Introduction to Combinatorics	Spring, 2011
Homework 5 - Sperner's THEOREM AND	UNIT
Janos Pach $\&$ Nabil Mustafa	24 March

Questions

1. Given a set system \mathcal{F} over the base set $\{1, \ldots, n\}$, we call \mathcal{F} semi-independent if it contains no three sets A, B, C such that $A \subset B \subset C$. Prove that $|\mathcal{F}| \leq 2\binom{n}{\lfloor n / 2\rfloor}$.
Solution: Exactly the same proof as for Sperner's theorem, except that each permutation could contain two sets of \mathcal{F}.
2. Let a_{1}, \ldots, a_{n} be real numbers with $\left|a_{i}\right| \geq 1$. Let $p\left(a_{1}, \ldots, a_{n}\right)$ be the number of vectors $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where $\epsilon_{i}= \pm 1$, such that

$$
-1<\sum_{i=1}^{n} \epsilon_{i} a_{i}<1
$$

Prove that for any a_{1}, \ldots, a_{n}, we have $p\left(a_{1}, \ldots, a_{n}\right) \leq\binom{ n}{\lfloor n / 2\rfloor}$.
Solution: Apply Sperner's theorem by representing each set with its characteristic vector.
3. Let X be an n-element set, and let S_{1}, \ldots, S_{n} be subsets of X such that $\left|S_{i} \cap S_{j}\right| \leq 1$ for all $1 \leq i<$ $j \leq n$. Prove that at least one set has size at most $C \sqrt{n}$ for some absolute constant C.
Solution: Construct a bi-partite graph where each element of X is represented by a vertex, and each set S_{j} is represented by the vertex s_{j}. Then add all edges between the vertex s_{j}, and all the vertices in X that are contained in S_{j}. This graph is $K_{2,2}$-free, and so has $c \cdot n^{3 / 2}$ edges. Thus one vertex s_{j} must have degree at most $C \sqrt{n}$. This is the required set S_{j}.
4. Let $t(j)$ denote the number of divisors of the number j. Give an expression for the number $\sum_{i=1}^{n} t(j)$.

Solution: Double-counting. Instead of counting the number of divisors of j, count how many numbers in the set $\{1, \ldots, n\}$ are divided by j. Then double-count the required sum in terms of the above quantity.
5. Given a set P of n points, and a set L of n lines in the plane, an incidence is a pair (p, l), where $p \in P$, $l \in L$, and the point p lies on the line l. Prove that given any set of n distinct lines L and n distinct points P, the number of incidences are at most $3 n^{1.5}$.
Solution: Exactly the same proof as done in the class for circles. Construct a bi-partite graph $G=(P \cup L, E)$, where P represents the n points, L represents the n lines, and there is an edge between $p \in V_{1}$ and $l \in V_{2}$ if the point p lies on the line l. Then note that this graph is $K_{2,2}$-free.

Bonus Problem. You are given a set P of 10 integers from the set $\{1, \ldots, 100\}$. Prove that one can always find two disjoint subsets of P such that the sum of the elements in the two sets are equal. For example, given the set $\{8,15,23,59,61,70,75,88,91,97\}$, the two sets are $\{8,15,97\}$ and $\{59,61\}$.

