Decentralized Internet Archive using the Cothority framework

Nicolas PLANCHEREL

Prof. Bryan FORD Eleftherios KOKORIS KOGIAS Kirill NIKITIN Decentralized and Distributed Systems (DEDIS)

School of Computer and Communication Sciences (IC)

École Polytechnique Fédérale de Lausanne (EPFL)

EPFL, Master Thesis oral presentation February 2018

Outline

- Motivation
- Description
- ◆ Evaluation And Discussion
- Demo
- Conclusion

MOTIVATION

MotivationObjectives

- Create a censorship resistant internet archive
 - Archiving avoiding tampering or deletion (by one or a small collusion of entity)
 - Store only relevant content
 - Possiblity to check integrity once archived
 - Consider that the censor can try to add, modify or delete data

Context - Centralized Internet

Context - Centralized Internet

Context - Centralized Internet

Context - Centralized Internet - Archive.org

- Malicious actor that tamper data
- Weak reagarding to long-term availability
- Archiving! (on demand)

Context - Centralized Internet - Archive.org

- Malicious actor that tamper data
- Weak reagarding to long-term availability
- ✔ Archiving!
- X Still vulnerable to malicious archive!

Context - Decentralized Internet - ZeroNet

- ✓ Distributed By Design!
- ✓ Strong regarding long-term avalilability
- Censorship resistant
- No interaction with today's internet

Overview

- Centralized Internet is vulnerable to censorship
 - Malicious actor
 - Deletion and Tampering
- Solutions exsits but still have weaknesses
 - Centralized : Archive.org
 - Decentralized : ZeroNet
- So we developed a Decentralized Internet Archive

DESCRIPTION

DescriptionObjectives

- Create a censorship resistant internet archive
 - Avoid Tampering using decentralized storage system: Skipchain
 - Filter content by reaching a consensus on the content of the webpage
 - Using the CoSi Service of the Cothorithy framework (collective signature)
 - Avoid adding malicious data using a trusted reference to make a consensus on

DescriptionObjectives

- Operations
 - Save
 - Consensus on the content of the webpage
 - Collectively Sign the common subset of the page
 - Store the signed page on the skipchain
 - Retrieve
 - Get the correct signed page
 - Verify the signature

High-Level

Saving (with a tree-based consenus protocol)

Decentralized Internet Archive

Saving (with a tree-based consenus protocol)

Decentralized Internet Archive

Saving (with a tree-based consenus protocol)

Saving (with a tree-based consenus protocol)

EPFL, Master Thesis 2018
Decentralized Internet Archive

Saving (with a tree-based consenus protocol)

EPFL, Master Thesis 2018
Decentralized Internet Archive

5. Create Common Tree

Saving - Creating the HTML tree

```
<!doctype html>
<html lang="en">
 <head>
    <meta charset="UTF-8">
    <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
    <h1>DECENARCH</h1>
 </body>
</html>
```

◆ Get Html Code

- ◆ A web page consists of
 - An html code text
 - Additional Data
 - Images
 - CSS file(s)

Saving - Creating the HTML tree

```
<!doctype html>
<html lang="en">
 <head>
    <meta charset="UTF-8">
    <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
    <h1>DECENARCH</h1>
 </body>
</html>
```

Head Body

Meta Link h1

UTF-8 CSS DECENARCH

Get Html Code

◆ Infer Html Tree from code

Saving - Creating the HTML tree

```
<!doctype html>
<html lang="en">
 <head>
    <meta charset="UTF-8">
    <link rel="stylesheet" href="css/style.css">
 </head>
 <body>
    <h1>DECENARCH</h1>
 </body>
</html>
```


- ◆ Infer Html Tree from code
- Hash the data of every node individually

Saving - Signing the HTML tree

◆ Leader's Master Tree

Saving - Signing the HTML tree

◆ Nodes in BFS order

- Seen array $1_A 1_B 1_C 1_D 1_E 0_F 1_G 1_H 0_I 1_J$
- Signature $sign(h_A + h_B + h_C + h_D + h_E + 0 + h_G + h_H + 0 + h_J)$

Saving - Aggregation

◆ Seen arrays

Saving - Aggregation

◆ Leader's MasterTree

◆ Seen arrays

◆ Keep A,B,C,E,H Output html code collectively signed

Handling the Skipchain

◆ We have : A representation of the common subset of the page, collectively signed

◆ We want : An efficient, tampering resistant storage system

Retrieving the archived web page

EPFL, Master Thesis 2018 Decentralized Internet Archive

Description

Retrieving the archived web page

Description

Retrieving the archived web page

EVALUATION AND DISCUSSION

- ◆Does it scales in terms of
 - Bandwidth use?
 - Time complexity?

◆The 'trusted leader' constraint

Evaluation - Theory

Evaluation - Theory

Evaluation - Theory

EPFL, Master Thesis 2018 Decentralized Internet Archive

Bandwidth

- ◆ Variables:
 - N number of machines.
 - W size of webpage.

- ◆ Bandwidth use is linear O(N·W)
 - N + 1 request to the distant server of size O(W)
 - Finite total number of message of size O(W)

Evaluation - Theory

- ◆ Variables definitions :
 - N number of machines.
 - K html node's number.
 - A time cost of handling additional data (image,css) on one machine.
 - Overall save time complexity is polynomial $O(N \cdot K^2 + (1+A) \cdot N \cdot K + N)$
 - Tree comparaison and aggregation is in O(N·K²)
 - Handling the additional data of the web page is in $O(A \cdot N \cdot K)$
 - Storing the website is in $O(N \cdot K)$
 - Collective signing is in O(N)

Evaluation - Simulations

◆ Standardized Website ◆ Html Tree Node increase

Detailled View of time taken per html node with 5 conodes

Evaluation - Simulations

◆ Real-Life Website ◆ Html Tree Node increase

Detailled View of time taken per html node with 5 conodes

Main time component:Handling the additional data.

Evaluation - Simulations

Standardized Website

◆ Conode nbr increase

Detailled View of time taken per conodes

- Main time component :The consensus
- Seems linear but require a larger simulation

Discussion

◆ Why the trusted leader?

Discussion

- ◆ Why the trusted leader?
 - Why the tree structure?
 - Keep a valid html document anytime.
 - Granularity.

Discussion

- ◆ Why the trusted leader?
 - Why the tree structure?
 - Keep a valid html document anytime.
 - Granularity.
 - Why a reference?
 - Union of Tree is NP.
 - Undeterministic matching, depends on order.

DEMO

"Anything that can go wrong will go wrong". - Murphy's Law

Demo

Ain't nobody got time for demo

Conclusion

- Decentralized Internet Archive
 - Tree-based consensus with largest common subset
 - Decentralized storage with skipchain
 - Has a polytime complexity in $O(K^2 \cdot N)$
- ◆ Improvements?
 - Storage Management
 - Additional Data filtering
 - Finer granularity
 - Confidentiality

Conclusion

- ◆ Decentralized Internet Archive
 - Tree-based consensus with largest common subset
 - Decentralized storage with skipchain
 - Has a polytime complexity in $O(K^2 \cdot N)$
- ◆ Improvements?
 - Storage Management
 - Additional Data filtering
 - Finer granularity
 - Confidentiality

Reference

- [gopher] Takuya Ueda, https://github.com/golang-samples/gopher-vector
- •[Master Thesis] Plancherel Nicolas 2018, Decentralized Internet Archive, EPFL