Introduction to Combinatorics	Spring, 2011
Homework 9-PROBABILISTIC METHODS	
Janos Pach $\mathcal{\text { N Nabil Mustafa }}$	21 April

Questions

1. Let X be a number chosen uniformly at random from $\{1, \ldots, n\}$. Compute $\operatorname{Var}[X]$. What if X is chosen from $\{-k,-k+1, \ldots, 0, \ldots, k-1, k\}$?
Solution: $E[X]=\sum_{i=1}^{n} i / n=(n+1) / 2$. Then $V[X]=\sum_{i=1}^{n} \frac{1}{n}(i-(n+1) / 2)^{2}$, and simplify.
2. Suppose we roll a die 100 times. Let X be the sum of the numbers that appear over these 100 rolls. What is the best bound you can give for $\operatorname{Pr}(|X-350| \geq 50)$?
Solution: Let X_{i} be the number appearing in the i-th roll. Then $E[X]=\sum E\left[X_{i}\right]=100 \cdot 3.5=350$. To use Chebychev, need to compute variance: $V[X]=\sum_{i} V\left[X_{i}\right]$, where $V\left[X_{i}\right]=\sum_{j=1}^{6}(1 / 6) \cdot(j-3.5)^{2}$. Once we know the variance of X, use Chebychev, as $|X-350|$ then is simply the distance from the mean $E[X]=350$.
3. Given two independent random variables X and Y, prove that $\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

Solution: By algebra

$$
\begin{aligned}
V[X-Y]=E\left[(X-Y-E[X-Y])^{2}\right] & =E\left[\left((X-E[X])-(Y-E[Y])^{2}\right]\right. \\
& =E\left[(X-E[X])^{2}\right]+E\left[(Y-E[Y])^{2}\right]-2 E[X-E[X]] E[Y-E[Y]] \\
& =V[X]+V[Y]
\end{aligned}
$$

4. Construct a random variable to show that Markov's inequality is tight, i.e., given an integer k, construct a random variable X such that $\operatorname{Pr}(X \geq k \cdot E[X])=1 / k$.
Solution: $X=k$ with probability $1 / k$, and 0 otherwise. Calculation shows it satisfies required properties.
5. Similarly, can you give an example of a random variable to show that Chebychev's inequality is tight?

Solution:

Bonus Problem. Given n red points $R=\left\{p_{1}, \ldots, p_{n}\right\}$ and n blue points $B=\left\{q_{1}, \ldots, q_{n}\right\}$ in the plane, prove that there is a one-to-one pairing of red points to blue points such that the n line segments in the plane (each defined by the two points in a pair) are disjoint.

10 points.

