Homework 11 – LINEAR ALGEBRA METHOD

Janos Pach & Nabil Mustafa

12 May

Questions

- 1. Prove the "reverse oddtown theorem": given a set X of n elements, and m sets S_1, \ldots, S_m over X where each $|S_i|$ is even, and $|S_i \cap S_j|$ is odd, prove that $m \le n+1$. Can you improve this to $m \le n$?
- 2. Prove the "bipartite oddtown theorem": given a set X of n elements, and sets R_1, \ldots, R_m and B_1, \ldots, B_m , where $|R_i \cap B_i|$ is odd for every i, and $|R_i \cap B_j|$ is even for every $i \neq j$, prove that $m \leq n$.
- 3. A block-design consisting of n total elements X and m sets over X where each set has k elements and every t-sized subset of X is contained in exactly λ sets is denoted by t- (n, k, λ) . Then Fisher's inequality states that $m \ge n$.

Prove that for a block-design with t = 2, $\lambda \cdot \frac{n-1}{k-1}$ has to be an integer.

- 4. Can there be a block-design of type 2-(16, 6, 1)? What about 2-(21, 6, 1)? 2-(25, 10, 3)?
- 5. For $\lambda = 1$, prove Fisher's inequality directly.

Bonus Problem. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum of all these labels is n-1. Prove that we can cut the necklace to form a string whose consecutive labels x_1, x_2, \ldots, x_n satisfy

$$\sum_{i=1}^{k} x_i \le k - 1 \ \forall \ k = 1, 2, \dots, n$$

10 points.