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Questions

1. You are given a set P of n points in the plane. Prove that there exists a subset of P , say the set P ′ of
size m = |P ′| = Ω(

√
n) points, with the following property. The points of P ′ can be ordered, denoted

by the sequence 〈p1, . . . , pm〉 such that the x-coordinate of the point pi is greater than that of the point
pi−1, for all i = 2 . . .m. And additionally one of these is true: either the y-coordinate of each point
pi is greater or equal to that of pi−1 for all i. Or the y-coordinate of each point pi is less than that of
pi−1 for all i.

Solution: Sort the points by their x-coordinate, say they are p1, . . . , pn. Then form the sequence
where the i-th number in this sequence is the y-coordinate of pi. Then an increasing or a decreasing
subsequence is the required subset.

2. Let F be a family of subsets of a n-element set X. Prove that if F is intersecting, then |F| ≤ 2n−1. Is
this the best bound? If so, can you give the corresponding example.

Solution: Note that if a set S is present, then X − S is not present. This implies there can be at
most 2n−1 sets in F . Pick any element to be in all the sets, and the remaining elements are all possible
subsets of the remaining n− 1 elements. This gives 2n−1 intersecting sets.

3. Let n ≤ 2k and A1, . . . , Am be subsets of size k of A = {1, . . . , n}, with the following property:
Ai ∪Aj 6= A for all i, j. Show that m ≤ (1− k

n )
(
n
k

)
. (Hint: Think of the complement of each set).

Solution: For each set Ai, call it’s complement set Bi. Then Bi has size n−k, and they are intersecting
(as Ai ∪Aj 6= A). Therefore, by Erdos-Ko-Rado theorem, there are at most

(
n−1

n−k−1
)

such Bi’s, and so(
n−1

n−k−1
)
Ai’s as well. Algebraic simplification shows that this is the same as the required bound.

4. Given an integer k, let P be a set of n points such that each point has at least k points equi-distant
from it. Assume no three points lie on the same line. Show that k = O(

√
n).

Solution: Double-counting. Count all tuples of type (q, pj , pk), where q ∈ P is equi-distant from
pj ∈ P and pk ∈ P . If no three points lie on the same line, then for each pair pj , pk, there can be at
most two points q1, q2 ∈ P that form the tuples (q1, pj , pk) and (q2, pj , pk). This gives an upper-bound
of 2

(
n
2

)
on the number of tuples. Now get an upper-bound in terms of k. Putting them together gives

the required bound.

5. Prove that the graph obtained from Kn by deleting one edge has exactly (n− 2)nn−3 spanning trees.

Solution: Use Cayley’s theorem on the number of spanning trees on n vertices, nn−2. Say edge e is
missing. As the number of spanning trees is nn−2, and each edge appears equal number of times over
these trees, the edge e must have appeared (nn−2(n − 1))/

(
n
2

)
times. So subtract this from nn−2 to

get the answer.

Bonus Problem. Five couples are at a party, and each person shakes hands with some of the other people,
but obviously does not shake hands with their own partner. Say one of the couples is Alice and Bob. Alice
then asks each of the other 9 people how many times they shook hands, and receives all distinct answers.
How many people did Alice’s partner Bob shake hands with?

10 points.
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