Introduction to Combinatorics	Spring, 2011
Homework 10 - ProbABILISTIC METHODS	
Janos Pach \& Nabil Mustafa	5 May

Questions

1. Let X be a random variable, and $c>0$ any constant. Prove that $\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]$.
2. Prove that the Crossing Lemma is optimal. In other words, given any integers $n>0$ and $m \geq 5 n$, show that there exists a graph G with n vertices and m edges such that the crossing number of G is at most $c \cdot m^{3} / n^{2}$, where $c>0$ is a constant.
3. In class we saw a probabilistic proof of the Crossing Lemma. Using that for intuition, construct a purely combinatorial double-counting proof of the Crossing Lemma.
4. In a way similar to the one done in class, prove that the number of incidences between n distinct unit circles and n distinct points in the plane is at most $c \cdot n^{4 / 3}$, where $c>0$ is a constant.

Bonus Problem. A deck of 50 cards contains two cards labeled i for each $i=1,2, \ldots, 25$. There are 25 people seated at a table, each holding two of the cards in this deck. Each minute every person passes the lower-numbered card of the two they are holding to the right. Prove that eventually someone has two cards of the same number.

