ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Modeling Deformable Surfaces from Single Videos

P. Fua

CVLab, EPFL, Switzerland http://cvlab.epfl.ch/

Talk Outline

- 2D Deformable Surfaces
- Problem Formulation.
- Fast Matching.
- Robust Optimization Scheme.
- Illumination Correction.
- 3D Deformable Surfaces
- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.

2D Deformable Surfaces

Estimating:

- Deformations
- Lighting parameters
- Occlusions

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

Problem Formulation

- Input:
- Correspondences between a reference and input image.
- No a priori pose information.
- Output:
- A mapping F from model to input image.

Challenges

Non-rigid deformation without a priori pose:

- High dimensionality (200+ DOF)
- Large search space
- Wide baseline matching

Real-time requirements:

- Fast optimization scheme
- Fast matching

Deformable Model

Wide Baseline Matching

Regularization Term

$$
\varepsilon(S)=\overrightarrow{\varepsilon_{C}}(S)+\lambda_{D} \varepsilon_{D}(S)
$$

$$
S=(X, Y)
$$

Reference Image
Input Image

ε_{D} Regularization Term

Quadratic function vertex coordinates:

$$
\varepsilon_{D}(S)=\frac{1}{2}\left(X^{T} K X+Y^{T} K Y\right)
$$

- penalizes non uniform scaling;
- penalizes excessive bending;

- allows perspective distortion;
- allows smooth surface deformation.

ε_{c} Correspondence Term

$$
\varepsilon_{C}=-\sum_{c \in C}\left\|c_{1}-T_{\mathbf{S}}\left(c_{0}\right)\right\|^{2}
$$

Real-Time Augmentation

Once upon a time animated pictures at EPFL

Key Ingredients

- Classification-based approach to matching.
- Robust minimization scheme.
- Intensity ratios for illumination correction.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

ε_{C} Correspondence Term

Standard approach:

Classification-based approach:

- One class per keypoint.
- Shifts computational burden to offline training.

Binarized Tests for Keypoint Matching

Randomized Tree

Generic tree: The nodes contain simple tests of the form "Is $\mathrm{I}\left(\mathrm{m}_{1}\right)>\mathrm{I}\left(\mathrm{m}_{2}\right)$?"

Posterior probabilities can be learnt from:

- synthetically warped images

- video sequences

Multiple Trees

Where should the tests be performed?
-Choose locations to maximize information gain.
-Choose locations randomly.

Random vs Optimized Locations

Recognition rate

Recognition rates for 200 keypoints.

FERNS: Flattening the Tree

The distributions can be expressed simply, as:

Bayesian Interpretation

We are looking for:

$$
P\left(C=c_{i} \mid f_{1}, f_{2}, \cdots f_{n}, f_{n+1}, \cdots \cdots f_{N}\right)
$$

proportional to

$$
P\left(f_{1}, f_{2}, \cdots f_{n}, f_{n+1}, \cdots \cdots f_{N} \mid C=c_{i}\right)
$$

but complete representation of joint distribution infeasible.
Naive Bavesian:

$$
\approx \prod_{j} P\left(f_{j} \mid C=c_{i}\right)
$$

Compromise:

$$
\approx P\left(f_{1}, f_{2}, \cdots f_{n} \mid C=c_{i}\right) \otimes P\left(f_{n+1}, \cdots f_{2 n} \mid C=c_{i}\right) \otimes \cdots
$$

--> probabilities stored in the leaves.

Sum vs Product

Number of structures (Depth / Size 10)

500 classes, no orientation or perspective correction.

Clab

Scale and Orientation Invariance

Planar or Not

Reference image vs Input Images

Reference video

Input Images

$B P E$

Very simple computation that can be seen as computing gradients:
patch

smooth

binary tests

- Most smooth kernels work, even simple box filters.
- 128,256 , or 512 binary tests usually suffice.
- Random arrangment of tests effective iff evenly sampled.
- Not rotationally invariant.

Clab

Benchmarks Datasets

BRIEF vs SURF

BRIEF vs SIFT

SIFT > BRIEF > SURF.

Be careful about interpreting benchmarks!

Computational Issues

Computing $N=512$ descriptors.

Matching $N=512$ descriptors against N others.

- Integral images can further decrease BRIEF's description time by making smoothing faster.
- Intel Core i7 CPU's POPCOUNT instruction will drastically speed-up the matching of binary vectors.
- Scale and rotational invariance need to be added in some cases.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

ε_{C} Correspondence Term

$$
\varepsilon_{C}=-\sum_{c \in C}\left\|c_{1}-T_{\mathbf{S}}\left(c_{0}\right)\right\|^{2}
$$

Not robust to outliers!

Robustness to Mismatches

$$
\varepsilon_{C}=-\sum_{c \in C} w_{c} \rho\left(\left\|c_{1}-T_{\mathbf{S}}\left(c_{0}\right)\right\|, r\right)
$$

where ρ is a robust estimator whose radius of confidence is r and $w_{c} \in[0,1]$ a weight associated to each correspondence.

$$
\begin{aligned}
& \rho(\delta, r)=\left\{\begin{array}{cc}
\frac{3\left(r^{2}-\delta^{2}\right)}{4 r^{3}} & \delta<r \\
0 & \text { otherwise }
\end{array}\right. \\
& \int_{-\infty}^{\infty} \rho(x, r) d x=1 \quad \forall r>0
\end{aligned}
$$

Clab

Iterative Reweighting

Gauging Robustness

Probability of having 90% mesh vertices within 2 plxels of the solution

fédérale de lausanne

Visualizing the Deformations

Semi-Implicit Optimization Scheme

Minimize:

$$
\begin{aligned}
\varepsilon(S) & =\lambda_{D} \varepsilon_{D}(S)+\varepsilon_{C}(S) \\
\varepsilon_{D}(S) & =\frac{1}{2}\left(X^{T} K X+Y^{T} K Y\right)
\end{aligned}
$$

Satisfied when:

$$
\begin{aligned}
0 & =\frac{\partial \varepsilon}{\partial X}=\frac{\partial \varepsilon_{C}}{\partial X}+K X \\
0 & =\frac{\partial \varepsilon}{\partial Y}=\frac{\partial \varepsilon_{C}}{\partial Y}+K Y
\end{aligned}
$$

Semi-Implicit Optimization Scheme

Introduce viscosity term:

$$
\begin{aligned}
K X+\alpha \dot{X} & =-\frac{\partial \varepsilon_{C}}{\partial X} \\
K Y+\alpha \dot{Y} & =-\frac{\partial \varepsilon_{C}}{\partial Y}
\end{aligned}
$$

Time discretization:

$$
\begin{aligned}
0 & =K X_{t}+\alpha\left(X_{t}-X_{t-1}\right)+\left.\frac{\partial \varepsilon_{C}}{\partial X}\right|_{X=X_{t-1} Y=Y_{t-1}} \\
0 & =K Y_{t}+\alpha\left(Y_{t}-Y_{t-1}\right)+\left.\frac{\partial \varepsilon_{C}}{\partial Y}\right|_{X=X_{t-1}, Y=Y_{t-1}}
\end{aligned}
$$

Semi-Implicit Optimization Scheme

Solve at each iteration:

$$
\begin{aligned}
(K+\alpha I) X_{t} & =\alpha X_{t-1}-\left.\frac{\partial \varepsilon_{C}}{\partial X}\right|_{X=X_{t-1}, Y=Y_{t-1}} \\
(K+\alpha I) Y_{t} & =\alpha Y_{t-1}-\left.\frac{\partial \varepsilon_{C}}{\partial Y}\right|_{X=X_{t-1}, Y=Y_{t-1}}
\end{aligned}
$$

--> Fast because K has only a few non zero diagonals.

Taylor expansion of data term:

$$
\begin{aligned}
\varepsilon(X, Y) & =\lambda_{D} \varepsilon_{D}(X, Y)+\varepsilon_{C}(X, Y) \\
\varepsilon_{D}(X, Y) & =\frac{1}{2}\left(X^{T} K X+Y^{T} K Y\right) \\
\varepsilon_{C}(X+d X, Y+d Y) & =A+B d X+C d Y+\frac{1}{2} d X^{t} D d X+\frac{1}{2} d Y^{t} E d Y
\end{aligned} \quad \text { Zhu and Lyu, ECCV'07 } \quad \text {. }
$$

Newton

Optimization Scheme

At the minimum:

$$
\begin{aligned}
& 0=\frac{\partial \varepsilon}{\partial X}=B+D d X+K(X+d X) \\
& 0=\frac{\partial \varepsilon}{\partial Y}=C+E d Y+K(Y+d Y)
\end{aligned}
$$

Solve at each iteration:

$$
\begin{aligned}
(K+D) d X & =-B-K X \\
(K+E) d Y & =-C-K Y
\end{aligned}
$$

Semi-Implicit vs Newton

Residuals as a function of the number of iterations: Semi-Implicit in green and Newton in blue.

2D Deformable Surfaces

- Problem Formulation
- Fast Matching
- Robust Optimization
- Lighting Correction

Lighting

Clab

Intensity Ratios

Reference image: $I_{r, p}=L_{r} A_{p}$
Input image: $I_{i, p}=L_{i, p} A_{p}$

White image: $I_{r, w}=L_{r} A_{w}$
Synthetic image: $I_{x, p}=L_{i, p} A_{w}$
$=A_{w} L_{r} \frac{I_{i, p}}{I_{r, p}}$
$=I_{r, w} \frac{I_{i, p}}{I_{r, p}}$

(f)fl
 ÉCOLE POLYTECHNIQU
 fédérale de lausann
 Background Subtraction

Standard approach:

- Pixel-wise statistical background model.

Modified approach:

- Account for the fact that illuminations changes tend to be correlated.
- Model variations of intensity ratios as GMMs.
--> Effective for occlustion detection.

Realistic Augmentation

Problem Formulation

Input:

- Reference image.
- Corresponding 3D surface.
- Projection matrix P.
- 3D-to-2D correspondences between reference configuration and input image.

Unknowns:

- Mesh vertex coordinates corresponding to input image

$$
\mathbf{X}=\left[x_{1}, y_{1}, z_{1}, \cdots, x_{n_{v}}, y_{n_{v}}, z_{n_{v}}\right]^{T}
$$

Ambiguity

Scale ambiguity

Bas-Relief Ambiguity

- 3D Shape or deformation models are needed.

How can we design models that do not make unwarranted assumptions?

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Linear Formulation

- Calibrated camera, \mathbf{A} intrinsic parameters matrix.
- Coordinates expressed in the camera referential.
- Unknown mesh vertex coordinates: $\mathbf{X}=\left(\mathbf{v}_{1}^{\mathrm{T}}, \ldots, \mathbf{v}_{\mathrm{nv}}^{\mathrm{T}}\right), \mathbf{v}_{i}=\left(x_{i}, y_{i}, z_{i}\right)^{\mathrm{T}}$
- Correspondences
- Barycentric coordinates from reference configuration: $\left(a_{i}, b_{i}, c_{i}\right)$
- Current image location: $\left(u_{i}, v_{i}\right)^{T}$

$$
\left(\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right)=\frac{1}{k_{i}} \mathbf{A}\left(a_{i} \mathrm{v}_{1}+b_{i} \mathrm{v}_{2}+c_{i} \mathrm{v}_{3}\right)
$$

Salzmann et al., CVPR'07

Linear Formulation

$$
\mathbf{A}\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}\right)=k\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]
$$

$\rightarrow k$ can be expressed in terms of the vertex coordinates using the last row.

$$
\left[\begin{array}{lll}
b_{1} \mathbf{H} & b_{2} \mathbf{H} & b_{3} \mathbf{H}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right]=\mathbf{0}
$$

with

$$
\mathbf{H}=\mathbf{A}_{\mathbf{2} \times \mathbf{3}}-\left[\begin{array}{l}
u \\
v
\end{array}\right] \mathbf{A}_{\mathbf{3}},
$$

where $\mathbf{A}_{\mathbf{2} \times \mathbf{3}}$ contains the first two rows of \mathbf{A}, and $\mathbf{A}_{\mathbf{3}}$ is the third one.
--> Each correspondence gives rise to two linear equations.

Linear System and Singular Values

\mathbf{X} must be solution of $\mathbf{M X}=\mathbf{0}$

Singular values of M

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Inextensible Meshes

A solution of the linear system belongs to the kernel of \mathbf{M} :

$$
\mathbf{M X}=0 \Rightarrow \mathbf{X}=\sum_{i} \beta_{i} \mathbf{p}_{i}
$$

where the \mathbf{p}_{i} are the eigenvectors corresponding to small eigenvalues.

Inextensible mesh :

$$
\left\|\sum_{i} \beta_{i} \mathbf{p}_{i}^{\mathrm{j}}-\sum_{i} \beta_{i} \mathbf{i}_{i}^{\mathrm{k}}\right\|^{2}=\text { cte }
$$

for all neighboring vertices j and k.
--> A system a quadratic equations that could be solved in closed form using extended linearization, but with too many variables for existing solvers.

Dimensionality Reduction

$$
\begin{aligned}
\mathbf{X} & =\mathbf{X}_{0}+\sum_{i} \alpha_{i} \mathbf{S}_{i} \\
& =\mathbf{X}_{0}+\mathbf{S A}
\end{aligned}
$$

$$
\text { with } \mathbf{A}=\left[\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{N}
\end{array}\right]^{T}
$$

Degrees of Freedom

For an inextensible triangulation with V vertices, $E=E i+E b$ edges, and F facets with no holes:
-Euler formula

$$
V+F-E=1
$$

- Interior edges shared by two facets $3 F=2 E i+E b$.
-Degrees of freedom

$$
3 \mathrm{~V}-\mathrm{E}=6+\mathrm{Eb}
$$

Spinnaker Modes

Reduced System

where the \mathbf{W} is a diagonal matrix of modal penalty terms that depends on the eigenvalues of the training data covariance matrix.

- A can also be written as a weighted sum of eigenvectors of the extended matrix.
- The inextensibility constraints give rise to a smaller set of quadratic equations than can now be solved.

Independent Detection

Limitation

In the presence of sharp folds:

- The Euclidean distance between discrete points decreases.
- Inextensibility constraints are not appropriate anymore.

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Handling Creases

Replace inextensibility constraints by distance inequalities that:

- Let us reconstruct surfaces with sharp folds.
- Yield a convex formulation of the reconstruction problem.

Inequality Constraints

In the presence of sharp folds, geodesic distances remain constant, but Euclidean ones may decrease.

Naive formulation :

$$
\mathbf{X}_{\text {opt }}=\arg \min \|\mathbf{M} \mathbf{X}\|,
$$

subject to

$$
\left\|\mathbf{v}_{j}-\mathbf{v}_{k}\right\| \leq d_{j k}
$$

for all neighboring vertices j and k.

Pushing the Mesh Away
 Lab

- Inequality constraints do not prevent the mesh from shrinking.
- To this end, we push the points along their lines-of-sight as far as the constraints allow.

Convex Formulation

This is an SOCP problem, which can be solved using standard numerical routines.

Shape Regularization

- Regularization is needed to enforce smoothness on poorly textured parts.
- To handle sharp folds, the global models must be replaced by local ones.

\rightarrow Introduce a linear model for individual surfaces patches

$$
\mathrm{X}^{i}=\mathrm{X}_{0}^{i}+\Lambda \mathrm{c}^{i}
$$

Local Deformation Model

- To avoid having to explicitly force the coefficients of overlapping patches to be consistent, we express them as

$$
\mathrm{c}^{i}=\Lambda^{\mathrm{T}}\left(\mathrm{X}^{i}-\mathrm{X}_{0}^{i}\right),
$$

which arises from the orthonormality of the modes.

- Regularization is achieved by penalizing the coefficients associated to high energy modes, which is done by minimizing

$$
\sum_{i \leq N_{p}} w_{i}\left\|\Sigma^{-1 / 2} \Lambda^{\mathrm{T}}\left(\mathrm{X}^{i}-\mathrm{X}_{0}^{i}\right)\right\|
$$

where Σ contains the eigenvalues of the training data covariance matrix.

Temporal Regularization

For short video-sequences, we can enforce temporal consistency by introducing a second order---constant speed---motion model:

$$
\Delta_{t-1, t}=\Delta_{t, t+1}
$$

\rightarrow We solve our optimization problem for 3 frames simultaneously, and regularize the motion between frames by minimizing

$$
\left\|X^{t-1}-2 X^{t}+X^{t+1}\right\|
$$

Synthetic Data

- Optical motion capture:

- Correspondences:
- Sample the barycentric coordinates, project the 3D points, add Gaussian noise with variance 5 to the image locations.
- Compute SIFT matches between the input images and the reference.

Synthetic Correspondences

SIFT Correspondences

SIFT Correspondences

Introducing Outliers

- Synthetic correspondences.
- Varying outlier rate.

Single frames

Multiple frames

Repetitive Patterns

Problem:

- Correspondences are difficult to establish.

Solution:

- Simultaneously solve for correspondences and 3D shape.

Mixed Integer Quadratic Problem

- Instance of a NP Hard Problem.
- Branch-and-bound methods that works well for this particular problem.

ECOLE POLYTECHNIQU

Iterations

FÉDEERALE DE LAUSANNE

Comparison

Ground Truth Mesh
Reconstruction by our method
Reconstruction by method of Salzmann et.al

Cushion

Talk Outline

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Problem Formulation

Input Frame

Support Frame

Varol et al., ICCV'09

From Local to Global

Compute local homographies
Enforce consistency

Fit a global surface

Local Homographies

Input Image

Support Image

Assuming that the patch is fixed and that the support camera moves

$$
\begin{aligned}
\mathbf{P}_{i} & =\mathbf{K}\left[\mathbf{R}_{i} \mid \mathbf{t}_{i}\right] \\
\mathbf{H}_{i} & =\mathbf{R}_{i}-\frac{\mathbf{t}_{i} \mathbf{n}_{i}^{T}}{d^{i}}=\mathbf{R}_{i}-\mathbf{t}_{i}^{\prime} \mathbf{n}_{i}^{T}
\end{aligned}
$$

$\rightarrow \mathbf{R}_{i}, t_{i}$, and n_{i} can be recovered up to a scale factor.

Enforcing Consistency

- Turn pairs of matching points in each patch into 3D points that lie on a plane by solving a linear system per patch. The reconstruction is performed up to a local scale factor.
- Compute the scale factors so that points shared by several patches have the same 3D coordinates by solving a global linear system.
--> 3D cloud up to a global scale factor.

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Consistent Point Cloud

ECOLE POLYTECHNIQU
Clab
FÉDEERALE DE LAUSANNE

Fitted mesh using multiple-frames

Reconstructed point cloud
Fitted mesh using single-frame

Triangle Soup

1. Track triangle vertices over 4 or more frames.
2. Assume edge-length is preserved and reconstruct in 3D.
3. Enforce consistency of the resulting triangle soup.

FÉDÉRALE DE LAUSANNE

3D Deformable Surfaces

- Linear Formulation.
- Inextensible surfaces.
- Sharply folding surfaces.
- Eliminating the reference image.
- Applications.

Augmented Reality

Magic Book

Magic Cushion

Hydroptère

Runs at 8 Hz on an ordinary PC

Ele Yiew Iools Yindow Help
 $\square B$ П (6)

Matching Workspace Detection Workspace 4 d

管路

Wing Deformation

- Compare predicted and observed values.
- Improve simulation software until the two match.
--> Virtual wind tunnel.

Wing Deformation

Intelligence Gathering

- Automated reading of those banners requires unwarping the surfaces.

Laparoscopic Surgery

FÉDÉRALE DE LAUSANNE

A Generic Paradigm

Automated 3D deformable surface detection:

- Reconstruct textured parts of a surface.
- Learn a deformation model from those.
- Apply it to reconstruct the rest of the surface.
\rightarrow A robust method that is easy to deploy.

Thanks to

- M. Calonder
- R. Hartley
- S. Ilic
- V. Lepetit
- F. Moreno-Noguer
- M. Ozuysal
- J. Pilet
- M. Salzmann
- A. Shaji
- E. Tola
- R. Urtasun
- A. Varol

References

2D Deformable Surfaces

- J. Pilet, V. Lepetit, and P. Fua, Fast Non-Rigid Surface Detection, Registration and Realistic Augmentation, International Journal of Computer Vision, Vol. 76, Nr. 2, February 2008.

3D Deformable Surfaces

- M. Salzmann, J.Pilet, S.Ilic, P.Fua, Surface Deformation Models for Non-Rigid 3--D Shape Recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Nr. 8, pp. 1481-1487, August 2007.
- M. Salzmann and P. Fua, Linear Local Models for Monocular Reconstruction of Deformable Surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, In Press.

Point Matching:

- M. Ozuysal, M. Calonder, V. Lepetit and P. Fua, Fast Keypoint Recognition using Random Ferns, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, Nr. 3, pp. 448-461, March 2010
- M. Calonder, V. Lepetit and P. Fua, BRIEF: Binary Robust Independent Elementary Features, European Conference on Computer Vision, Heraklion, Greece, 2010.

