

Modeling Deformable Surfaces from Single Videos

P. Fua CVLab, EPFL, Switzerland http://cvlab.epfl.ch/

Talk Outline

2D Deformable Surfaces

- Problem Formulation.
- Fast Matching.
- Robust Optimization Scheme.
- Illumination Correction.

• 3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.

2D Deformable Surfaces

=

Estimating:

- Deformations
- Lighting parameters
- Occlusions

Pilet et al., IJCV 2008

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

Problem Formulation

- Input:
 - Correspondences between a **reference** and **input image**.
 - No a priori pose information.
- Output:
 - A mapping **F** from model to input image.

Challenges

Non-rigid deformation without a priori pose:

- High dimensionality (200+ DOF)
- Large search space
- Wide baseline matching

Real-time requirements:

- Fast optimization scheme
- Fast matching

Deformable Model

ε_D Regularization Term

Quadratic function vertex coordinates

$$\varepsilon_D(S) = \frac{1}{2} \left(X^T K X + Y^T K Y \right)$$

- penalizes non uniform scaling;
- penalizes excessive bending;
- allows perspective distortion;
- allows smooth surface deformation.

ϵ_c Correspondence Term

Real-Time Augmentation

Key Ingredients

- Classification-based approach to matching.
- Robust minimization scheme.
- Intensity ratios for illumination correction.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

ε_C Correspondence Term

Binarized Tests for Keypoint Matching

Randomized Tree

Generic tree: The nodes contain simple tests of the form "Is $I(m_1) > I(m_2)$?"

Posterior probabilities can be learnt from:

• synthetically warped images

• video sequences

Random vs Optimized Locations

Bayesian Interpretation

∲Lab

. .

We are looking for:

$$P(C = c_i \mid f_1, f_2, \cdots f_n, f_{n+1}, \cdots \cdots f_N)$$

proportional to

$$P(f_1, f_2, \cdots f_n, f_{n+1}, \cdots \cdots f_N \mid C = c_i)$$

but complete representation of joint distribution infeasible.

Naive Bavesian:

$$\approx \prod_{j} P(f_j \mid C = c_i)$$

Compromise:

$$\approx P(f_1, f_2, \cdots f_n \mid C = c_i) \bigotimes P(f_{n+1}, \cdots f_{2n} \mid C = c_i) \bigotimes \cdot$$

--> probabilities stored in the leaves.

Scale and Orientation Invariance

Planar or Not

Reference image vs Input Images

Reference video

Input Images

BRIEF

Very simple computation that can be seen as computing gradients:

- Most smooth kernels work, even simple box filters.
- 128, 256, or 512 binary tests usually suffice.
- Random arrangment of tests effective iff evenly sampled.
- Not rotationally invariant.

Calonder et al. ECCV'10

Benchmarks Datasets

BRIEF vs SURF

BRIEF vs SIFT

SIFT > BRIEF > SURF.

Be careful about interpreting benchmarks!

- Integral images can further decrease BRIEF's description time by making smoothing faster.
- Intel Core i7 CPU's POPCOUNT instruction will drastically speed-up the matching of binary vectors.
- Scale and rotational invariance need to be added in some cases.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

ϵ_c Correspondence Term

$$\varepsilon_C = -\sum_{c \in C} \left\| c_1 - T_{\mathbf{S}} \left(c_0 \right) \right\|^2$$

Not robust to outliers!

Robustness to Mismatches

$$\varepsilon_{C} = -\sum_{c \in C} w_{c} \rho \left(\left\| c_{1} - T_{\mathbf{S}} \left(c_{0} \right) \right\|, r \right)$$

where ρ is a robust estimator whose radius of confidence is r and $w_c \in [0, 1]$ a weight associated to each correspondence.

$$\rho\left(\delta,r\right) = \begin{cases} \frac{3\left(r^2 - \delta^2\right)}{4r^3} & \delta < r\\ 0 & otherwise \end{cases}$$

$$\int_{-\infty}^{\infty} \rho(x,r) dx = 1 \quad \forall r > 0$$

Gauging Robustness

Probability of having 90% mesh vertices within 2 pixels of the solution

Visualizing the Deformations

Minimize:

$$\varepsilon(S) = \lambda_D \varepsilon_D(S) + \varepsilon_C(S)$$

$$\varepsilon_D(S) = \frac{1}{2} \left(X^T K X + Y^T K Y \right)$$

Satisfied when:

$$0 = \frac{\partial \varepsilon}{\partial X} = \frac{\partial \varepsilon_C}{\partial X} + KX$$
$$0 = \frac{\partial \varepsilon}{\partial Y} = \frac{\partial \varepsilon_C}{\partial Y} + KY$$

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. IJCV, 1988.

Lab

Semi-Implicit Optimization Scheme

.ab

Solve at each iteration:

$$(K + \alpha I)X_t = \alpha X_{t-1} - \frac{\partial \varepsilon_C}{\partial X}\Big|_{X = X_{t-1}, Y = Y_{t-1}}$$
$$(K + \alpha I)Y_t = \alpha Y_{t-1} - \frac{\partial \varepsilon_C}{\partial Y}\Big|_{X = X_{t-1}, Y = Y_{t-1}}$$

--> Fast because K has only a few non zero diagonals.

Taylor expansion of data term:

$$\begin{split} \varepsilon(X,Y) &= \lambda_D \varepsilon_D(X,Y) + \varepsilon_C(X,Y) \\ \varepsilon_D(X,Y) &= \frac{1}{2} \left(X^T K X + Y^T K Y \right) \\ \varepsilon_C(X+dX,Y+dY) &= A + B d X + C d Y + \frac{1}{2} d X^t D d X + \frac{1}{2} d Y^t E d Y \\ \text{Zhu and Lyu, ECCV'07} \end{split}$$

Newton **Optimization Scheme** At the minimum:

$$0 = \frac{\partial \varepsilon}{\partial X} = B + DdX + K(X + dX)$$
$$0 = \frac{\partial \varepsilon}{\partial Y} = C + EdY + K(Y + dY)$$

Solve at each iteration:

$$(K+D)dX = -B - KX$$
$$(K+E)dY = -C - KY$$

Semi-Implicit vs Newton

Residuals as a function of the number of iterations: Semi-Implicit in green and Newton in blue.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

⊘Lab

Intensity Ratios

Reference image: $I_{r,p} = L_r A_p$ Input image: $I_{i,p} = L_{i,p} A_p$

White image: $I_{r,w} = L_r A_w$ Synthetic image: $I_{x,p} = L_{i,p} A_w$

$$= A_w L_r \frac{I_{i,p}}{I_{r,p}}$$
$$= I_{r,w} \frac{I_{i,p}}{I_{r,p}}$$

Standard approach:

• Pixel-wise statistical background model.

Modified approach:

- Account for the fact that illuminations changes tend to be correlated.
- Model variations of intensity ratios as GMMs.

--> Effective for occlustion detection.

Realistic Augmentation

3D Deformable Surfaces

Reference

Problem Formulation

Input:

- Reference image.
- Corresponding 3D surface.
- Projection matrix P.
- 3D-to-2D correspondences between reference configuration and input image.

Unknowns:

Mesh vertex coordinates corresponding to input image

 $\mathbf{X} = [x_1, y_1, z_1, \cdots, x_{n_v}, y_{n_v}, z_{n_v}]^T$

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Linear Formulation

- Calibrated camera, A intrinsic parameters matrix.
- Coordinates expressed in the camera referential.
- Unknown mesh vertex coordinates: $\mathbf{X} = (\mathbf{v}_1^T, \dots, \mathbf{v}_{n_v}^T), \ \mathbf{v}_i = (x_i, y_i, z_i)^T$
- Correspondences
 - Barycentric coordinates from reference configuration: (a_i, b_i, c_i)
 - Current image location: $(u_i, v_i)^T$

 $\begin{pmatrix} u_i \\ v_i \\ 1 \end{pmatrix} = \frac{1}{k_i} \mathbf{A} (a_i v_1 + b_i v_2 + c_i v_3)$ Salzmann et al., CVPR'07

Linear Formulation

$$\mathbf{A} \left(b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + b_3 \mathbf{v}_3 \right) = k \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

 $\rightarrow k$ can be expressed in terms of the vertex coordinates using the last row.

$$\begin{bmatrix} b_1\mathbf{H} & b_2\mathbf{H} & b_3\mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix} = \mathbf{0} ,$$

with

$$\mathbf{H} = \mathbf{A_{2\times 3}} - \left[\begin{array}{c} u \\ v \end{array}\right] \mathbf{A_3} ,$$

where $A_{2\times 3}$ contains the first two rows of A, and A_3 is the third one.

--> Each correspondence gives rise to two linear equations.

Linear System and Singular Values

X must be solution of **MX** =0

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Inextensible Meshes

A solution of the linear system belongs to the kernel of \boldsymbol{M} :

$$\mathbf{M}\mathbf{X} = 0 \implies \mathbf{X} = \sum_{i} \beta_{i} \mathbf{p}_{i} ,$$

where the \mathbf{p}_i are the eigenvectors corresponding to small eigenvalues.

Inextensible mesh:

$$\left\|\sum_{i}\beta_{i}\mathbf{p}_{i}^{j}-\sum_{i}\beta_{i}\mathbf{p}_{i}^{k}\right\|^{2}=\text{cte}$$

for all neighboring vertices j and k.

--> A system a quadratic equations that could be solved in closed form using extended linearization, but with too many variables for existing solvers.

Salzmann et al., ECCV'08

Degrees of Freedom

For an inextensible triangulation with V vertices, E=Ei+Eb edges, and F facets with no holes:

-Euler formula

V+F-E=1 .

- Interior edges shared by two facets
 3F=2Ei+Eb.
- -Degrees of freedom

3V-E=6+Eb

Spinnaker Modes

where the W is a diagonal matrix of modal penalty terms that depends on the eigenvalues of the training data covariance matrix.

- A can also be written as a weighted sum of eigenvectors of the extended matrix.
- The inextensibility constraints give rise to a smaller set of quadratic equations than can now be solved.

In the presence of sharp folds:

- The Euclidean distance between discrete points decreases.
- Inextensibility constraints are not appropriate anymore.

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Handling Creases

Replace inextensibility constraints by distance inequalities that:

- Let us reconstruct surfaces with sharp folds.
- Yield a convex formulation of the reconstruction problem.

Salzmann et al., CVPR'09

Inequality Constraints

In the presence of sharp folds, geodesic distances remain constant, but Euclidean ones may decrease.

Naive formulation:

$$\mathbf{X}_{opt} = \arg\min \|\mathbf{M}\mathbf{X}\| ,$$

subject to

$$\left\|\mathbf{V}_{j} - \mathbf{V}_{k}\right\| \leq d_{jk}$$

for all neighboring vertices j and k.

20

∛Lab

- Inequality constraints do not prevent the mesh from shrinking.
- To this end, we push the points along their lines-of-sight as far as the constraints allow.

This is an SOCP problem, which can be solved using standard numerical routines.

Shape Regularization

- Regularization is needed to enforce smoothness on poorly textured parts.
- To handle sharp folds, the global models must be replaced by local ones.

 \rightarrow Introduce a linear model for individual surfaces patches

$$\mathbf{X}^i = \mathbf{X}_0^i + \mathbf{\Lambda} \mathbf{c}^i$$

Local Deformation Model

• To avoid having to explicitly force the coefficients of overlapping patches to be consistent, we express them as

 $\mathbf{c}^{i} = \boldsymbol{\Lambda}^{\mathrm{T}} (\mathbf{X}^{i} - \mathbf{X}_{0}^{i}) ,$

which arises from the orthonormality of the modes.

• Regularization is achieved by penalizing the coefficients associated to high energy modes, which is done by minimizing

$$\sum_{i\leq N_{\tau}} w_i \left\| \Sigma^{-1/2} \Lambda^{\mathrm{T}} (\mathbf{X}^i - \mathbf{X}_0^i) \right\|,$$

where Σ contains the eigenvalues of the training data covariance matrix.

Temporal Regularization

For short video-sequences, we can enforce temporal consistency by introducing a second order---constant speed---motion model:

 \rightarrow We solve our optimization problem for 3 frames simultaneously, and regularize the motion between frames by minimizing

$$\left\| \mathbf{X}^{t-1} - 2\mathbf{X}^{t} + \mathbf{X}^{t+1} \right\|$$

• Optical motion capture:

- Correspondences:
 - Sample the barycentric coordinates, project the 3D points, add Gaussian noise with variance 5 to the image locations.
 - Compute SIFT matches between the input images and the reference.
 2

.ab

Synthetic Correspondences

SIFT Correspondences

SIFT Correspondences

Introducing Outliers

- Synthetic correspondences.
- Varying outlier rate.

Repetitive Patterns

Problem:

• Correspondences are difficult to establish.

Solution:

• Simultaneously solve for correspondences and 3D shape.

Shaji et al., CVPR'10

- Instance of a NP Hard Problem.
- Branch-and-bound methods that works well for this particular problem.

Comparison

Ground Truth Mesh Reconstruction by our method Reconstruction by method of Salzmann et.al

Cushion

Talk Outline

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Problem Formulation

Input Frame

Support Frame

Varol et al., ICCV'09

From Local to Global

Local Homographies

Assuming that the patch is fixed and that the support camera moves

$$\mathbf{P}_{i} = \mathbf{K}[\mathbf{R}_{i}|\mathbf{t}_{i}]$$
$$\mathbf{H}_{i} = \mathbf{R}_{i} - \frac{\mathbf{t}_{i}\mathbf{n}_{i}^{T}}{d^{i}} = \mathbf{R}_{i} - \mathbf{t}'_{i}\mathbf{n}_{i}^{T}$$

 $\rightarrow \mathbf{R}_i, t_i, \text{ and } n_i \text{ can be recovered up to a scale factor.}$

Enforcing Consistency

- Turn pairs of matching points in each patch into 3D points that lie on a plane by solving a linear system per patch. The reconstruction is performed up to a local scale factor.
- Compute the scale factors so that points shared by several patches have the same 3D coordinates by solving a global linear system.

--> 3D cloud up to a global scale factor.

Consistent Point Cloud

- 1. Track triangle vertices over 4 or more frames.
- 2. Assume edge-length is preserved and reconstruct in 3D.
- 3. Enforce consistency of the resulting *triangle soup*.

Taylor, Jepson, and Kutulakos, CVPR'10

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Augmented Reality

Magic Book

Magic Cushion

Scherrer et al., Leonardo, special issue SIGGRAPH'09

Hydroptère

Runs at 8 Hz on an ordinary PC

Wing Deformation

- Compare predicted and observed values.
- Improve simulation software until the two match.
 --> Virtual wind tunnel.

Wing Deformation

Intelligence Gathering

• Automated reading of those banners requires unwarping the surfaces.

Laparoscopic Surgery

A Generic Paradigm

Automated 3D deformable surface detection:

- Reconstruct textured parts of a surface.
- Learn a deformation model from those.
- Apply it to reconstruct the rest of the surface.
- \rightarrow A robust method that is easy to deploy.

Thanks to

- M. Calonder
- R. Hartley
- S. Ilic
- V. Lepetit
- F. Moreno-Noguer
- M. Ozuysal

- J. Pilet
- M. Salzmann
- A. Shaji
- E. Tola
- R. Urtasun
- A. Varol

References

2D Deformable Surfaces

• J. Pilet, V. Lepetit, and P. Fua, **Fast Non-Rigid Surface Detection**, **Registration and Realistic Augmentation**, International Journal of Computer Vision, Vol. 76, Nr. 2, February 2008.

3D Deformable Surfaces

• M. Salzmann, J.Pilet, S.Ilic, P.Fua, <u>Surface Deformation Models for Non-Rigid 3--D Shape Recovery</u>, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Nr. 8, pp. 1481 - 1487, August 2007.

• M. Salzmann and P. Fua, Linear Local Models for Monocular Reconstruction of Deformable Surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, In Press.

Point Matching:

• M. Ozuysal, M. Calonder, V. Lepetit and P. Fua, <u>Fast Keypoint Recognition using Random Ferns</u>, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, Nr. 3, pp. 448 - 461, March 2010

• M. Calonder, V. Lepetit and P. Fua, **BRIEF: Binary Robust Independent Elementary Features**, European Conference on Computer Vision, Heraklion, Greece, 2010.