L

ECO_LE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Integrate Collective Certificate Management on
Skipchains and on cross platform mobile application

Claudio Loureiro

School of Computer and Communication Sciences
Decentralized and Distributed Systems lab

Semester Project

June 2018

Responsible Supervisor
Prof. Bryan Ford Linus Gasser
EPFL / DEDIS EPFL / DEDIS

Contents

1 Introductionl
(L1 Goals and motivation|.
(1.2 Background|
[1.2.1 Cothority]
M2Z2 7 TCisd . - o o e
(1.2.3 Let's Encrypt|
1.2.4 CPMAC. . . .
[L3 Previous workl
[1.3.1 Collective certificate management|.
[1.3.2 Cross platform application|. o oL
2__Main workl
[2.1 Collective certificate management ito Cisc|
[2.2 Cross plattorm application development|
[2.2.1 General improvements in Cisc| L
[2.2.2 Collective certificate management|.
2.3 Timitations
2.3.1 User name on the CPMAC|
[2.3.2 NativeScript and Node.js| o
2.4 Future Workl o
2.5 Conclusion|. e
3 User guide]
[3.1 Ciscguide| e
B.1.1 Tnitializationl oL
[3.1.2 Running collective certificate management|

[3.2 Cross plattorm application guide|
3.3 Initializationl

[3.4 Accessing the certificate module|

O UU T UT T e s W W

co o O

o
N = === O

12
12
12
13
14
14
14

1 Introduction

In today’s Internet, most of the communication needs to be encrypted to ensure confidentiality and
integrity of the data. Before a secured communication channel can be open between two devices (for
example, between Alice and Bob), they need to exchange their public keys. Those permits Alice to
send encrypted messages to Bob ensuring that he will be the only one who can decrypt it and vice
versa. The problem with this exchange is that Bob needs to be certain that the public key that he
receives is indeed Alice key. For example, a man-in-the-middle attacker can usurp the identity of
Alice and sent his public key to Bob. Because Bob believes that he gets Alice key, he will send her
confidential encrypted messages using the attacker’s key. Thus, the attacker will be able to read those
messages using his private key. One solution that has been developed to prevent this type of attack
was to create Certificate Authorities (CAs). Those entities deliver certificates that permit to prove
that a key belongs to the appropriate device. Typically, a web server owner request a certificate from
a CA so that he can prove to its clients that they use the right public key to communicate with him.
Typically by now if a browser wants to establish a secure channel (using HTTPS) with a web server
need to first get its certificate.

Then with this configuration new problems raise. How can we ensure that a particular CA is trustwor-
thy? A CA could be attacked and his private key could be stolen. Moreover, Certificate Authorities
could be improperly configured and thus deliver inappropriate certificates. Hence, users could acci-
dentally or maliciously request a certificate for a domain that they don’t own. One solution to solve
this problem would be to let decentralized protocols involving multiple entities manage certificates. In
this configuration, the certificate can be signed by multiple entities and then being considered as more
trustworthy.

This project will be mainly based on this previous solutions. We will in a first place expand a previous
student project which based its implementation in the following research paper named Keeping author-
ities “honest or bust” with decentralized witness cosigning [I] co-written by Bryan Ford et al. Our main
task will be to integrate this collective certificate management in the current Cothority framework
(explained in the later sections).

As this functionality is for now completely implemented only in the back-end, it is difficult for casual
users to use these technologies without investing ample time in the hands-on process and understand
the order of the different actions to realize a specific task. Therefore in a second place our project will
consist in giving a front-end implementation of the collective certificate management.

Another previous student developed a cross-platform mobile application that implemented the core
applications of our Cothority framework. We will benefit from this latter and integrate our front-end
implementation to the application.

1.1 Goals and motivation

As stated previously our project will be divided in two parts. The first part consists in integrating
into the current Cothority framework and improving the previous student’s work on the collective
certificate management [2]. The second part will involve the implementation in the already existing
cross-platform mobile application of a functionality that permits to manage the different stored cer-
tificates.

Since the Cothority framework has been updated these last months, the previous code is no longer
compatible thus an update was needed. Furthermore some other features could be added to turn the
functionality more robust. The different commands and functions of the certificate management will
be explained in the next sections.

At the moment the main applications of our framework are only available in the back-end. We felt the
need as user to have a better interface to deploy the different decentralized protocols and applications.
Thus the idea of having a smart phone application seemed logic to create such a front-end interface.
1.2 Background

In this section, we will describe our main framework and then we will focus on the main structures
needed for our project.

1.2.1 Cothority

The collective authority (Cothority) project provides a framework for development, analysis, and de-
ployment of decentralized, distributed (cryptographic) protocols. We can generate individual servers
called by cothority servers or conodes. The Cothority project is developed and maintained by the
DEDIS lab. Also, the Cothority project defines applications that can be run on those conodes [3].

e Status report: report the status of a conode
e Onchains-secrets: hides data on a blockchain and adds an access control to it

e Proof of Personhood: create a PoP party to distribute unique cryptographic tokens to physical
people

e E-voting: E-voting following Helios to store votes on a blockchain, shuffle them and decrypt all
votes

e Cisc: stores key/value keypairs on a skipchain, has special modules for handling ssh-keys, storing
webpages and requesting certificates from letsencrypt

This project will focus more specifically in one of these applications called Cisc.

,’/; \\‘.
secrets
Protocols Genera
'

A 4

Figure 1: Cothority framework

1.2.2 Cisc

Cisc stands for Cothorithy Identity Skipchain. The main goal of this application is to provide a simple
way to store data. The storing is based on the blockchain principle mostly used by crypto-currencies as
the most famous one: the Bitcoin. The main advantage of the blockchain is that the infrastructure is
decentralized. Therefore every user can have a local copy of it. Thus it is easy for a user to add a block.
And inversely it is hard to add a false block since every user will figure out the problem coming from
this one and they will ignore it. In addition this structure allows peer-to-peer and business-to-business

without the need of a third party. For example when doing money transaction the third party is the
bank. In the actual Cothority framework we call this chain a skipchain (based on the Chainiac-paper
[4]). Our Cisc application, based upon these skipchains serves, a data-block with different entries that
can be handled by a number of devices who propose changes and cryptographically vote to approve or
deny those changes. Different data-types exist that will interpret the data-block and offer a service.
Besides having devices that can vote on changes, simple followers can download the data-block and get
cryptographically signed updates to that data-block to be sure of the authenticity of the new data-block

13].

1.2.3 Let’s Encrypt

Let’s Encrypt is a certificate authority that was launched in 2015 by the Internet Security Research
Group (ISRG). The advantage of this Certificate Authority is that certificates are delivered for free
and automatically. Let’s Encrypt provide a protocol called Automatic Certificates Management En-
vironment (ACME) which allows automatic communication and certificates requesting between a web
server and a CA. However before giving the certificate Let’s Encrypt verifies that the person requesting
the certificate is the owner of the web server. The validation is realized through a challenge where the
client needs to put a certain file on a certain place. This CA is used in our project due to the facility
of requesting a certificate and it is easy to implement our challenge verification in our web server.

1.2.4 CPMAC

CPMAC stands for Cross-Platform Mobile Application. As the name indicates, this app is compatible
with Android and iOS. The chosen framework to create this app is called NativeScript [5] and the used
language is the JavaScript. It allows to have a real native app on both mobile operating systems. The
main purpose of the app is to have user-friendly interface in order to complete Cisc or PoP tasks. To
implement such an app we also need some "technologies" such as web sockets to send data back and
forth to the server or cryptographic algorithms such as Schnorr signature or elliptic curve cryptography.
The app structure can be summarized with the following picture taken from the previous student’s
work [6].

CisC PoP
Libraries
N CPMAC)
[Technologies]

Figure 2: CPMAC structure

1.3 Previous work

In this section we describe the work already done on the collective certificate management and on the
cross-platform application.

1.3.1 Collective certificate management

We can find here the different methods already implemented concerning the collective certificate man-
agement.

— Request: this functionality request a certificate to Let’s Encrypt for a given domain. As ex-
plained earlier, the client needs to prove his authenticity by completing in our case a HT'TP-
challenge for our web server. Once we get the certificate this one goes to data proposal and the
different users have to vote positively to store this certificate in the Skipchain.

— Renew: this functionality permits a client to renew a given certificate stored in the Skipchain.
By doing this the expiration date of the certificate is extended by three months.

— Verify: this functionality verifies if a given certificate is valid.

— Retrieve: this functionality permits to retrieve the PEM file of a certificate stored in the
Skipchain.

— Add: this functionality permits to add an already existing certificate to the Skipchain
— List: this functionality lists every certificate stored in the Skipchain.
— Revoke: this functionality revokes a certificate and suppress it from the Skipchain

For further details about the implementation of these methods refer to Robin Berguerand’s work [2].
Our task will be to re implement these methods into the current Cisc framework.

1.3.2 Cross platform application

As stated earlier, the mobile application implemented the Cisc and the PoP functionalities from the
Cothority framework. Again I will briefly describe these two applications.

PoP App

The PoP app of the Cothority framework is used to generate and verify proof of personhood, which
indicates that a user is a human being. Personhood is proven through stating that a specific person
was at a precise location at a particular time and thus that this user is not a bot or any other kind of
human-simulating program. This application is already implemented in our mobile application. PoP is
used to display the data shared between attendees and organizers, it shows the list of all fetched final
statements and generated tokens. The Org tab contains all the functionalities needed by the organizers
of PoP party. For further information you can refer to previous student’s work : Cédric Maire and
Vincent Pétri [6].

Cisc App

When navigating through the Cisc in the mobile app, we access a page where we need to establish a
connection to a Skipchain. Once connected we have a new interface (UI) with three tabs: QR, Home,
Data. The QR tab displays a QR code of the connected skipchain. The second tab is home, it shows
the data stored in the skipchain as well as the proposed data. Finally the third tab permits the user
to add a key value by pressing the respective button.

2 Main work

In this chapter we will describe the work realized on the collective certificate management and on the
cross-platform mobile application.
2.1 Collective certificate management into Cisc

First, we describe the changes and/or improvements realized from the previous functionalities explained
in. In addition to the explanation of the functionality of each command previously stated in , We
give the parameters for our CLI of the commands composing our actual Cisc certificate management.

e cert request : cert request domain-name cert-dir www-dir [Skipchain-ID]

e cert list : cert list [command options| [Skipchain-ID]

OPTIONS:

—verbose, -v Display the fullchain certificate
—public, -p Display the public certificate

—chain, -¢ Display the chain certificate
e cert verify : cert verify cert-key [Skipchain-ID|
e cert renew : cert renew cert-key [Skipchain-ID]|
e cert revoke : cert retrieve [command options| key [Skipchain-ID]|
e cert add : cert add domain path [Skipchain-ID]

In the following parts, I explain the main improvements acted to these commands.
Multiple Skipchains changes

In the previous implementations, the proposed code was only compatible with a framework containing
one skipchain. In the next Cothority framework it was possible for a user to create and join different
skipchains. Thus one has to manage in which skipchain they want the certificate to be stored or to be
revoked. Therefore now when realizing a certificate operation, a skipchain ID has to be given if the
user is connected to more than one skipchain.

Request certificate changes

When running the request command with previous implementation, the obtained certificates and the
private key generated from registering into the ACME server were stored in the current folder (in addi-
tion to being stored in the skipchain). Thus if we executed the command in the www folder, the private
key would be deposited in this folder and therefore everybody accessing for example our Cothority
server https://cothority.net/privkey.pem could get access to the private key. To solve this issue,
the user needs to explicitly give the path to the folder from where we wants to store the certificates and
the keys. In addition, he also needs to give the path to the www folder (to complete the http-challenge)
and the domain name. Also to help the user we store the path leading to certificates (which can be
displayed with the certificate command list). Finally to make more robust the process of requesting
the certificates if an error happens in the process. All the created files (certificate or private keys) are
deleted. The process of requesting a certificate did not change from the previous implementation and
works as follows. At first, the program creates a client for the ACME by querying the Let’s Encrypt
server resource directory. Then, the program generates a RSA key-pair that is sent to the server to
register (see Figure [3|inspired by previous student project) [2].

Renew certificate changes

As for the request certificate command, when renewing a certificate, the physical certificate is stored in
the folder from where the command is executed. Since we saved the certificate path (from the request
command) the renewed certificate will automatically replace the old one. If for some reason the path
of the certificate was not defined the file would be stored in the current directory.

Retrieve certificate changes
The command retrieves the fullchain and the public certificate of the given domain. The files rel-

ative to the certificate will be placed in the current directory. We can also specify to store in a special
folder by giving a flag and giving the desired path.

https://cothority.net/privkey.pem

Conodes
v

At them on the skipchain 1. Collect certificate

Cothority

Let’s Encrypt CA

Figure 3: Requesting structure

Revoke certificate changes

To revoke a certificate the user needs to specify the path to the private key generated when the
certificate was requested. In the previous implementation we needed to execute the command in the
same directory as the private key.

List certificate changes

This command now only shows the key of the certificate, in other words it displays the domain name for
which the certificate was requested. In addition to this, it also prints the expiry date of the certificate
as well as the the path that leads to this certificate. By giving the flag -c it only shows the value of
the chain certificate, by giving -p it shows the value of the public certificate of the domain and finally
by giving -v it shows the entire fullchain certificate.

Add certificate changes

Now the command only accept a PEM file as argument instead of a raw text copied in the com-
mand line interface.

Verify certificate changes

Apart from changing this functionality to be compatible with multiple skipchains, we did not need to
modify or improve this command.

2.2 Cross platform application development

This next section will explain the work realized for the cross platform application. In a first part we
will explain the improvements made to the general application mostly related to the Cisc. In a second
part, we will explain the work realized for integrating the collective certificate management to the Cisc.

2.2.1 General improvements in Cisc
2.2.1.1 Multiple Skipchains

Beforehand our Cisc drawer was designed with three tabs (Qrcode, home and data) as explained
previously. Also this Cisc drawer only allowed connecting to one skipchain. In order to implement

multiple skipchains to our app, we had to find a way to store the data corresponding to each of the
stored skipchain. Our solution was first to allow instantiating multiple classes (previous implementation
only allowed one singleton class) and then save in a folder for each created skipchain the core data of
this latter. So now when trying to join a new skipchain it now creates a folder and fill in automatically
a file (identity_link.js) with its corresponding skipchain data. To ensure that we don’t overwrite
folders when joining a skipchain, we generate a Universally Unique IDentifier (UUID) as the name of
our folder. Furthermore, for testing purposes one can create a skipchain and give as parameter a folder
name already containing the necessary information of an existing skipchain. To reflect these changes
we need to update our UL The idea was to create a page for Cisc which would permit the user whether
to choose between an existing skipchain(s) available or he could simply just add a new skipchain. To
display the existing skipchain in the app we loop through all the saved folder attached to a skipchains
and we send this to the Ul. Concerning the skipchain join, there is a plus floating action button which
allows to scan a skipchain QR code.

(o v.0ux] o 9 9. 01240

Available Skipchains

IesilServer Skipchain
tl5:4/192.33.210.38:7002
9df815ffdab3f3c0c04f2¢c2c7458a84

Skipchain ID
Actual Data

test

local-skipchain Actual Devices
tls://192.168.1.169:7002 claudio
60676714481 f0be55d778346b30c0fe Joker

TOGGLE PROPOSED/
ACTUAL DATA

RELOAD

Figure 4: Cisc home page (left) and its corresponding result after pressing on the "local-skipchain"
(right)

As depicted in the figure [4] the user can select the desired skipchain and the page of this latter will
open. Also a delete feature has been implemented. By swiping the skipchain to the left a delete button
appears. This functionality just removes the skipchain from the list but does not make the device leave
from the skipchain.

2.2.1.2 Other improvements

In the settings drawer, to adapt to the multiple-skipchain implementation we updated the user name
of device to be global to all skipchains.

Always in the settings drawer, there was an issue with private and public keys, when signing the
proposed data in the Cisc. In fact every time a user launch the app for the first time he will always get
the same key pairs which caused problems in the data management. Now every time the user launches
the application for the first time a new key pair is generated.

2.2.2 Collective certificate management
2.2.2.1 User Interface

In this part we will explain the implementation of our collective certificate management user interface.
We decided to add a new tab called "Cert" in the skipchain page. Then pressing on this tab would
list the current certificates stored in the skipchain. Then by pressing on a specific certificate, it opens
a new page displaying certificate information like issued date, expiry date, altnames... From there the
user can also verify if the certificate is valid by pushing the button (see figure [5)).

5] i0as (o] i lais

Certificates infos

Subject

Certificates stored i
cothority.net

test.cothority.net
Altnames
cothority.net.pem :> cothority.net

Issued at
Thu Apr 12 2018 D0:22:11 GMT+0200 (CEST)

Expires at
Wed Jul 11 2018 00:22:11 GMT+0200 (CEST)

RELOAD VERIFY

Figure 5: List of stored certificates (left), details of the certificate "cothority.net.pem" (right)

2.2.2.2 Functionality

In this part we will explain how is implemented the back-end of our certificate management. The
main involved files for this implementation are cert-page.js and cert-details.js. We first filter
all the key(s)/value(s) that begin(s) with ---BEGIN CERTIFICATE--- and ---END CERTIFICATE---.
The values containing these keywords will then appear in our Cert tab (see figure |5). To request a
certificate we need to pass through a CLI Cisc user on a server, this one requests a certificate and
install it on the proposed list and finally let the device(s) approve(s) or disapprove(s) this certificate.
Remark: with this actual implementation, it supposes that the devices could not request for a cer-
tificate. A more complicated process for requesting certificate will be explained in the next sections.

Another realized functionality is the display of certificate information. To execute this feature, we
extract the string value of the certificate and convert it to a certificate type which let us easily get
the basic information of this latter. Furthermore, in this same page there is a verify button. This
functionality permits to verify the following points:

e The certificate validity period includes the current time.

10

e The certificate was signed by its parent (where the parent is either the next in the chain or from
the CA store).

e The certificate issuer name matches the parent’s subject name.

For this purpose we used the module node-forge. js [7].

2.3 Limitations
2.3.1 User name on the CPMAC

At the moment, the user name can be changed at any time, the problem in our actual implementation
is that the same device could join many times the same skipchain with different names. By doing this
we lose the principle of decentralization. A malicious user could then create a lot of user names linked
to the same device so that he could get a key/value pair easily accepted to be stored in the skipchain.

2.3.2 NativeScript and Node.js

In our cross platform application we are using different npm modules. These ones were meant in the
beginning for web programming. However NativeScript allows us to download these modules and since
most of these modules were not optimized for NativeScript, they may not work on the application side.
For example a module was found to realize the renew operation but was not working as expected.

2.4 Future Work

Request certificate: A more sophisticated system could be implemented for requesting certificates.
Suppose we have a device 1, a device 2 and a Cisc user on a server.

1. Device 1: Request a certificate, enter a domain name and a server 1P
2. Device 2: Accept the request from device 1

3. Cisc user: If he is responsible for that IP/domain, then request certificate from ACME server
proposes new cert:domain_name with value “content of cert”

4. Device 1: Sees the request for new key/value pair and accept it

5. Device 2: Sees the request for new key/value pair, accept it and we suppose that the threshold
was reached thus stores cert:domain name / “content of cert” on the skipchain.

6. Cisc user: Periodically looks at skipchain to see if new keys are present if new certificate is
present install the new certificate

Renew certificate: The certificate renewal could be still tried to be implemented. The module used
for this purpose was the following "WeDeploy LetsEncrypt" [§].

Unique user: As explained in the limitations, one should not change its device user name. So it
needs to be fixed and should be the same every time the app is run. One other solution would be
to send a request update when a device changes its name. This part concerning the settings of the
application could be improved.

Plugin on browser: In another context but still concerning certificates one could also try to look
into adding a plugin to the browser to verify if the certificate is on the skipchain.

11

3b. Get cert

ACME

v

5. Accept cert and
threshold reached

6. Install certificate

Device2

2. Accept request

4. Accept cert
1. Request

Devicel

Figure 6: Schema corresponding to the improved request protocol

2.5 Conclusion

The implementation of certificate management to the actual Cothority framework added an additional
brick to Cisc application more particularly in the certificate management. Nowadays multiple attacks
have occurred against CA’s so this decentralized protocols could help solving these issues. Also having
a portable device to control or check information about certificates is a plus. It is much more practical
to use an application to realize these decentralized protocols than using a command line interface. So
was the purpose of the project to give facilities for users owning domains to have their certificates stored
in a secure manner. But do not forget that everyone must participate in these protocols/applications.

3 User guide

In this last part we will explain how to run the certificate management on the command line interface
and in the cross platform application.

At first, notice that you should better use a Unix environment to support the implementation of this
project. You need to install the Golang language that is the used to implement the project. Then, you
need to set up the environment variable GOPATH using the command $ export GOPATH=goFolder so
that it points to your workspace directory and add GOPATH/bin to PATH using the command $ export
PATH=$PATH: $GOPATH/bin. Also, you have to install and set up GitHub so that you can download the
following package (Using $ go get -u command):

3.1 Cisc guide

In this part we will explain in how to work with the Cisc CLI specially for the certificate management.

3.1.1 Initialization

First run the following commands:
$ go get -u github.com/dedis/cothority/conode
$ go get -u github.com/dedis/cothority/cisc

$ go get -u github.com/ericchiang/letsencrypt

12

3.1.1.1 Run conodes
Then you need to run the conodes, the easiest way to do that is to run the bash program run_conode.sh
(normally located in $GOPATH /github.com/dedis/cothority/conode).

$./run_conode.sh (locall|public) (nbr_conode) [dbg_lvl]

So you need to choose between local or public depending if you want to run your conodes locally
or publicly, then decide about the number of conodes you want to run and eventually a debug level.
So you could execute to run three conodes locally.

$./run_conode.sh local 3 2
Then you need to be able to link with the conodes you execute
$ cisc link pin localhost:7002

A pin will appear when executing this command and you need to rerun the command but this time
with the pin code

$ cisc link pin localhost:7002 PIN

Finally you can create a skipchain with the public.toml file (generated in the conode folder) and
use the other available cisc commands.

$ cisc sc create public.toml
For further details about the Cisc commands check the Github repository of the cothority [3].

3.1.2 Running collective certificate management

Now that Cisc is working, let’s focus on the Cisc cert commands. First of all for these commands to
work, one should be connected to the server hosting a website. Here is a summary of the certificate
commands.

e Request - request a certificate and add it to the skipchain. Request takes the domain the cert
and the www path. The certificates and the private key are then saved in the cert folder with the
name of the domain.

e List - return a list of all the certificates with their expiry date and the path of the certificate.
e Add - stores a certificate in the skipchain by giving the key and path to the certificate.

e Renew - renew a certificate stored in the skipchain by giving the key of this latter.

e Verify - verify a certificate in the skipchain.

e Retrieve - retrieve the certificate and save it in the specified directory.

e Revoke - revoke and remove the certificate from the skipchain.

As a starting point, if can request a certificate so you should run:
$ cisc cert request cothority.net path/to/cert path/to/www
If everything went well you should see the certificate listed after calling cisc cert list.

Remark: One last word though, make sure you know where all your keys are stored, they will be
needed for these commands.

13

3.2 Cross platform application guide

In this part we will describe how to set-up our NativeScript environment.

3.3 Initialization

First part we need to install NativeScript. For this I will describe their own tutorial but it is important
to check their website to always be up-to-date [5].

1. NodeJS installation
This can be done by downloading the installer on their home page. Always install a long term
service (LTS) version as it is the supported version for NativeScript.

2. NativeScript CLI installation
This can be done by running the following command:

$ npm install -g nativescript

If an EACCES error is returned at some point of the installation, re-run the last command
with administrator rights. If EACCES errors are still returned, run the command again with
administrator rights and the unsafe permissions parameter of NPM:

$ sudo npm install -g --unsafe-perm nativescript

3. Android and iOS requirements
Since it depends on your operating system (OS), follow the official tutorial E NativeScript
provides scripts for Windows and macOS that will automatically setup most dependencies. It
is still recommended to look at the advanced setups they provide to ensure that everything is
correctly installed.

4. TNS doctor
The last step is to check if all requirements are met, this can be done by running: $ tns doctor.
If errors are returned, fix them before continuing.

Finally one last word about the editor for your code. In essence, any editor could be used. We
recommend using Visual Studio Code since it is the officially supported editor and provides an official
plugin to integrate with NativeScript.

3.4 Accessing the certificate module

Once everything is set-up we can launch the app and access our certificate module. First press the
drawer icon on the top left then click on Cisc. A page will open with all the skipchains listed. If it’s
your first time running the app, you might expect finding this list empty. To join a skipchain with
your device you need a QR code of a skipchain. To obtain this code you need to run a skipchain on
your CLI for example following part 3.1.1 of the Cisc guide. Once the skipchain is created you can
run:

$ cisc sc qr -e

If everything went well you should have your QR code displayed. Now your QR code has to be
scanned by the app (you can do this by taking a picture of it for example). If the scan recognized your
skipchain your device has successfully joined the skipchain. However the other users connected to the
skipchain need to approve this device by running $ cisc data vote. Finally you can access the Cert
tab and see the stored certificates if there is any.

"https://docs.nativescript.org/start/quick-setup#

14

https://docs.nativescript.org/start/quick-setup#

References

1]

2]

3]
4]

[5]
[6]

7]

8]

Bryan Ford, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, Ewa Syta, Iulia Tamas,
Dylan Visher, and David Isaac Wolinsky. Keeping authorities “honest or bust” with decentralized
witness cosigning. https://arxiv.org/abs/1503.08768.

Robin Berguerand. Collective certificate management. https://github.com/dedis/student_17_
certificate_skipchain/tree/master/ciscl

DEDIS Lab EPFL. Cothority. https://github.com/dedis/cothority.

Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Is-
mail Khoffi, Justin Cappos, and Bryan Ford. Chainiac: Proactive software-update transparency
via collectively signed skipchains and verified builds. https://www.usenix.org/conference/
usenixsecurityl7/technical-sessions/presentation/nikitinl

Nativescript. https://www.nativescript.org/.

Cédric Maire & Vincent Petri. Cross-platform mobile application for cothority. https://github.
com/dedis/student_17_mobile/blob/master/report/report.pdfl

Different collaborators. A native implementation of tls (and various other cryptographic tools) in
javascript. https://www.npmjs.com/package/node-forge.

Different collaborators. Wedeploy letsencrypt. https://www.npmjs.com/package/
wedeploy-letsencrypt|

15

https://arxiv.org/abs/1503.08768
https://github.com/dedis/student_17_certificate_skipchain/tree/master/cisc
https://github.com/dedis/student_17_certificate_skipchain/tree/master/cisc
https://github.com/dedis/cothority
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.nativescript.org/
https://github.com/dedis/student_17_mobile/blob/master/report/report.pdf
https://github.com/dedis/student_17_mobile/blob/master/report/report.pdf
https://www.npmjs.com/package/node-forge
https://www.npmjs.com/package/wedeploy-letsencrypt
https://www.npmjs.com/package/wedeploy-letsencrypt

	Introduction
	Goals and motivation
	Background
	Cothority
	Cisc
	Let's Encrypt
	CPMAC

	Previous work
	Collective certificate management
	Cross platform application

	Main work
	Collective certificate management into Cisc
	Cross platform application development
	General improvements in Cisc
	Collective certificate management

	Limitations
	User name on the CPMAC
	NativeScript and Node.js

	Future Work
	Conclusion

	User guide
	Cisc guide
	Initialization
	Running collective certificate management

	Cross platform application guide
	Initialization
	Accessing the certificate module

