solving
trust and fraud issues.

4

2 Background

This section outlines the beginnings of blockchains applied in cryptocur-
rency systems like Bitcoin and Ethereum, and also describes the ByzCoin
blockchain which was selected as most appropriate for this project.

2.1 Bitcoin Blockchain

The blockchain concept drew attention in 2008 when Satoshi Nakamoto in-
troduced the Bitcoin [1] system for electronic transactions that rely on cryp-
tographic primitives instead of trusting a third party. A brief description of
the Bitcoin cryptocurrency system goes as follows:
Whenever Alice wants to transfer digital money ("coins") to Bob, she creates
a transaction and broadcasts it to a peer-to-peer network. This transaction
consists of a digital signature (using the private key of Alice) of the hash of
the previous transaction related to these coins, together with the public key
of the next owner - Bob [1].
Hence, Bob has access to the chain of ownership of the coins he has received,
but still does not have a proof that Alice has not sent the same coins to
another person. This double-spending problem is solved by requesting the
nodes of the peer-to-peer network to agree on a single order of transactions,
so that only the earliest transaction counts [1].

Figure 1: Blocks in Bitcoin [1]

Every participant of the network needs to first verify that the transaction
initiated by Alice does not use already spent digital money, and then place it
together with other transactions in a block that is supposed to be added on
a chain of blocks (Figure 1). To save space, the transactions are hashed in a
Merkle tree [26], and only the root of the tree is included in the header of the
block. In order to append a new block, the node, also called miner, needs
to solve a computing difficult task called proof-of-work (PoW) that involves
scanning for a value (nonce) that produces a hash which begins with a de-
termined number of zero bits [1]. As input to the hash function, in addition
to the nonce, there is also the hash value of the previous block. This way, by
hashing the transactions into a chain, it is impossible for attackers to change

5

a record without re-computing previous PoWs [1].

It can happen that two or more participants find a proof-of-work at nearly
the same time, and this is going to create forks in the blockchain. To solve
this issue, only the longest branch of blocks and the transactions taking part
of it is valid. Hence, the historical order of transactions is unique and the
same for everyone.

A transaction in the Bitcoin blockchain is considered to be confirmed with
high probability only after six additional blocks have been appended behind
it. The block mining rate is 10 minutes on average. This introduces high
latency in the system and hinders real-time transactions (Imagine waiting
one hour for a coffee you have bought with your digital coins).
Some other inconveniences also exist like waste of resources caused by the
unsuccessful miners when they are trying to append a new block. Further-
more, even though the Bitcoin blockchain documentation [1] ensures correct
processing of transactions if the majority of computing power is not owned
by malicious miners, there are still some vulnerabilities like strategic mining
attacks [19, 14].

2.2 Ethereum Blockchain

Since the Bitcoin cryptocurrency system created a revolution in the world
of decentralized systems, many other blockchain protocols and applications
started appearing, either to improve on Bitcoin or to find usage in other
fields (e.g. health care [2]).

One of the nowadays best known blockchain protocols is Ethereum [16],
due to a universality principle that allows users to create their own rules for
state updates ("contracts") using internal scripting language and then apply
these smart contracts in a variety of blockchain based applications (financial,
semi-financial and not financial at all, like online voting and decentralized
governance) [16].
The straightforward way of creating digital contracts that autonomously en-
force the rules of interaction and are precompiled in the nodes that maintain
the blockchain [16], is one of the most significant benefits one can get for
choosing Ethereum over the Bitcoin blockchain protocol.

Ethereum can be interpreted as a transaction-based state machine where
every new valid transaction leads to a state transition [16]. Similarly, like in
Bitcoin [1], for appending a new block of transactions, a miner needs to per-
form a computationally difficult task, with the underlying algorithm Ethash,
in order to find a proof-of-work before other competitors. An advantage of
Ethash is that it is ASIC-resistant, meaning that finding a nonce requires a

6

lot of memory and it is not possible to use the same memory for discovering
multiple nonces in parallel. Accordingly, this allows better decentralization
by making the distribution model as open as possible and preventing mali-
cious miners to skew the distribution in their favour [16].

Overall, Ethereum guarantees that every two individuals can be confident
that the outcome of their interaction will be in coordination with the speci-
fied digital contract.

2.3 ByzCoin Blockcain

The proof-of-work technique utilized in the Bitcoin blockchain protocol [1],
solves the consensus problem - several processes deciding on one value from
a set of proposed values (in this particular case: which update of the state
of the distributed ledger to follow). However, it only provides probabilistic
consistency guarantees, meaning that clients cannot immediately be certain
that a submitted transaction is committed even though it has been added on
the blockchain [15]. As mentioned in section 2.1, it takes at least one hour
for a transaction to be considered confirmed with high probability.

The blockchain introduced by the EPFL DEDIS (Decentralized and Dis-
tributed Systems) Laboratory solves this transaction commit latency prob-
lem, by replacing Nakamoto’s consensus [1] with a Practical Byzantine Fault
Tolerance [24] based protocol called ByzCoinX [22]. An improvement on
top of PBFT, that reduces the costs of the multiple rounds of this protocol,
is the inclusion of CoSi [18] - a collective signing protocol that aggregates
thousands of signatures [15]. ByzCoinX uses collective signing to achieve
consensus with absolute finality property (transactions are irreversibly com-
mitted within seconds unlike with probabilistic finality), and at the same
time preserves the open membership characteristic of a public ledger like
Bitcoin [15].
The servers that run the ByzCoinX protocol and offer decentralized services
to users, are called collective authority nodes or later on referred to as co-
nodes.

In this protocol, there is a leader which is responsible for contacting every
other node in the system in order to collect transactions submitted by end
users. For the communication, as well as for the collective signing, ByzCoinX
uses a tree structure with the leader as root, which significantly reduces the
transaction confirmation latency in the system [15].
Once the leader receives transactions from the followers, a block containing
the transactions is being created and sent back to the followers for validation.
If there are remaining transactions, they will be considered upon creation of
the next block [4].

7

In case the leader starts behaving maliciously or simply does not perform as
expected, the followers initiate a view change (change of the leader) [4].

In a similar fashion like in Ethereum [16], the ByzCoin blockchain proto-
col works with smart contracts precompiled into the conode binary, that
define how a certain instruction updates the global state. The leader com-
putes this state change, but every conode verifies whether it is correct. The
global state consists of instances, each one of which is tied to a contract and
holds data (Figure 2). A Merkle tree [26] root of the global state is stored
in every header of a block.

SkipBlock n-1SkipBlock n-2SkipBlock n-3 SkipBlock n

Backward-links:
hash of previous

blocks

Forward-links: signed

Authenticate

Batch

Order

Consensus

Clients ByzCoin Global State Contracts

Go

Java

JS Transactions

Node Node

Node

Darc1

Coin1

Coin2

OCS1

Darc2

Coin3

OCS3

OCS2

Darc

OCS

Coin
Instructions

Execute

Create / Update / Remove

SPAWN

INVOKE

DELETE

Instances
controlled by

DARCs

Every contract
produces a set of

state changes.

ByzCoin

Figure 2: ByzCoin (Simplified version of [5])

Instead of using a standard chain of blocks, where only neighbors are con-
nected, the DEDIS team presents a data structure that combines blockchains
and skip-lists [13] and names it a skipchain [8].

Skipchains enable both backward and forward timeline traversal with sin-
gle or multi-hop links. The backward links are cryptographic hashes of past
blocks and the forward links are cryptographic signatures of future blocks
that are added retroactively when the target block appears [8]. These for-
ward links allow future block validation, which is especially useful in scenarios
such as software updates, where an outdated client gets an update from a
not necessarily trusted peer [8].
The long-distance links allow traversal in a lower number of steps (logarith-
mic cost) and provide shorter proofs of existence. ByzCoin is, so far, the only
blockchain technology that uses this concept in order to prove that a given
instance exists without having to know the whole blockchain. Skipchains
also enable clients to verify that transactions are on the blockchain without

8

the need of being connected to the Internet [8].

Another clear benefit that ByzCoin [15] blockchain provides is management
of the access policies in the system in a dynamic and fully decentralized
manner. As a substitute for a password or public key for authentication, a
DARC (Distrubuted Access Right Control) structure is being used [12]. It
allows evolution of the description about who can or cannot access a certain
resource, by maintaining a set of changeable rules. How these DARC struc-
tures are implemented is explained in details in section 4.1.

Taking into consideration that most of the existing blockchain applications
which contain sensitive and private data use either semi centralized ap-
proaches (secret data is not stored on the chain) [20, 7] or ignore the privacy
problem [3, 7], the DEDIS Laboratory introduces a framework called Ca-
lypso [7]. Calypso provides a secure way of sharing confidential data over
a blockchain and also prevents a single point of compromise or failure in
the system by keeping the private data as on-chain secrets (using threshold
cryptography) [7].

The primary goal of Calypso is to allow only authorized clients to decrypt
the on-chain secrets, while maintaining at the same time a tamper-resistant
log of every access transaction [7].

The overview of the Calypso framework architecture is shown in Figure 3. It
involves a writer, a reader and two collective authorities (groups of signers)
[18].
The first one is called access control cothority and is responsible for
verifying and logging write and read transactions, as well as enforcing ac-
cess control policies. It consists of the same conodes that run the ByzCoin
blockchain protocol, but these servers also have the Calypso read and write
contracts compiled in their binaries.
The second one is named a secret-management cothority and is in charge
of handling and delivering secrets.

The process of storing and reading on-chain secrets goes as follows:

0. Initially, an administrator generates collective private-public key pair
for the secret-management cothority, by running a Distributed Key
Generation algorithm.

1. The writer creates a symmetric key to encrypt his/her secret and then
encrypts this symmetric key with the collective public key of the secret-
management cothority [7].

9

2. The encrypted secret and its access policy are stored on the blockchain
and a reader is able to download the secret and request to read it. The
read request is verified by the secret-management cothority and then
logged on the blockchain.

3. The reader uses the logged read request to ask the secret-management
cothority to re-encrypt the initial symmetric key with his/her public
key.

4. The reader can decrypt the symmetric key and therefore decode the
secret.

Providing a secure sharing of sensitive data with dynamic management of
access policies and ownership, is what makes Calypso and the ByzCoin
blockchain a perfect match for our project.

Car owners are able to grant access to their car service history to potential
buyers in order to increase the value (price) of the car, with the possibility
to remove the access if the buyer is no longer interested. Additionally, every
read and write transaction is logged and the history of the system cannot be
compromised if less than 1

3 of malicious nodes are present.

Figure 3: Calypso Overview [7]

10

3 Project Overview

As stated in the introduction, the goal of our work is to implement a blockchain
solution that can be used to fight frauds in the automotive world. To be more
specific, we apply the ByzCoin [4] blockchain technology and build a service
on top of it.

For a correct implementation, the system requires at least 5 machines, with
the assumption that at most one of them might be faulty or byzantine. This
is deduced from the statement that ByzCoin tolerates f faulty members
among 3f + 2 nodes in the system [15]. These conodes are envisioned to be
distributed between the distrustful parties (car manufacturers and dealers,
insurance companies, police...).

Each machine maintains a local copy of the blockchain and users are able
to interact with the nodes by using a desktop application (Figure 4). They
can either create and send a new transaction, or get a proof of existence for
the data stored on the blockchain.

Figure 4: System Description

In what follows, we describe the use case of our project.

3.1 Use Case

Depending on the access control in the system, blockchains can be public or
private. Private blockchains are suitable only when a set of known players
is allowed to participate. What ByzCoin and Calypso bring into the picture
is the possibility to open the system to unknown participants.

Current limitation, which is not inherent to the system, is that an adminis-
trator, at the beginning, defines which conode machines are going to be part
of the system and then sets the blockchain up. The administrator is also in
charge of enrolling new cars and members, each time a new user decides to
join the service. This accounts for a point of making profit, if registration
charges are introduced.
There are several roles that the participants can take on (Figure 5):

11

• vehicle owner

• a person allowed to add maintenance reports (further on referred to as
a garage mechanic)

• potential buyer

Figure 5: Use Case Diagram

The car owner is responsible for granting and revoking read access to poten-
tial buyers and write access to garage mechanics. Additionally, the ownership
of the car history can easily be transferred to another user after a successful
car sell without involving the administrator.

Furthermore, garage mechanics are responsible for data generation during
every regular car inspection or unforeseen repair, and are also required to
use the information provided by the IoT device connected to the car.

Finally, the entire maintenance history of the vehicles can be requested and
read by the allowed potential buyers.

Having envisioned and described the system model, we are able to proceed
with specifying the implementation details.

12

4 Implementation

The starting point of our implementation is the Cothority Template [11],
which serves as an example on how to create a ByzCoin [15] blockchain ser-
vice.

The main elements of the ByzCoin implementation are: instructions sent
by the clients, contracts that define how the instructions are interpreted, a
global state with instances which are tied to a contract and hold data, and
DARC structures (explained bellow) for access control (Figure 6).

Authenticate

Batch

Order

Consensus

Clients ByzCoin Global State Contracts

Go

Java

JS Transactions

Node Node

Node

Darc1

Coin1

Coin2

OCS1

Darc2

Coin3

OCS3

OCS2

Darc

OCS

Coin
Instructions

Execute

Create / Update / Remove

SPAWN

INVOKE

DELETE

Instances
controlled by

DARCs

Every contract
produces a set of

state changes.

ByzCoin

Figure 6: ByzCoin (Simplified version of [5])

Every user instruction which is sent to the ByzCoin service can be one of:
spawn for creation, invoke for update or delete for removal, and needs to
have an existing instance as a target (Figure 6). These instances maintain
information about their unique ID, version which is the number updates,
the contract ID tied to that particular instance, data to be interpreted by
the contract and a DARC ID for access control [9].

A detailed description of the ByzCoin implementation can be found on the
DEDIS cohority git repository [4].

4.1 Access Control with DARCs

The management of access rights is handled by DARC structures (Dis-
tributed Access Right Controls) [12], which maintain a set of rules. Every
rule consists of an action name and an expression that contains identities
allowed to execute that action.

DARCs can be updated by the identities specified in the evolve rule. There
exists also a notion of delegating the permissions to another DARC, by speci-
fying the DARC ID in the rule expression instead of an identity. This delega-
tion plays an important part in the smooth transfer of car history ownership,
that does not require an intervention by the administrator. On Figure 7,

13

we can observe the schema of DARCs required for our project.

Due to the security guarantees of our system, only the administrator has the
possibility to create new DARCs with the spawn:darc command. More-
over, each participant (user) has a dedicated DARC, that will prevent losing
his/her access rights upon losing credentials (private key), by including the
administrator identity in the evolve rule.

Furthermore, for every enrolled car, there needs to exist a separate DARC
for storing owner, writers (garage mechanics) and readers (potential buyers),
as well as a car DARC with rules for: creating a car instance, adding reports,
adding Calypso secrets and reading Calypso secrets.

Figure 7: DARCs Schema

14

Now that the DARC schema is determined, we can proceed to creating the
digital contracts that define what happens in the global state once some
particular command is invoked.

4.2 ByzCoin Contracts

The term smart contract is being used for digitally enforcing specific perfor-
mance. ByzCoin contracts resemble the Ethereum smart contracts [16] with
the difference that they are precompiled and every node needs to have the
same version in the interest of achieving consensus [9].

Digital contracts [9] regarding the ByzCoin configuration, the access control
and the Calypso functionality are predefined and take part of the cothority
project [10]. What is missing for our service is an additional contract related
to the car instances, which had to be first designed and then registered with
ByzCoin.

Within this car contract, we define methods for the spawn and the in-
voke type of instructions which create or update car instances accordingly
(Section 4). A method for the delete instruction is intentionally omitted
in the car contract as we wouldn’t like any vehicle’s maintenance history to
be erased.

Before creating a new car instance in the global state, we firstly check
whether the data corresponds to a car object with a string of vehicle identi-
fication number (VIN) and an empty list of reports (Table 1). If the verifi-
cation is correct, a new state change is being made. The command for this
instruction is named spawn:car.

When updating a car instance, a report is being added to the list of reports
about that particular car. Every report consists of a string representing the
ID of the garage mechanic that submitted the report, the date of the main-
tenance check and a calypso write instance that keeps secret data like for
example: mileage, repairs, warranty, etc (Table 1). The command for this
update instruction is named invoke:addReport.

SecretData Report Car
string ECOScore string Date string VIN
string Mileage string GarageID []Report Reports

boolean Warranty []byte WriteInstanceID
string CheckNote

Table 1: Data Structures

With this being specified, the car contract is ready to be registered.

15

4.3 Calypso Interaction

Before we dive into the usage of Calypso in our system, let us first take a
look at how Calypso is actually implemented [6].
As presented in the section 2.3, Calypso requires two collective authorities:

• Access Control Cothority

• Secret Management Cothority

In our implementation, we use the same nodes to constitute both access con-
trol and secret management cothorities.

Figure 8: Calypso [6]

As mentioned before, at the initialization of the blockchain service, the ad-
ministrator needs to generate a distributed key pair for the secret-management
cothority (Figure 8 Step 1). Every writer in the system (garage mechanic
from Figure 5) encrypts the symmetric key of his encoded secret with this
collective public key.

Furthermore, the access control cothority runs the ByzCoin protocol and
also maintains calypsoRead and calypsoWrite contracts. Thus, readers (po-
tential buyers from Figure 5) and writers (garage mechanics) can use it for
spawning read and write instances accordingly, as well as DARCs for access
control (Figure 8 Steps 2, 3, 4 and 5).

Finally, having the Read and Write Instance IDs, the reader (potential buyer)

16

is able to request the secret-management cothority to re-encrypt the sym-
metric key used to encrypt the secret by the garage mechanic, with the public
key of the reader in order to be able to decode the secret data (Figure 8 Step
6).

With this being explained, we can continue with the inclusion of Calypso
into our project.

The car ByzCoin contract enables creation of car instances. Once they exist
on the blockchain, the authorized garage mechanics are able to add reports
about them.
Adding such maintenance reports consists of two steps, i.e. two different
instructions (Figure 9):

1. Spawning a Calypso Write Instance that holds the private data (en-
crypted using symmetric encryption)

2. Updating the Car Instance by appending a new report to the list

In order to read the car "biography", a potential buyer needs to go through
the blockchain and find the block where the car instance is stored. This
process is much faster when using the DEDIS skipchains [8], thanks to the
long-distance links. The following steps are required for the potential buyer
when reading a maintenance history:

1. Obtaining the car data (VIN and list of reports)

2. Spawning a new Calypso Read Instance, by using the Write Instance
ID from the report

3. Requesting the re-encryption key from the Calypso Secret Management
Cothority, by providing the Read and Write Instances

4. Receiving the re-encryption key and decoding it by using his/her pri-
vate key

5. Decrypting the secret

For each report, steps from 2 to 5 need to be repeated.

Thanks to Calypso, it is cryptographically hard to learn any information
about the maintenance histories of the cars on the blockchain, unless having
the permission to do so.

17

Figure 9: Add Reports and Read History

4.4 Client Application

Having the car contract defined, together with the DARC structure for the
system, we were able to create unit and integration tests in order to make
sure everything works as expected (including the interaction with Calypso).
Once these tests passed and proved the correct functionality of the system,
we were confident about moving forward with developing a user friendly in-
terface for communication between the end users and the distributed ledger.

In order to implement a desktop application, we decided to use the JavaFX
software platform. To this end, we needed to use protocol buffers (mechanism
for serializing structured data[25]) for a conversion from "Go" to "Java", and
we also repeated our unit and integration tests, but this time in the Java
programming language.

We designed the desktop application in such a way that the necessary con-
figuration data, as well as the private credentials are stored locally in JSON
format.

18

Figure 10: Admin Screen

On the home screen, for demo purposes, it is possible to choose the identity
from all enrolled participant and the administrator. The administrator is
able to further register new cars, as well as new members (Figure 10). As
a reminder from chapter 4, it means adding all necessary DARCs for access
control in the global state. The new members can either be: users with
potential to become car owners, readers with the possibility to request car
"biographies" or garage mechanics intended to add maintenance reports.

A car owner can use the desktop application to grant and remove access
rights to potential buyers and garage mechanics for every vehicle he/she
possesses (Figure 11). It is also possible, on the same screen, to transfer
the ownership of the selected car. Each one of these options updates the
responsible DARC with the invoke:evolve command.

Once a garage mechanic has been granted a write permission, he/she is
able to generate review about the current state of the checked vehicle and
place it in a blockchain transaction (Figure 12).
Currently, a report consists of data about the mileage, warranty, score of how
well the vehicle has been driven and a check-up note, but it is always possible
to add additional parameters like for example the number of accidents.

19

Figure 11: Car Owner Screen

Figure 12: Garage Mechanic Screen

20

When a potential buyer enters the application, it is possible to request the
maintenance history of the chosen car (Figure 13). If he/she is not allowed
to access it, the application shows an error.

Figure 13: Potential Buyer Screen

4.5 Integration with the ByzCoin Skipchain Explorer

Many blockchain implementations include a tool that enables users know de-
tailed information about which transactions are taking part of a particular
block.

For our project, we are connecting the car ByzCoin blockchain to a SkipChain
Explorer [28], that has been developed as a student project in the DEDIS
Laboratory at EPFL.

On Figure 14 we can see the current interface of the SkipChain Explorer,
which contains the block number, transactions with instructions (addReport
in this case), status (accepted or rejected), as well as signatures.

It is also possible to visualize the skipchain as a graph made of blocks, and
load information only about the blocks we are interested in.

21

Figure 14: SkipChain Explorer

After being confident about the correctness of our implementation, we were
able to proceed with evaluating our work in a more realistic setup (larger
networks).

22

5 Evaluation

Having developed a fully functional ByzCoin Blockchain which keeps im-
mutable data about vehicles, leads us to testing our solution in a larger
network with different number of conodes and also distinct number of con-
current transactions.

As hardware for our simulations we used the IC Cluster (https://iccluster.
epfl.ch) at EPFL. Depending on the configuration, some nodes might need
to be run on a same physical server. Controlling the bandwidth and delay
of the network, not only between the servers, but also between every virtual
node, is done thanks to the Mininet [21] platform. Each server has 24 cores,
2.5 GHz processor and 256GB of RAM and can run around 300 cothority
nodes simultaneously [21].

When running a simulation, a configuration file is needed. It should con-
tain specific parameters like the name of the simulation, the number of:
servers, hosts, transactions etc, as well as the before mentioned delay and
bandwidth between nodes.

For our experiments, we needed to implement the onet.Simulation [23]
interface, and specify in the Run() method what scenario should happen.
In the beginning, it is mandatory to create the genesis block, and set the
blockchain up by specifying the time interval for creating blocks and gener-
ating the collective distributed key for Calypso [7]. Part of the preparation is
also enrolling the administrator and a user that will take the roles of owner,
potential buyer and garage mechanic for simplicity.

Next step is deciding which measurements we are interested in. For each
one of these measurements, we store in a .csv file the wall time (number of
seconds it takes in real life, with the network communication included) and
also the system cost calculated in seconds (time during which the system
nodes utilize their CPUs).

First, we want to determine the time it takes to concurrently enroll a certain
number of cars (defined in the configuration file). Registering vehicles con-
sists of two different transactions: one for creating car DARCs that manage
the access policies and another for creating car Instances in the global state.

Furthermore, we measure the time needed to add reports in parallel for
each one of the registered cars. This is also done with two transactions by
producing first Calypso Write Instances and then updating the car instances
to contain the report with the secret data.

23

https://iccluster.epfl.ch
https://iccluster.epfl.ch

Finally, we record how long it takes to read the maintenance history simulta-
neously for every enrolled car. Here, we distinguish between the time needed
for inserting a Calypso Read Instance into the global state (one transaction),
and the time required to obtain the re-encryption key from the secret man-
agement cothority in order to decode the secret (no transactions are created
for this step).

We have combined and plotted these measurements, so that it is possible
to observe how the time differs.

5.1 Changing the Number of Car Enrollments

In this section we describe a simulation where the number of hosts remains
constant - 5, but we modify the number of concurrently registered vehicles
(100, 200, 300, 400 and 500). The bandwidth we have configured is 100
MBps (both sending and receiving), whereas the delay between every two
hosts is 100 ms.

After conducting the planed experiments, we visualize the wall time (Fig-
ures 15 and 16) and also the system cost (Figures 17 and 18) measured for
a single: car enrollment, report addition and reading of a report. As a re-
minder, two transactions are needed for each car enrollment and each report
added, whereas only one transaction is needed for reading the secret data.

On Figures 15 and 16, it is perceivable that the wall time calculated per
car enrollment or report added/read is greater when there is a lower number
of concurrent transactions. This result was expected due to the fact that the
block creation time is equal for every case. We can draw a conclusion that
the time for executing one transaction stays approximately the same in the
scenarios with more than 300 parallel car enrollments, because the blocks
are filled with the maximum number of transactions that can be fitted in-
side them. It is also important to point out that the system crashed upon
stressing the network with 1000 simultaneous enrollments.

Observing the re-encryption time needed for reading one secret in Figure 16,
we can say that it stays constant in the scenarios with different number
of parallel requests addressed to the secret management collective author-
ity. This outcome was expected, because the number of hosts remained
unchanged and no transactions were involved in this process.

Regarding the system cost (time during which the nodes execute instruc-
tions), we can see on Figures 17 and 18 that it remains constant or slightly
increases with greater number of concurrent transactions. This behaviour
was presumed, as we don’t consider the waiting time for block creation.

24

Figure 15: Wall Time for a Car Enrollment/Report Added with 5 Hosts

Figure 16: Wall Time for Reading a Report with 5 Hosts

25

Figure 17: System Cost for a Car Enrollment/Report Added with 5 Hosts

Figure 18: System Cost for Reading a Report with 5 Hosts

26

5.2 Changing the Number of Nodes

In this section we take into consideration a simulation where we modify the
number of nodes that maintain the blockchain (5, 10, 20 and 40), whereas
the number of concurrent car enrollments remains constant - 100. The band-
width we have configured is 100 MBps, whereas the delay between nodes is
30 ms.

Having performed the experiments, similarly as in the previous section, we
were able to visualize the wall time (Figures 19 and 20) and also the system
cost (Figures 21 and 22) measured for a single: car enrollment, report addi-
tion or reading of a report, but now in a setup with different number of hosts.

From all the figures in this section (Figures 19, 20, 21 and 22), we can
deduce that enrolling cars, adding reports and read instances in the global
state, does not depend immensely on the number of hosts when there is a
fixed number of simultaneous transactions. This is logically expected when
every host is executing the same type of instructions.

What makes a big difference (for both wall time and system cost) is request-
ing the re-encryption key from the secret management collective authority
(Figures 20 and 22).

The reason behind this performance, is that in our implementation, the same
nodes are utilized to form both the ByzCoin collective authority (access con-
trol) and the Calypso secret management cothority. Thus, the re-encryption
process takes longer with more nodes, as the broadcasting protocol involves
many members.

An improvement would be to use an optimal, fixed number of hosts that
constitute the secret management collective authority, uncorrelated to the
ones forming the access control cothority.

By conducting these simulations, we gained a better perspective about how
our solution works in larger networks and with different number of concur-
rent transactions. We have also discovered limitations of the system, like not
supporting 1000 simultaneous car enrollments.

27

Figure 19: Wall Time for a Car Enrollment/Report Added with Various
Number of Nodes

Figure 20: Wall Time for Reading a Report with Various Number of Nodes

28

Figure 21: System Cost for a Car Enrollment/Report Added with Various
Number of Nodes

Figure 22: System Cost for Reading a Report with Various Number of Nodes

29

6 Conclusion and Future Work

We have presented a decentralized solution for fighting frauds in the au-
tomotive industry and establishing trust between vehicle owners, potential
buyers, car manufacturers, garages, insurance companies and car dealers.

In our work, we designed a service using the ByzCoin [15] blockchain proto-
col together with the Calypso [7] framework for securely storing private data
on a blockchain.

Overall, our implementation builds on top of the Cothority Template [11]
(a starting point for creating a ByzCoin service) and includes definition of
the access control structure, creation of the necessary car contract, handling
the sensitive data with Calypso and development of a desktop Java applica-
tion, used for interaction between the users and the blockchain service.

After producing a prototype, we have tested the correctness with unit and
integration tests. Once we were confident that it is a valid proof of concept,
we proceeded with stressing the network by introducing more nodes and con-
current transactions.

The evaluation has demonstrated that our system works well with up to
500 car enrollments in parallel. Moreover, with constant number of hosts,
the wall time (number of seconds it takes in real life, including the network
communication) calculated per transaction is greater when there are lower
number of concurrent transactions, because the block creation time is equal
in every scenario, whereas the system cost per transaction remains approxi-
mately the same independently on the number of concurrent transactions.
Furthermore, when we modified the number of hosts, we observed that it
takes longer to communicate with the Calypso secret management cothority,
due to the time used for coordination between nodes.

As a possible future task, we consider expanding the system to work on a
larger scale (for example vehicles from the entire world). The approach that
we would follow is sharding of the nodes, introduced in the OmniLedger
paper [22]. It increases the transaction processing capacity with the addition
of new members to the network [22], as it does not require each one of them
to validate every transaction in the system. Therefore, it also reduces the
load of the nodes. Additionally, we propose a future expansion that includes
creation of transactions directly by IoT devices attached to the vehicles.

With this proof of concept, we showed one of the many possible applica-
tions of the blockchain technology for establishing trust among distributed,
distrustful parties.

30

7 Acknowledgements

I would like to thank Prof. Bryan Ford and Alexandru Rusu for providing
me with the opportunity to work on a project of my interest.
Additionally, special thanks to my supervisor Linus Gasser for his guidance
and help throughout the whole project.

31

References

[1] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[2] LINN, L. A., AND KOO, M. B. Blockchain for health data and its po-
tential use in health it and health care related research. In ONC/NIST
Use of Blockchain for Healthcare and Research Workshop. Gaithersburg,
Maryland, United States: ONC/NIST (2016)

[3] JUAN DELACRUZ, I. B. Blockchain is tackling the challenge of data
sharing in government, May 2018

[4] DEDIS, ByzCoin, accessed 11.02.2019, <https://github.com/dedis/
cothority/blob/master/byzcoin/README.md>

[5] DEDIS, ByzCoin Figure, accessed 08.03.2019, <https://raw.
githubusercontent.com/dedis/cothority/master/byzcoin/
ByzCoin.png>

[6] DEDIS, Calypso, accessed 12.02.2019, <https://github.com/dedis/
cothority/tree/master/calypso>

[7] E. Kokoris-Kogias, E. Ceyhun Alp, S. Deepthy Siby, N. Gailly, L. Gasser,
P. Jovanovic, E. Syta, and B. Ford. CALYPSO: Auditable Sharing of
Private Data over Blockchains, 2018

[8] NIKITIN, K., KOKORIS-KOGIAS, E., JOVANOVIC, P., GAILLY,
N., GASSER, L., KHOFFI, I., CAPPOS, J., AND FORD, B.
CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds. In 26th USENIX Security
Symposium (USENIX Security 17) (2017), USENIX Association, pp.
1271âĂŞ1287.

[9] DEDIS, Contracts, accessed 11.02.2019, <https://github.com/dedis/
cothority/blob/master/byzcoin/Contracts.md>

[10] DEDIS, Cothority, accessed 11.02.2019, <https://github.com/dedis/
cothority>

[11] DEDIS, Cothority Template, accessed 30.09.2018, <https://github.
com/dedis/cothority_template>

[12] DEDIS, Darc, accessed 06.02.2019, <https://github.com/dedis/
cothority/tree/master/darc>

[13] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic
Skip Lists. In Proceedings of the Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA âĂŹ92, pages 367âĂŞ375, 14 Philadel-
phia, PA, USA, 1992. Society for Industrial and Applied Mathematics

32

https://github.com/dedis/cothority/blob/master/byzcoin/README.md
https://github.com/dedis/cothority/blob/master/byzcoin/README.md
https://raw.githubusercontent.com/dedis/cothority/master/byzcoin/ByzCoin.png
https://raw.githubusercontent.com/dedis/cothority/master/byzcoin/ByzCoin.png
https://raw.githubusercontent.com/dedis/cothority/master/byzcoin/ByzCoin.png
https://github.com/dedis/cothority/tree/master/calypso
https://github.com/dedis/cothority/tree/master/calypso
https://github.com/dedis/cothority/blob/master/byzcoin/Contracts.md
https://github.com/dedis/cothority/blob/master/byzcoin/Contracts.md
https://github.com/dedis/cothority
https://github.com/dedis/cothority
https://github.com/dedis/cothority_template
https://github.com/dedis/cothority_template
https://github.com/dedis/cothority/tree/master/darc
https://github.com/dedis/cothority/tree/master/darc

[14] KARAME, G. O., ANDROULAKI, E., AND CAPKUN, S. Double-
spending fast payments in Bitcoin. In 19th ACM Conference on Com-
puter and communications security (2012), ACM

[15] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B.
Ford. Enhancing Bitcoin Security and Performance with Strong Consis-
tency via Collective Signing. In Proceedings of the 25th USENIX Con-
ference on Security Symposium, 2016

[16] WOOD, G. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum Project Yellow Paper (2014)

[17] European Parliament, created 29.05.2018, accessed 05.02.2019,
<http://www.europarl.europa.eu/news/en/headlines/society/
20180525STO04312/fighting-mileage-fraud-on-used-cars>

[18] SYTA, E., TAMAS, I., VISHER, D., WOLINSKY, D. I., L., GAILLY,
N., KHOFFI, I., AND FORD, B. Keeping Authorities âĂĲHonest or
BustâĂİ with Decentralized Witness Cosigning. In 37th IEEE Sympo-
sium on Security and Privacy (May 2016)

[19] EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin mining
is vulnerable. In Financial Cryptography and Data Security. Springer,
2014

[20] AZARIA, A., EKBLAW, A., VIEIRA, T., AND LIPPMAN, A. Medrec:
Using blockchain for medical data access and permission management. In
Open and Big Data (OBD), International Conference on (2016), IEEE,
pp. 25âĂŞ30

[21] DEDIS, Mininet, accessed 25.02.2019, <https://github.com/dedis/
onet/blob/master/simul/platform/MININET.md>

[22] KOKORIS-KOGIAS, E., JOVANOVIC, P., GASSER, L., GAILLY, N.,
SYTA, E., AND FORD, B. OmniLedger: A Secure, Scale-Out, Decen-
tralized Ledger via Sharding. In Security and Privacy (SP), 2018 IEEE
Symposium on (2018), Ieee

[23] DEDIS, Onet Simulation, accessed 25.02.2019, <https://godoc.org/
github.com/dedis/onet#Simulation>

[24] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In 3rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Feb. 1999

[25] Google, Protocol Buffers, accessed 15.02.2019, <https://developers.
google.com/protocol-buffers/>

33

http://www.europarl.europa.eu/news/en/headlines/society/20180525STO04312/fighting-mileage-fraud-on-used-cars
http://www.europarl.europa.eu/news/en/headlines/society/20180525STO04312/fighting-mileage-fraud-on-used-cars
https://github.com/dedis/onet/blob/master/simul/platform/MININET.md
https://github.com/dedis/onet/blob/master/simul/platform/MININET.md
https://godoc.org/github.com/dedis/onet#Simulation
https://godoc.org/github.com/dedis/onet#Simulation
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

[26] R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980
Symposium on Security and Privacy, IEEE Computer Society, pages 122-
133, April 1980

[27] DEDIS, Simulation, accessed 25.02.2019, <https://github.com/
dedis/cothority_template/tree/master/simulation>

[28] DEDIS, Skipchain Explorer, accessed 24.02.2019, <https://github.
com/dedis/student_18_explorer>

34

https://github.com/dedis/cothority_template/tree/master/simulation
https://github.com/dedis/cothority_template/tree/master/simulation
https://github.com/dedis/student_18_explorer
https://github.com/dedis/student_18_explorer

8 Apendix

8.1 Step-by-step Guide for Installation

The bellow mentioned steps need to be taken into consideration when setting
the system up:

1. Download and install the Go programming language distribution (https:
//golang.org/doc/install)

2. Download and install Java and Maven (https://www.oracle.com/
technetwork/java/javase/downloads/index.html)

3. Download and install Docker
(https://runnable.com/docker/getting-started/)

4. Optional but recommended:
Download and install IDE for Developers that supports Go, e.g. IntelliJ
IDEA
(https://www.jetbrains.com/idea/download with Go plugin)

5. Run the following commands in terminal to download the project and
required dependencies:

$ go get github . com/ ded i s / c o tho r i t y
(and switch to the byzgen_1810 branch)

$ go get github . com/ ded i s / student_18_car

$ go get �d . / . . . (in student_18_car d i r e c t o r y)

6. Create Docker Container for the conodes and start them with the fol-
lowing commands:

$ make docker (in student_18_car d i r e c t o r y)

$ docker run �p 7002�7009:7002�7009 ��name car
� t i ded i s /conode_template�test

7. Run Main.java which is located in student_18_car/external/java/src/
main/java/ch/epfl/dedis/template/gui/index in order to start the client
application

8.2 Repository

• https://github.com/dedis/student_18_car

35

	Introduction
	Background
	Bitcoin Blockchain
	Ethereum Blockchain
	ByzCoin Blockcain

	Project Overview
	Use Case

	Implementation
	Access Control with DARCs
	ByzCoin Contracts
	Calypso Interaction
	Client Application
	Integration with the ByzCoin Skipchain Explorer

	Evaluation
	Changing the Number of Car Enrollments
	Changing the Number of Nodes

	Conclusion and Future Work
	Acknowledgements
	Apendix
	Step-by-step Guide for Installation
	Repository

