Introduction to Combinatorics	Spring, 2011
Homework 7-PROBABILISTIC METHODS	
Janos Pach $\mathcal{\text { N Nabil Mustafa }}$	6 April

Questions

1. We toss a fair coin n times. What is the expected number of 'runs'? Runs are consecutive tosses with the same result. For instance, the toss sequence HHHTTHTH has 5 runs.
2. For a permutation π, let $f(\pi)$ be the number of fixed points of π. What is $E[f(\pi)]$ for a random permutation π on n elements.
3. The number of left maxima for a permutation π of $\{1, \ldots, n\}$ is defined to be the number of indices $i \in[n]$ such that $\pi(i)>\pi(j)$ for all $j<i$. Using linearity of expectation, compute the expected number of left maxima for a random permutation?
4. Let X be a set of n elements, and \mathcal{M} a set system on X, i.e., $\mathcal{M}=\left\{S_{1}, \ldots, S_{m}\right\}$, where $S_{i} \subseteq X$ and $\left|S_{i}\right|=k$ for all $i=1 \ldots m$. Prove that if $m<2^{k-1}$, then X can be two-colored (i.e., each element of X can be colored either 'red' or 'blue') such that no set S_{i} is monochromatic (a set S is monochromatic if all the elements in S have the same color).
5. Can you construct a tournament T on 6 vertices such that for any pair of vertices $u, v \in T$, there is a third vertex w such that w beats both u and v ? What about a tournament with 7 vertices?

Bonus Problem. Prove that there exist four positive integers $a_{1}, a_{2}, a_{3}, a_{4}$ such that for any integer $w \in\{1, \ldots, 40\}$, there exist $c_{i} \in\{-1,0,+1\}, i=1, \ldots, 4$, such that $w=c_{1} \cdot a_{1}+c_{2} \cdot a_{2}+c_{3} \cdot a_{3}+c_{4} \cdot a_{4}$.

