Introduction to Combinatorics	Spring, 2011
Homework 9-PROBABILISTIC METHODS	
Janos Pach \S Nabil Mustafa	21 April

Questions

1. Let X be a number chosen uniformly at random from $\{1, \ldots, n\}$. Compute $\operatorname{Var}[X]$. What if X is chosen from $\{-k,-k+1, \ldots, 0, \ldots, k-1, k\}$?
2. Suppose we roll a die 100 times. Let X be the sum of the numbers that appear over these 100 rolls. What is the best bound you can give for $\operatorname{Pr}(|X-350| \geq 50)$?
3. Given two independent random variables X and Y, prove that $\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
4. Construct a random variable to show that Markov's inequality is tight, i.e., given an integer k, construct a random variable X such that $\operatorname{Pr}(X \geq k \cdot E[X])=1 / k$.
5. Similarly, can you give an example of a random variable to show that Chebychev's inequality is tight?

Bonus Problem. Given n red points $R=\left\{p_{1}, \ldots, p_{n}\right\}$ and n blue points $B=\left\{q_{1}, \ldots, q_{n}\right\}$ in the plane, prove that there is a one-to-one pairing of red points to blue points such that the n line segments in the plane (each defined by the two points in a pair) are disjoint.

