Network Partitioning Effects on Ripple Transactions

Yoan Martin

Today's menu

- What is Ripple?
- Why is it interesting?
- Attacks
- Analysis

What is Ripple?

- Global Payments Network
- RippleNet vs XRP
- Gateway
 - Entry Point
 - Ripple Bank

- ripple

Why is it interesting?

- More than 200 financial institutions
- ~20'000'000 USD sent by hour
- Take place on internet

What is the network?

Network

What is the network?

Attacks

- What if an AS is malicious?
- What can it do?
 - Dropping the traffic
 - BGP Hijacking

Traffic dropped

Traffic dropped

How to measure the effect?

- Build the Ripple Network
 - Ripple API
 - Caida
- Use previous transactions
- Replay transactions when an attack occurs

Build RippleNet

Map Result

Transactions

- Account A sends 100 XRP to account B
- Some transactions have gateways data
 - Account A sends 100 XRP using Gateway G to B
 - Account B receives 100 XRP using Gateway H from A
- Keep only transactions with matching Gateways

Simulation: traffic dropped

A sends 100 XRP to B
D sends 10 USD to A
C sends 4 EUR to B

...

Simulation: traffic dropped

- If == , transaction is complete
- If != , transaction is rerouted
- If no —, transaction is lost

Example of results

	Completed	Rerouted	Lost
Amazon	10%	10%	80%
AT&T	30%	20%	50%
China Telecom	60%	30%	10%
Swisscom	30%	30%	40%

Simulation: BGP Hijacking

A sends 100 XRP to B
D sends 10 USD to A
C sends 4 EUR to B

•••

Simulation: BGP Hijacking

- If == , transaction is complete
- If —!= —, transaction is rerouted

Example of results

	Completed	Rerouted
Amazon	90%	10%
AT&T	60%	40%
China Telecom	20%	80%
Swisscom	30%	70%

Real Results

- Transactions analysis
- Which ASes are the most dangerous?
- What is the effect on the Ripple network?

Transactions analysis

- % of transactions with AS as sender or receiver
- 13335 is Cloudflare (US)
- 19551 is Incapsula (US)

Which ASes are dangerous? Traffic dropped

- % transactions lost corresponds to transactions distribution
- Lost if gateways in corrupted node
- Never lost if intermediaries
 - Always possible to find a path

Which ASes are dangerous? Traffic dropped

- Little % of rerouted transactions
- Certainly due to transactions distribution
- 553 is Belwue (DE)
 - Connections with 680 ISP
 - Switch, Swisscom

Which ASes are dangerous? BGP Hijacking

- Many ASes can corrupt the network
- Long list of ASes reach almost 40% of rerouted transactions

What is the effect on Ripple?

- Time analysis
- On average low effect

Conclusion

- Most of the transactions go through 2 ASes
 - Big impact if one of them is corrupted
- BGP Hijacking has more effect than traffic dropped
- Limitations of this analysis
 - Network only considers Gateways
 - Hence, only a few transactions are considered

Thank you for your attention

White gap?

BGP Hijacking: August?