## Introduction to Combinatorics

## Homework 12 - Linear Algebra Method

Janos Pach \& Nabil Mustafa

## Questions

1. Every 1 -distance set in $\mathbb{R}^{d}$ has at most $d+1$ elements.

Solution: Assume the same-distance is 1. Fix one point, say $p_{1}$, to be the origin. Then the remaining points, $p_{2}, \ldots, p_{t}$ all lie at distance 1 from origin. We want to show that $p_{2}, \ldots, p_{t}$ are linearly independent. Take: $\lambda_{2} p_{2}+\ldots+\lambda_{t} p_{t}=0$. Multiply by $p_{2}$ to get $\lambda p_{2} \cdot p_{2}+\ldots+\lambda_{t} p_{t} \cdot p_{2}=0$. $p_{2} \cdot p_{2}$ is 1 , and the remaining values are $\lambda_{i} / 2$ (from the fact that distance between $p_{i}$ and $p_{2}$ is 1 ). Similarly, multiplying by $p_{3}, \ldots, p_{t}$, and adding up the equations, it can be seen that each $\lambda_{i}=0$. Thus there can be only $d$ points, which together with the origin forms a set of size at most $d+1$.
2. Prove Sauer's theorem by induction on $n$.

Solution: See the detailed solution at: http://www.cs.princeton.edu/courses/archive/spr08/ cos511/scribe_notes/0220.pdf
3. Prove the following analog of Sauer's Lemma for uniform families. Let $n, l, k$ be natural numbers, $n \geq l \geq k$ and let $\mathcal{F}$ be an $l$-uniform family of subsets of an $n$-element set. If $|\mathcal{F}|>\binom{n}{k-1}$ then $\mathcal{F}$ is ( $n, k$ )-dense (i.e., there exists a subset $Y$ of size $k$ such that every subset of $Z$ can be gotten from intersecting $Y$ with the sets in $\mathcal{F}$ ). (Hint: follow the proof given in class for this new setting, where the columns are labelled with $(k-1)$-element subsets only, and argue that the minimal set $Y$, for which $g(Y) \neq 0$, must still have at least $k$ elements.)
Solution: Hint gives the solution sketch.
4. Construct a two-distance set in $\mathbb{R}^{n}$ with $\binom{n}{2}$ points. Recall that a set of points in $\mathbb{R}^{n}$ is two-distance iff the distance between every pair of points is one of two values.
Solution: A point is described by $n$ coordinates. For each pair of coordinates, make a point by setting those two coordinates to 1 , and the other $n-2$ coordinates to 0 . These are the $\binom{n}{2}$ points, and it can be verified that this is a two-distance set.

Bonus Problem. An $n \times n$ table filled with integers has the property that no two columns are identical. Then prove that there exists a row which can be removed so that the property is still true.

