BLS cosigning via a gossip protocol

Semester project (master)
Lukas Gelbmann

DEDIS / EPFL

Responsible: Prof. Bryan Ford
Supervisors: Cristina Basescu and Gaylor Bosson
Motivation

- for **cosigning**: ensure that a message has been seen and verified by many peers
- for cosigning **over gossip protocol**: more robust than our current implementation
Roadmap

1. Problem statement
2. Old protocol
3. Gossip
4. New protocol
5. Crypto: BLS signatures
6. Results
7. Future work
Problem statement

- Build a cosigning protocol:
 - **Fault tolerant** (Byzantine failure model)
 - **Fast** (seconds or less)
 - **Don’t overload** any nodes

- Secondary goal: efficiency
1. Problem statement

2. Old protocol

3. Gossip

4. New protocol

5. Crypto: BLS signatures

6. Results

7. Future work
Old tree-based protocol
1. Problem statement
2. Old protocol
3. Gossip
4. New protocol
5. Crypto: BLS signatures
6. Results
7. Future work
Gossip: our use case

- **Short-lived** protocol
- Each node knows every other node
- Each node has information to be gossiped: its signature
- At the **start**, the goal is to spread the message quickly
- At the **end**, the goal is to get the signatures back to the root node without overloading the node
1. Problem statement
2. Old protocol
3. Gossip
4. **New protocol**
5. Crypto: BLS signatures
6. Results
7. Future work
New protocol

- **Push rumor messages** to random peers in regular interval

- After the root has enough signatures
 - return cosignature
 - spread shutdown messages
1. Problem statement
2. Old protocol
3. Gossip
4. New protocol
5. Crypto: BLS signatures
6. Results
7. Future work
Crypto: BLS signature aggregation

- Easy to aggregate: signature from \{A, B\} and one from \{C\} into a signature \{A, B, C\}

- **Overlap** is hard to deal with:
 signatures from \{A, B\} and \{B, C\}
Crypto: BLS signature aggregation

- **Simple solution**: aggregate signatures only at the very end
- **Better solution**: binary tree
Signature aggregation rule
Comparison of protocol duration ($n = 36$)

- gossip protocol instance
- BLS CoSi instance
Mean protocol duration vs. number of nodes
(no failing nodes)

mean message delay
- 0.05s
- 0.10s
- 0.15s

Nodes: 10, 20, 30, 40, 50
Time until signature (sec): 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
Mean data transferred vs. number of nodes (no failing nodes)

- Green dots: no early aggregation
- Orange dots: tree-based aggregation
Mean protocol duration vs. rumor-sending interval ($n = 25$)

- **Failing nodes:**
 - Green line: 0 failures
 - Blue line: 4 failures
 - Red line: 8 failures

Axes:
- Y-axis: time until signature (sec)
- X-axis: rumor-sending interval t (sec)
Mean data transferred vs. rumor-sending interval (n = 25)

- **failing nodes**
 - 0
 - 4
 - 8

- **data sent per active node (kB)**
- **rumor-sending interval t (sec)**
1. Problem statement
2. Old protocol
3. Gossip
4. New protocol
5. Crypto: BLS signatures
6. Results
7. Future work
Future work

● Possible optimizations
 ○ Pull messages
 ○ Strategic peer selection
 ○ Better aggregation
Thank you for your attention

Your turn