Learning agreement <u>TUM</u>

Cours obligatoires :

TUM		EPFL
Engineering	The energy and variational principles of analytical mechanics have gone a long way since the axioms of	ME311 Dynamique
Dynamics (MW2098)	Newton. Today they are found in the extremely successful test and simulation software used in industry	des systèmes
	(e.g. experimental modal analysis, multi body simulations, finite element codes, etc.). The aim of the lecture	mécaniques
	is to equip the student with the most important basics and "thought concepts" for understanding the different	
5 ECTS	methods and classifying them. The student will therefore be well prepared for a more thorough study of the	
	different application fields of mechanical theories and specialization areas. An ambitious goal! Starting with	
	the principle of virtual work, we will derive the Lagrange and Newton Euler equations step by step. These	
	methods will allow us to derive the equations of motion for complex mechanical systems (automatically). By	
	linearizing of the (often highly non linear) equations we will be able to examine the stability of systems	
	around an equilibrium position and introduce the fundamentally important concepts of modal analysis and	
	model reduction. To conclude the lecture, we will derive analytical methods to solve the differential	
	equations of motion for one dimensional continua (bars and beams). The more generally applicable	
	approximation methods such as Rayleigh Ritz and the FEM, will be derived in the context of the virtual work	
	principle and their convergence will be studied with the comparison to the analytical solutions. The lecture is	
	structured as follows:	
	1) Analytical dynamics	
	2) Dynamics of rigid bodies	
	3) Linearized equations of motion around an equilibrium position	
	4) Stability of systems around an equilibrium position	
	5) Vibration modes and mode superposition	
	6) Linear dynamics of continuous systems and discretization	
Dynamics of	The development process of high-tech products can, in many cases, not be subdivided into separate	ME311 Dynamique
mechanical systems	"physical fields of expertise" anymore. Similarly, in structural dynamics the multi-physical couplings are often	des systèmes
(0000001774)	essential for understanding and designing the system behavior. Some prominent examples include: vibro-	mécaniques
	acoustics (e.g. in vehicle-acoustics), electro-mechanical couplings (e.g. in micro systems) or thermo-	
5 ECTS	mechanical couplings (e.g. in satellites). The course is aimed at students of all technical fields of study (e.g.	
	mechanical engineering, electrical engineering, physics, etc.). We start with the derivation of the most	
	fundamental methods used in engineering dynamics, before the multi-physical couplings are studied in	
	more depth. The course is structured as follows: 1. Basics of analytical mechanics (principle of virt. work	
	and Lagrange equations) 2. Introduction to vibration analysis of structures (free and forced response) 3.	

	Basics of rotor dynamics 4. Discretization methods for dynamical systems (Rayleigh Ritz and FEM) 5. Vibro- acoustics 6. Electrostatic forces in mechanical systems 7. Piezoelectric effects in smart structures 8. Thermo-mechanics	
Advanced Control (MW1420) 5 ECTS	Das Modul "Advanced Control" bietet eine Einführung in den Zustandsraumansatz für den Regler- und Beobachterentwurf linearer dynamischer Systeme. Ausgehend von typischen Steuerungsaufgaben stellen wir die Reglerstruktur mit zwei Freiheitsgraden (2DOF) vor. In einem einheitlichen Framework betrachten wir das Design von Feedforward- und Feedback-Controllern und nutzen verschiedene kanonische Zustandsdarstellungen für das Controller- und Observer-Design. Als Alternative zur Eigenwertplatzierung führen wir den LQR-Ansatz zur optimalen Auslegung von State-Feedback-Reglern ein und erweitern unsere Reglerstruktur, um Maßnahmen zu ergreifen, um externen Störungen entgegenzuwirken und das Einschwingverhalten des Regelkreises zu verbessern	ME321- Control systems
Nichtlineare Kontinuumsmechanik 5 ECTS	Kontinuumsmechanik ist eine Theorie, um das globale Verhalten, beispielsweise Verformungen, Spannungen oder Temperaturen, von Festkörpern, Fluiden oder Gasen unter externen Einwirkungen zu beschreiben. Nichtlineare Kontinuumsmechanik ist in der Lage, eine Vielzahl von technischen Anwendungen zu modellieren. Inhalt: (1)Grundlagen der Tensorrechung (2)Bewegung und Kinematik (3)Bilanzgleichungen (4)Konstitutive Beziehungen (5)Ein kurzer Blick auf spezielle Lösungen	ME331- Solid mechanics
Experimental vibration analysis (MW1995) 5 ECTS	After finishing this module lecture students are able to distinguish different types of vibration phenomena in the dynamics of machinery and structures. They can identify these different types for certain problems in real objects. Students are familiar with the basics to design a measurement plan for vibration analysis. Furthermore students have the ability to use this knowledge for analysis in real industrial problems. Students have a literature survey and a reference book for further problems in vibration analysis	ME332- Mécanique vibratoire
Heat mass transfer (MW1410) 5 ECTS	Einführung in die Mechanismen der Wärmeübertragung Grundbegriffe der Wärmeleitung • Fourier'sches Gesetz der Wärmeleitung • Fourier'sche Differentialgleichung • Zeitliche und örtliche Randbedingungen Stationäre Wärmeleitung • Einfache Geometrien (Platte, Zylinder, Kugelschale) • Péclet-Gleichungen (Platte, Zylinder, Kugelschale) • Zweidimensionale stationäre Wärmeleitung (Formfaktoren) Konvektiver Wärmeübergang und Nußelt-Zahl	ME341- Heat and mass transfer

	Strömungsphysik des konvektiven Wärmeübergangs	
	 Korrelationen f ür die Nu ßelt-Zahl bei relevanten Konfigurationen 	
	Freie Konvektion	
	 Freie, laminare Konvektion an der isothermen Wand 	
	 Boussinesq-N\u00e4herung der Grenzschichtgleichungen 	
	Kennzahlen der freien Konvektion	
	Korrelationen für freie Konvektion	
	Wärmestrahlung	
	Schwarze Körper	
	Diffuse Strahler	
	Kirchhoff'sches Gesetz	
	Wärmeübertragung durch Strahlung	
	 Wellenlängenabhängigkeiten der Wärmestrahlung Wärmeübertrager 	
	Dimensionslose Kennzahlen	
	Betriebscharakteristik	
	 Mittlere logarithmische Temperaturdifferenz Instationäre Wärmeübertragung 	
	Methode der Blockkapazität	
	Die dimensionslosen Kennzahlen von Biot und Fourier	
	Kennzahlen und Ähnlichkeitstheorie	
	 Dimensionsanalyse und Buckingham-Pi-Theorem 	
	Auslegung von Modellversuchen	
	Darstellung experimenteller Ergebnisse	
	Reynolds-Analogie	
Fluid Mechanics 1-	Die Studierenden verfügen nach erfolgreichem Bestehen der Vorlesung Grundlagen der Fluidmechanik I	ME344- Mécanique
MW2021	über: (1) Kenntnisse des grundsätzlichen Verhaltens flüssiger und gasförmierg Medien, (2) die Fähgikeit zur	des fluides
	kinematischen Beschreibung von Strömungen, (3) die Fähigkeit zur dynamischen Analyse von Strömungen	incompressibles
6 ECTS	anhand der Erhaltungsgesetze für Masse, Impuls und Energie, (4) die Fähigkeit zur Beschreibung und	·
	Analyse einfacher kompressibler Strömungen, (5) die Fähigkeit zur Ermittlung einfacher exakter Lösungen	
	der Navier-Stokes-Gleichungen, (6) das phänomenologische Verständnis des Effekts von Reibung und	
	Turbulenz, (7) die Fähigkeit zur Analyse technischer Strömungen.	
Finite Elemente	Inhalt der Veranstaltung ist die Modellierung von Strukturen, wie sie im Ingenieurwesen Verwendung finden,	ME372- Méthode des
(MW0612)	mit Hilfe der Finite-Element-Methode (FEM). Der inhaltliche Bogen spannt sich dabei vom Verständnis der	éléments finis
(/	Strukturmodelle bis hin zur Theorie und Funktionalität der FEM. Weiterführende Vorlesungen bauen auf	
5 ECTS	dem Modul Finite Elemente auf. Inhalt:	
	(1) Theoretische und numerische Ansätze zur Modellierung von Strukturen bzw. Festkörpern aus dem	
	Ingenieurwesen	
	(2) Interaktion von Modellierung, Diskretisierung und Lösung von Festkörpersystemen	
	(-)	

	(3) 3D/2D Festkörper: Erhaltungsgleichungen, FE-Diskretisierung, Variationsprinzipien,	
	Lösungskomponenten und Anwendungen	
	(4) "Locking"-Phänomene, robuste Elementformulierungen	
	(5) Balken- und Plattenmodelle	
	(6) Einführung in die numerische Dynamik	
Electrical Machines	Position dependent inductances, space vector description of electrical machines: fundamental wave and	EE382- Electrical
EL8028	harmonic waves, force and torque calculation: fundamental torque and harmonic torques, laws of growth	Machines
	and scalability; General performance of electrical machines: rotating field machines (induction machine and	
5 ECTS	electrically excited synchronous machine), synchronous and asynchronous torques, windings: distributed	
	windings and concentrated windings, permanent magnet excitation in electrical machines	

Total cours obligatoires : 41 ECTS

Cours non obligatoires :

TUM	Description
Renewable Energy	The objective of this lecture is provide an overview on the current state and application of renewable energy technology. The lecture
Technology 1 & 2	not only focuses on technologies but also on environmental, social and economical factors that lead to the intensivied world wide
	harvesting of CO2-neutral energy sources as well as their potentials and limitations. The course RENEWABLE ENERGY
(MW1475 & MW1476)	TECHNOLOGY (taught in English) is split into two modules 3 ECTS each (one per semester), beginning with "RET I" in the Winter
6 ECTS	Semester. The attached module "RET II" will be offered in the Summer Semester. The course is supported by various institutions of
0 2010	the TUM: The Institute for Energy Systems, The Institute for Fluid Mechanics, The Institute for Energy Economics and Application
	Technology, The Institute for Wind Energy as well as the "Laboratory of Steam Boilers and Thermal Plants" from the National Technical University of Athens. The module "RET I" covers the following topics:
	• Fundamentals (historical overview, power plant fundamentals, climate, energy consumptions and forecasts, energy economics,
	electricity control, fossil and nuclear energy)
	• Energy from Biomass (properties of biomass, biomass potentials, fuel properties, heat production, power production by means of
	combustion, power production by means of gasification, biogas production by means of anaerobic fermentation)
	· Geothermal Energy (potential, exploitation, direct utilization, central heating, district heating, deep geothermal systems, power
	generation, combined heat and power, economic aspects, risks)
	 Wind Energy (basic facts, introduction to wind turbine aerodynamics, the wind resource, wind turbine types, configurations,
	components)
Introduction to python	This course aims to give a comprehensive knowledge of Python and how the language can be used in Data Analysis. The module
for data analysis-	covers the following topics:
(WIHN0048)	- Basic Python syntax:
6 ECTS	Variables, expressions and statements
0 2010	• Туре

	- Python Data Structures
	List and tuples
	Dictionaries
	Set
	- Python Programing Fundamental
	Condition and Branching
	• Loops
	Functions
	Objects and Classes
	- Working with Data in Python
	Understanding the data
	Python packages
	 Importing and Exporting data in Python
	Accessing databases
	- Analyzing data in Python
	Data wrangling
	Data analysis
	- Model Development
	- Model Evaluation
	- Data visualization
Internal combustion	* Introduction to Internal Combustion Engines
engines	* Engine Kinematics & Mechanics
(8407670170)	* Engine Operating Parameters
	* Thermodynamic Principles
5 ECTS	* Fuels and Combustion
	* Heat Release and Heat Transfer
	* Gas Exchange Processes
	* Engine Emissions
Aircraft Systems	The course covers aircraft systems and subsystems which are important for reliable and safe operation of transport aircraft.
(0000001719)	Beginning with a review on the historical development of aircraft and aircraft systems, the course presents a comprehensive view on
	the design and functionality of several systems and system components as well as their interaction and impact on aircraft top level.
3 ECTS	Furthermore, current technology trends and new system concepts and technologies are introduced.
	Topics:
	- Introduction to Aircraft Systems
	- Flight Control Systems
	- Propulsion and Fuel Systems
	- Power Generation and Distribution Systems

- Environmental Control Systems
- Landing Gear and Braking Systems
- Avionics Systems
- Safety and Emergency Systems

TOTAL: 61 ECTS