Questions

1. We will prove the following equality:

$$
\begin{equation*}
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} \cdot 2^{n-2 k}=n+1 \tag{1}
\end{equation*}
$$

- Define $\{0,1\}^{n}$ to be the set of all binary strings of length n. For each $i, 1 \leq i \leq n-1$, define the following set:

$$
A_{i}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: x_{i}=0, x_{i+1}=1\right\}
$$

A_{i} is the set of all binary strings of length n with 0 in the i-th position, and 1 in the $(i+1)$-th position. Prove that

$$
\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right|=\binom{n-k}{k} \cdot 2^{n-2 k}
$$

- Prove that $\left|\{0,1\}^{n}-\bigcup_{1 \leq i \leq n-1} A_{i}\right|=n+1$.
- Prove the identity given in equation (1).

Solution: i) Count the number of strings filling the k given places with 01's (and the rest of the places with all possible combinations). And sum this over all possible k places. ii) Counting the complement. iii) Use inclusion-exclusion.
2. How many ways are there to seat n couples in a row of $2 n$ chairs such that the couples never sit next to each other?
Solution: Inclusion-Exclusion on the complement problem.
3. How many ways are there to distribute n identical chocolates to k (non-identical!) children such that no child gets more than $m-1$ chocolates?
Solution: Inclusion-Exclusion on the complement problem.
4. Prove the following upper bound: $n!\leq e \sqrt{n}(n / e)^{n}$. Use the method of integration, carefully dealing with the triangle areas.
Solution: Exactly as done in the class, except one has to exclude the n triangle areas.
5. Prove Bernoulli's Inequality: for any natural number n and real $x \geq-1$: $(1+x)^{n} \geq 1+n x$.

Solution: Induction on n.
6. Prove the following estimate by induction on $k:\binom{n}{k} \leq(e n / k)^{k}$

Solution: Induction in a very similar way to the one given in the Matousek-Nesetril book.

Bonus Problem. Let n be an even integer. Find the number of distinct strings of length n that can be obtained by concatenating copies of the strings 0,10 and 11 . For example, 0101110 is a valid string (01011 10) but 1100101 is not.

Solution: By induction. Start from the right-most bit. If that is a 0 , then any string on the earlier $n-1$ bits together with this last bit 0 will form a valid codeword. So that is 2^{n-1} codewords ending with a 0 . Now, if the last bit is a 1 , then the second-last bit has to be a 1 also, and also has to form the 11 with the last bit (no other way for a valid codeword). This gives the recurrence $f(n)=2^{n-1}+f(n-2)$, which solves to $\left(2^{n+1}+1\right) / 3$.

