Introduction to Combinatorics	Spring, 2011
Homework 12 - LineAR	AlGEBRA METHOD
Janos Pach \S Nabil Mustafa	

Questions

1. Every 1-distance set in \mathbb{R}^{d} has at most $d+1$ elements.
2. Prove Sauer's theorem by induction on n.
3. Prove the following analog of Sauer's Lemma for uniform families. Let n, l, k be natural numbers, $n \geq l \geq k$ and let \mathcal{F} be an l-uniform family of subsets of an n-element set. If $|\mathcal{F}|>\binom{n}{k-1}$ then \mathcal{F} is (n, k)-dense (i.e., there exists a subset Y of size k such that every subset of Z can be gotten from intersecting Y with the sets in \mathcal{F}). (Hint: follow the proof given in class for this new setting, where the columns are labelled with $(k-1)$-element subsets only, and argue that the minimal set Y, for which $g(Y) \neq 0$, must still have at least k elements.)
4. Construct a two-distance set in \mathbb{R}^{n} with $\binom{n}{2}$ points. Recall that a set of points in \mathbb{R}^{n} is two-distance iff the distance between every pair of points is one of two values.

Bonus Problem. An $n \times n$ table filled with integers has the property that no two columns are identical. Then prove that there exists a row which can be removed so that the property is still true.

