Introduction to Combinatorics	Spring, 2011
Homework 8 - PROBABILISTIC METHODS	
Janos Pach \S Nabil Mustafa	14 April

Questions

1. Let $G=(V, E)$ be a graph with $2 n$ vertices and m edges. Prove that there exists a cut with n vertices on each side, and with at least $\frac{m n}{2 n-1}$ edges across the cut.
2. Given a graph $G=(V, E)$ with n vertices, consider the following method for constructing a cut of G. Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertices of G. Start with the cut consisting of vertices v_{1} and v_{2} on two different sides, i.e., the cut $\left(\left\{v_{1}\right\},\left\{v_{2}\right\}\right)$. Now add each of the remaining vertices v_{3}, \ldots, v_{n} to this cut one-by-one as follows: assume we have already added the vertices v_{3}, \ldots, v_{i-1} to the cut. Then add the next vertex v_{i} to the side of the cut to which v_{i} has fewer edges. Prove that the final cut has at least $m / 2$ edges across it.
3. Consider the following deterministic way of constructing ϵ-nets: pick an element of X that hits maximum number of sets. Add this element to our ϵ-net, and inductively compute an ϵ-net for the remaining sets that were not hit. Show that this constructs an ϵ-net of size $2 k \log m$.
4. Pick k random numbers from the set $\{1, \ldots, n\}$ (a number may be picked multiple times). Show that the expected value of the minimum number picked is approximately $\frac{n}{k+1}$. You may use the fact that $\sum_{i=1}^{n} i^{m}$ is approximately $n^{m+1} /(m+1)$.

Bonus Problem. Let \mathcal{T} be the family of all nonempty subsets of $\{1,2, \ldots, n\}$ with the property that any $T \in \mathcal{T}$ contains no two consecutive integers. For every $T \in \mathcal{T}$, let p_{T} denote the product of the squares of all elements of T. Prove that the sum of the numbers p_{T} over all elements $T \in \mathcal{T}$ is $(n+1)$! -1 .

10 points.

