Questions

1. We toss a fair coin n times. What is the expected number of 'runs'? Runs are consecutive tosses with the same result. For instance, the toss sequence HHHTTHTH has 5 runs.
Solution: Let X_{i} be 1 if a runs starts at i-th coin toss. Then the required quantity is $\sum_{i} X_{i} . X_{1}=1$, and $X_{i}=1 / 2$ for $i=2 \ldots n$.
2. For a permutation π, let $f(\pi)$ be the number of fixed points of π. What is $E[f(\pi)]$ for a random permutation π on n elements.
Solution: Let X_{i} be 1 if the i-th position is a fixed point. Then the expected number of fixed points in a random permutation are simply $\sum_{i} E\left[X_{i}\right]$. And $E\left[X_{i}\right]=1 / n$.
3. The number of left maxima for a permutation π of $\{1, \ldots, n\}$ is defined to be the number of indices $i \in[n]$ such that $\pi(i)>\pi(j)$ for all $j<i$. Using linearity of expectation, compute the expected number of left maxima for a random permutation?
Solution: Let X_{i} be 1 if the i-th element is a left maxima. This happens if the i-the element is the largest of the elements $1 \ldots i$, and in a random permutation the probability of that is exactly $1 / i$. Therefore, the expected number of left maxima is $\sum E\left[X_{i}\right]=\sum 1 / i$, which is the harmonic series.
4. Let X be a set of n elements, and \mathcal{M} a set system on X, i.e., $\mathcal{M}=\left\{S_{1}, \ldots, S_{m}\right\}$, where $S_{i} \subseteq X$ and $\left|S_{i}\right|=k$ for all $i=1 \ldots m$. Prove that if $m<2^{k-1}$, then X can be two-colored (i.e., each element of X can be colored either 'red' or 'blue') such that no set S_{i} is monochromatic (a set S is monochromatic if all the elements in S have the same color).
Solution: Each element gets color red with probability $1 / 2$ and color blue with probability $1 / 2$. Then the probability that a fixed set gets all blue or all red vertices is at most $2 \cdot 1 / 2^{k}$. By the union bound, the probability that at least one set gets all red or all blue vertices is at most $m \cdot 1 / 2^{k-1}$. If $m<2^{k-1}$, then this quantity is less than 1 , and so there exists the required coloring.
5. Can you construct a tournament T on 6 vertices such that for any pair of vertices $u, v \in T$, there is a third vertex w such that w beats both u and v ? What about a tournament with 7 vertices?
Solution: By trying a few examples, one can construct such a tournament on 7 vertices. For 6 vertices, there is no such tournament. This can be shown by assuming the existence of such a tournament, and deriving a contradiction by considering pairs of vertices which have a common incoming neighbor (one will eventually reach a situation where it is impossible for a pair to have a common neighbor).

Bonus Problem. Prove that there exist four positive integers $a_{1}, a_{2}, a_{3}, a_{4}$ such that for any integer $w \in\{1, \ldots, 40\}$, there exist $c_{i} \in\{-1,0,+1\}, i=1, \ldots, 4$, such that $w=c_{1} \cdot a_{1}+c_{2} \cdot a_{2}+c_{3} \cdot a_{3}+c_{4} \cdot a_{4}$.

