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Talk Outline
• 2D Deformable Surfaces

– Problem Formulation.
– Fast Matching.
– Robust Optimization Scheme.
– Illumination Correction.

• 3D Deformable Surfaces
– Linear Formulation.
– Inextensible surfaces.
– Sharply folding surfaces.
– Eliminating the reference image.



2D Deformable Surfaces

=+

Pilet et al., IJCV 2008

Estimating:
• Deformations
• Lighting parameters
• Occlusions
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Problem Formulation

• Input: 
– Correspondences between a reference 

and input image.
– No a priori pose information. 

• Output: 
– A mapping F from model to input image.

U X

V Y

F(u,v)



Non-rigid deformation without a priori pose:
• High dimensionality (200+ DOF)
• Large search space
• Wide baseline matching

Real-time requirements:
• Fast optimization scheme 
• Fast matching

Challenges



Deformable Model
Wide Baseline Matching

Reference Image Input Image

Regularization Term

ε(S) = εC(S) + λDεD(S)
S = (X, Y )



εD  Regularization Term

Quadratic function vertex coordinates:

• penalizes non uniform scaling;
• penalizes excessive bending;
• allows perspective distortion;
• allows smooth surface deformation. 

Accepted Penalized

Original

εD(S) =
1
2

�
XT KX + Y T KY

�



εC  Correspondence Term

εC = −
�

c∈C

�c1 − TS (c0)�2

c1

TS (c0)c0



Real-Time Augmentation



Key Ingredients
 

• Classification-based approach to matching.
• Robust minimization scheme.
• Intensity ratios for illumination correction. 
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εC Correspondence Term

Classification-based approach:
• One class per keypoint.
• Shifts computational burden to offline training.

V. Lepetit, P. Lagger and P. Fua, CVPR’05

V. Lepetit and P. Fua, PAMI’06

Standard approach:
Search database

Preprocessing step Nearest neighbor search



Binarized Tests for 
Keypoint Matching



Randomized Tree
Generic tree: The nodes contain simple tests of the form “Is I(m1) > I(m2) ?”  

Posterior probabilities can be learnt from:
 
• synthetically warped images

• video sequences



Multiple Trees

Where should the tests be performed?
–Choose locations to maximize information gain.
–Choose locations randomly.



Random vs Optimized Locations

Recognition rates for 200 keypoints. 
Number of trees

Recognition rate Information gain optimization
RandomnessMaximizing Information 

gain:



FERNS: Flattening the Tree

Results of pixel comparisons (0 or 1) Class Label

The distributions can be expressed simply, as:  

f1

f2

f3



Bayesian Interpretation
We are looking for:

proportional to

but complete representation of joint distribution infeasible.

--> probabilities stored in the leaves.

Compromise: 

Naive Bayesian:



Sum vs Product

500 classes, no orientation or perspective correction. 

Number of structures (Depth / Size 10) Number of classes



Scale and Orientation Invariance



Planar or Not

Reference image vs Input Images

Reference video

Input Images



BRIEF
Very simple computation that can be seen as computing gradients:

typically
256	  bits

1

1

1

1

0

0

0

0

patch smooth binary	  tests BRIEF

• Most smooth kernels work, even simple box filters.
• 128, 256, or 512 binary tests usually suffice.
• Random arrangment of tests effective iff evenly sampled.

• Not rotationally invariant. 
Calonder et al. ECCV’10



Benchmarks Datasets
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BRIEF vs SURF
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BRIEF vs SIFT

Wall Fountain
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Trees

SIFT > BRIEF > SURF.

Be careful about interpreting benchmarks!



Computational Issues

• Integral images can further decrease BRIEF’s description time 
by making smoothing faster.

• Intel Core i7 CPU’s POPCOUNT instruction will drastically 
speed-up  the matching of binary vectors.

• Scale and rotational invariance need to be added in some 
cases. 



2D Deformable Surfaces

• Problem Formulation
• Fast Matching
• Robust Optimization
• Lighting Correction



εC  Correspondence Term

εC = −
�

c∈C

�c1 − TS (c0)�2

c1

TS (c0)c0

Not robust to outliers!



εC = −
�

c∈C

wcρ (�c1 − TS (c0)� , r)

where ρ is a robust estimator whose radius of confidence is r and wc ∈ [0, 1] a
weight associated to each correspondence.

� ∞

−∞
ρ(x, r)dx = 1 ∀r > 0

ρ (δ, r) =

�
3(r2−δ2)

4r3 δ < r
0 otherwise

Robustness to Mismatches



Iterative Reweighting

Reduce 
confidence 

radius

Eliminate 
Outliers

Deform mesh



Gauging Robustness
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Visualizing the Deformations



ε(S) = λDεD(S) + εC(S)

εD(S) =
1
2

�
XT KX + Y T KY

�

0 =
∂ε

∂X
=

∂εC

∂X
+ KX

0 =
∂ε

∂Y
=

∂εC

∂Y
+ KY

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. IJCV, 1988.

Semi-Implicit 
Optimization Scheme

Minimize:

Satisfied when:



0 = KXt + α(Xt −Xt−1) +
∂εC

∂X

����
X=Xt−1Y =Yt−1

0 = KYt + α(Yt − Yt−1) +
∂εC

∂Y

����
X=Xt−1,Y =Yt−1

Semi-Implicit 
Optimization Scheme

Introduce viscosity term:

Time discretization:

KX + αẊ = −∂εC

∂X

KY + αẎ = −∂εC

∂Y



Semi-Implicit 
Optimization Scheme

(K + αI)Xt = αXt−1 −
∂εC

∂X

����
X=Xt−1,Y =Yt−1

(K + αI)Yt = αYt−1 −
∂εC

∂Y

����
X=Xt−1,Y =Yt−1

Solve at each iteration:

--> Fast because K has only a few non zero 
diagonals. 



ε(X, Y ) = λDεD(X, Y ) + εC(X, Y )

εD(X, Y ) =
1
2

�
XT KX + Y T KY

�

εC(X + dX, Y + dY ) = A + BdX + CdY +
1
2
dXtDdX +

1
2
dY tEdY

Zhu and Lyu, ECCV’07

Newton 
Optimization Scheme

Taylor expansion of data term:



0 =
∂ε

∂X
= B + DdX + K(X + dX)

0 =
∂ε

∂Y
= C + EdY + K(Y + dY )

(K + D)dX = −B −KX

(K + E)dY = −C −KY

Newton 
Optimization Scheme

At the minimum:

Solve at each iteration:



Semi-Implicit vs Newton
Residuals as a function of the number of iterations: Semi-Implicit in green and Newton in blue. 
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Lighting



Intensity Ratios

Reference image: Ir,p = LrAp

Input image: Ii,p = Li,pAp

White image: Ir,w = LrAw

Synthetic image: Ix,p = Li,pAw

= AwLr
Ii,p

Ir,p

= Ir,w
Ii,p

Ir,p



Background Subtraction

Standard approach: 
• Pixel-wise statistical background model.

Modified approach: 
• Account for the fact that illuminations changes tend to be correlated. 
• Model variations of intensity ratios as GMMs. 

--> Effective for occlustion detection. 



Realistic Augmentation



Reference

Input

3D Deformable Surfaces



Problem Formulation
Input:
 Reference image.

 Corresponding 3D surface.

 Projection matrix P.

 3D-to-2D correspondences between reference configuration and 
input image.

P

Unknowns:
 Mesh vertex coordinates corresponding to input image



Ambiguity

• 3D Shape or deformation models are needed.

Scale ambiguity Bas-Relief Ambiguity

  How can we design models that do not make 
unwarranted assumptions? 
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Linear Formulation
• Calibrated camera, A intrinsic parameters matrix.  
• Coordinates expressed in the camera referential. 
• Unknown mesh vertex coordinates:
• Correspondences

– Barycentric coordinates from reference configuration: 
– Current image location: € 

X = (v1
T ,...,vn V

T ),  vi = (xi,yi,zi)
T

€ 

(ai,bi,ci)

Salzmann et al., CVPR’07

€ 

(ui,vi)
T

€ 

v1

€ 

v2

€ 

v3

€ 

vi = aiv1 + biv2 +civ3

€ 

(ui,vi)
T

€ 

ui
vi
1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

=
1
ki
A(aiv1 + biv2 + civ3)



Linear Formulation
A (b1v1 + b2v2 + b3v3) = k




u
v
1





→ k can be expressed in terms of the vertex coordinates using the last row.

�
b1H b2H b3H

�



v1

v2

v3



 = 0 ,

with
H = A2×3 −

�
u
v

�
A3 ,

where A2×3 contains the first two rows of A, and A3 is the third one.

--> Each correspondence gives rise to two linear equations.



Linear System and 
Singular Values

X must be solution of MX =0

Singular values of M
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Inextensible Meshes

€ 

A solution of the linear system belongs to the kernel of M :

MX = 0⇒  X = β ii∑ pi ,  

where the pi are the eigenvectors corresponding to small eigenvalues.

Inextensible mesh :  

β ii∑ pi
j - β ii∑ pi

k 2
= cte

for all neighboring vertices j and k.

--> A system a quadratic equations that could be solved in closed form 
using extended linearization, but with too many variables for existing 
solvers.

Salzmann et al., ECCV’08



Dimensionality Reduction

€ 

X = X0 + α i
i
∑ Si

= X0 + SA

with A = α1 ... αN[ ]T

Database of 
Feasible Shapes

PCA

Salzmann et al., PAMI’07



Degrees of Freedom
For an inextensible triangulation with V 
vertices, E=Ei+Eb edges, and F facets 
with no holes:
–Euler formula 

• V+F-E=1 .

–Interior edges shared by two facets 
• 3F=2Ei+Eb.

–Degrees of freedom 
• 3V-E=6+Eb



Spinnaker Modes



Reduced System

• A can also be written as a weighted sum of eigenvectors 
of the extended matrix. 

• The inextensibility constraints give rise to a smaller set 
of quadratic equations than can now be solved. 

€ 

MX = 0
X = X0 +SA

⇒
MS MX0

W 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  
A
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = 0

where the W is a diagonal matrix of modal penalty terms that depends
on the eigenvalues of the training data covariance matrix.



 Independent Detection 



In the presence of sharp folds:
• The Euclidean distance between discrete points decreases.
• Inextensibility constraints are not appropriate anymore.

Limitation
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Replace inextensibility constraints by distance inequalities that:

• Let us reconstruct surfaces with sharp folds.

• Yield a convex formulation of the reconstruction problem.

Handling Creases

Salzmann et al., CVPR’09



• In the presence of sharp folds, geodesic distances remain constant, 
but Euclidean ones may decrease.

20

€ 

v j − vk = l j ,k

€ 

v j − vk ≤ l j ,k

Inequality Constraints

€ 

Naive formulation :
Xopt = argmin MX  ,  

subject to  

v j  - vk ≤ d jk

for all neighboring vertices j and k.



€ 

si

€ 

pi

€ 

pi
Tsi

• To this end, we push the points along their lines-of-sight as far 
as the constraints allow. 

Pushing the Mesh Away

• Inequality constraints do not prevent the mesh from shrinking.



This is an SOCP problem, which can be solved using standard 
numerical routines.

€ 

si

€ 

pi

€ 

pi
Tsi

€ 

maximize
X

  wd pi
Tsi − MX

i≤Nc

∑

subject to  v j − vk ≤ l j,k  ,  ∀( j,k)∈ Edges

Convex Formulation



Shape Regularization
• Regularization is needed to enforce smoothness on poorly textured 

parts. 
• To handle sharp folds, the global models must be replaced by local 

ones.

 Introduce a linear model for individual surfaces patches

€ 

X i = X0
i + Λc i



• To avoid having to explicitly force the coefficients of overlapping 
patches to be consistent, we express them as

    
    which arises from the orthonormality of the modes.

• Regularization is achieved by penalizing the coefficients associated 
to high energy modes, which is done by minimizing

 where    contains the eigenvalues of the training data covariance 
matrix.

€ 

c i = ΛT (X i - X0
i ) ,

€ 

wi Σ
-1/2ΛT (X i - X0

i )
i≤N p

∑  ,

€ 

Σ

Local Deformation Model



• For short video-sequences, we can enforce temporal consistency 
by introducing a second order---constant speed---motion model:

€ 

X t−1 - 2X t + X t+1  .

 We solve our optimization problem for 3 frames simultaneously, 
and regularize the motion between frames by minimizing

€ 

xt−1

€ 

xt

€ 

xt+1

€ 

Δ t−1,t

€ 

Δ t,t+1=

Temporal Regularization
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• Optical motion capture: 

• Correspondences:
• Sample the barycentric coordinates, project the 3D points, 

add Gaussian noise with variance 5 to the image locations.
• Compute SIFT matches between the input images and the 

reference. 

Synthetic Data



27

Mean reconstruction 
error [mm]

Synthetic Correspondences
Equality constraints
Inequality constraints, w/o shape regularization.
Inequality constraints, with shape regularization
 



SIFT Correspondences



(Inextensibility)

Mean reconstruction 
error [mm]

Equality constraints
Inequality constraints,     w/o shape regularization.
Inequality constraints,     with shape regularization
 

SIFT Correspondences



• Synthetic correspondences.

• Varying outlier rate.

Single frames Multiple frames

Introducing Outliers

w/o shape regularization
with shape regularization
 

w/o shape regularization
with shape regularization
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Similar 
Descriptor

Values

?

Repetitive Patterns

Problem:
• Correspondences are difficult to establish.

Solution:
• Simultaneously solve for correspondences and 3D shape. 

Shaji et al., CVPR’10



• Instance of a NP Hard Problem.

• Branch-and-bound methods that works well for this particular 
problem.

Mixed Integer 
Quadratic Problem



Iterations



Comparison



Cushion
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Problem Formulation

Input Frame Support  Frame
Varol et al., ICCV’09



From Local to Global

Compute local homographies Enforce consistency Fit a global surface



Assuming that the patch is fixed and that the support camera moves

Pi = K[Ri|ti]

Hi = Ri −
tin

T
i

di
= Ri − t

�
in

T
i

→ Ri, ti, and ni can be recovered up to a scale factor.

Local Homographies



Enforcing Consistency
• Turn pairs of matching points in each patch 

into 3D points that lie on a plane by solving a 
linear system per patch. The reconstruction is 
performed up to a local scale factor.

• Compute the scale factors so that points 
shared by several patches have the same 3D 
coordinates by solving a global linear system.

  --> 3D cloud up to a global scale factor.   



Consistent Point Cloud







Triangle Soup

1. Track triangle vertices over 4 or more frames.
2. Assume edge-length is preserved and reconstruct in 3D.
3. Enforce consistency of the resulting triangle soup.

Taylor, Jepson, and Kutulakos, CVPR’10
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Augmented Reality

Magic Book Magic Cushion

Scherrer et al. , Leonardo, special issue SIGGRAPH’09 



Hydroptère

Runs at 8 Hz on an ordinary PC



Alinghi



Wing Deformation

• Compare predicted and observed values.
• Improve simulation software until the two match.
--> Virtual wind tunnel.



Wing Deformation



Intelligence Gathering

• Automated reading of those banners 
requires unwarping the surfaces.



Laparoscopic Surgery



A Generic Paradigm
Automated 3D deformable surface detection:

• Reconstruct textured parts of a surface.
• Learn a deformation model from those.
• Apply it to reconstruct the rest of the surface.

 A robust method that is easy to deploy.
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