Introduction to Combinatorics

Spring, 2011

Homework 5 – Sperner's Theorem and Unit Distances

Janos Pach & Nabil Mustafa

24 March

Questions

1. Given a set system \mathcal{F} over the base set $\{1,\ldots,n\}$, we call \mathcal{F} semi-independent if it contains no three sets A,B,C such that $A\subset B\subset C$. Prove that $|\mathcal{F}|\leq 2\binom{n}{\lfloor n/2\rfloor}$.

Solution: Exactly the same proof as for Sperner's theorem, except that each permutation could contain two sets of \mathcal{F} .

2. Let a_1, \ldots, a_n be real numbers with $|a_i| \ge 1$. Let $p(a_1, \ldots, a_n)$ be the number of vectors $(\epsilon_1, \ldots, \epsilon_n)$, where $\epsilon_i = \pm 1$, such that

$$-1 < \sum_{i=1}^{n} \epsilon_i a_i < 1$$

Prove that for any a_1, \ldots, a_n , we have $p(a_1, \ldots, a_n) \leq \binom{n}{\lfloor n/2 \rfloor}$.

Solution: Apply Sperner's theorem by representing each set with its characteristic vector.

3. Let X be an n-element set, and let S_1, \ldots, S_n be subsets of X such that $|S_i \cap S_j| \le 1$ for all $1 \le i < j \le n$. Prove that at least one set has size at most $C\sqrt{n}$ for some absolute constant C.

Solution: Construct a bi-partite graph where each element of X is represented by a vertex, and each set S_j is represented by the vertex s_j . Then add all edges between the vertex s_j , and all the vertices in X that are contained in S_j . This graph is $K_{2,2}$ -free, and so has $c \cdot n^{3/2}$ edges. Thus one vertex s_j must have degree at most $C\sqrt{n}$. This is the required set S_j .

4. Let t(j) denote the number of divisors of the number j. Give an expression for the number $\sum_{i=1}^{n} t(j)$. **Solution:** Double-counting. Instead of counting the number of divisors of j, count how many numbers in the set $\{1, \ldots, n\}$ are divided by j. Then double-count the required sum in terms of the above quantity.

5. Given a set P of n points, and a set L of n lines in the plane, an incidence is a pair (p, l), where $p \in P$, $l \in L$, and the point p lies on the line l. Prove that given any set of n distinct lines L and n distinct points P, the number of incidences are at most $3n^{1.5}$.

Solution: Exactly the same proof as done in the class for circles. Construct a bi-partite graph $G = (P \cup L, E)$, where P represents the n points, L represents the n lines, and there is an edge between $p \in V_1$ and $l \in V_2$ if the point p lies on the line l. Then note that this graph is $K_{2,2}$ -free.

Bonus Problem. You are given a set P of 10 integers from the set $\{1, \ldots, 100\}$. Prove that one can always find two *disjoint* subsets of P such that the sum of the elements in the two sets are equal. For example, given the set $\{8, 15, 23, 59, 61, 70, 75, 88, 91, 97\}$, the two sets are $\{8, 15, 97\}$ and $\{59, 61\}$.

10 points.