Introduction to Combinatorics

Homework 11 - Linear Algebra Method

Janos Pach \& Nabil Mustafa

Questions

1. Prove the "reverse oddtown theorem": given a set X of n elements, and m sets S_{1}, \ldots, S_{m} over X where each $\left|S_{i}\right|$ is even, and $\left|S_{i} \cap S_{j}\right|$ is odd, prove that $m \leq n+1$. Can you improve this to $m \leq n$?
Solution: Add a dummy element to each set, and apply Oddtown theorem. Therefore, $m \leq n+1$. It can also be shown that $m \leq n$. If n is odd, take the complement sets, and apply Oddtown theorem. Otherwise, n is even. Now note that the set system made up of $\left\{S_{i}, i=1 \ldots m\right\}$, and the complement set system made up of sets $\left\{\overline{S_{i}}, i=1 \ldots m\right\}$ satisfying same condition. And for contradiction, assume $m=n+1$. Then by making the equation for linear dependency on the characteristic vectors of both set S_{i}, and the complement set $\overline{S_{i}}$ (following the proof done in class), it can be deduced that $v_{i}+\overline{v_{i}}+\ldots+v_{n+1}+\overline{v_{n+1}}=0$, a contradiction as $n+1$ is odd, and so the above sum is 1 , and not 0 .
2. Prove the "bipartite oddtown theorem": given a set X of n elements, and sets R_{1}, \ldots, R_{m} and B_{1}, \ldots, B_{m}, where $\left|R_{i} \cap B_{i}\right|$ is odd for every i, and $\left|R_{i} \cap B_{j}\right|$ is even for every $i \neq j$, prove that $m \leq n$.
Solution: Say characteristic vector of R_{i} is r_{i}, and B_{i} is b_{i}. Then make the linear-dependency equation for r_{i}. To see $\lambda_{i}=0$, multiply equation by b_{i}.
3. A block-design consisting of n total elements X and m sets over X where each set has k elements and every t-sized subset of X is contained in exactly λ sets is denoted by $t-(n, k, \lambda)$. Then Fisher's inequality states that $m \geq n$.
Prove that for a block-design with $t=2, \lambda \cdot \frac{n-1}{k-1}$ has to be an integer.
Solution: Say the first element lies in c sets. Then for each of those sets, it makes a pair with the other $k-1$ elements, for a total of $c(k-1)$ pairs. On the other hand, it makes a pair with $n-1$ elements, and each of those pairs appears in λ sets. So then $c(k-1)=\lambda(n-1)$, and we're done.
4. Can there be a block-design of type 2-(16, 6, 1)? What about 2-(21, 6, 1)? $2-(25,10,3)$?

Solution: None are possible. First note that by double-counting, we have $m=\lambda \frac{n(n-1)}{k(k-1)}$. Now apply Fisher's inequality to get a contradiction on m.
5. For $\lambda=1$, prove Fisher's inequality directly.

Solution: Take any set A with k elements. As each element lies in $\frac{n-1}{k-1}$ sets, then for each element $i \in A$, there are $(n-1) /(k-1)-1$ other sets containing i. Over all $i \in A$, these sets are distinct, so the total number of sets are at least $\left(\frac{n-1}{k-1}-1\right) k+1$. It can be verified that this is at least n.

Bonus Problem. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1}, x_{2}, \ldots, x_{n}$ satisfy

$$
\sum_{i=1}^{k} x_{i} \leq k-1 \quad \forall k=1,2, \ldots, n
$$

