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« 2D Deformable Surfaces
— Problem Formulation.
— Fast Matching.
— Robust Optimization Scheme.
— lllumination Correction.

« 3D Deformable Surfaces
— Linear Formulation.
— Inextensible surfaces.
— Sharply folding surfaces.
— Eliminating the reference image.
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2D Deformable Surfaces

Estimating:

e Deformations

e Lighting parameters
e Occlusions

Pilet et al., IJCV 2008
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2D Deformable Surfaces

Problem Formulation

» Fast Matching
* Robust Optimization
* Lighting Correction

@/ch
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Problem Formulation
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* |nput:

Q/Lab

— Correspondences between a reference

and input image.
— No a priori pose information.

* Output:

— A mapping F from model to input image.
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Challenges

Non-rigid deformation without a priori pose:
* High dimensionality (200+ DOF)

» Large search space

* Wide baseline matching

Real-time requirements:
* Fast optimization scheme
* Fast matching

@/Lob
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Q/Lob
Deformable Model

Wide Baseline Matching Regularization Term
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Quadratic function vertex coordinates:

ep(8) =5 (X"KX +Y'KY)

penalizes non uniform scaling;
penalizes excessive bending;
allows perspective distortion;

allows smooth surface deformation. @ @
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&, Regularization Term
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€. Correspondence Term
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Real-Time Augmentation
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Key Ingredients

 Classification-based approach to matching.
* Robust minimization scheme.
* Intensity ratios for illumination correction.
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2D Deformable Surfaces

* Problem Formulation
* Fast Matching

* Robust Optimization
* Lighting Correction
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C@/Lab

&c Correspondence Term

Standard approach:

—
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~
Preprocessing step

Classification-based approach:
* One class per keypoint.

WMo BEmE()

Search database
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Nearest neighbor search

« Shifts computational burden to offline training.
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Binarized Tests for
Keypoint Matching
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Randomized Tree

FEDERALE DE LAUSANNE

Generic tree: The nodes contain simple tests of the form “Is I(m,) > I(m,) ?”

Posterior probabilities can be learnt from:

* synthetically warped images

* video sequences
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Multiple Trees
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f(p) =argmaxd‘(p) = argmax E d; (p)

Leleavesreached by p

Where should the tests be performed?
—Choose locations to maximize information gain.
—Choose locations randomly.
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Random vs Optimized Locations

Recognition rate
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Number of trees

Recognition rates for 200 keypoints.
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- FERNS: Flattening the Tree
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The distributions can be expressed simply, as:

P(f1, /2, fa| C=ci)
/

Results of pixel comparisons (0 or 1) Class Label
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Bayesian Interpretation

We are looking for:

P(C:C?l|flaf27"'fna fn—l—la """ fN)
proportional to

P(fla.fZa"'.fna fn—{—la """ .fN | C:cz)

but complete representation of joint distribution infeasible.

Naive Bavesian:

~ [P 1C=c)

Compromise: j
%P(flaf27'”fn | C:ci)ﬁp(fn—l-la"'fén | C:Cz)®

--> probabilities stored in the leaves.
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500 classes, no orientation or perspective correction.
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Scale and Orientation Invariance
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Planar or Not

Reference image vs Input Images Input Images
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BRIEF

Very simple computation that can be seen as computing gradients:

patch smooth

typically
256 bits

* Most smooth kernels work, even simple box filters.
* 128, 256, or 512 binary tests usually suffice.
* Random arrangment of tests effective iff evenly sampled.

* Not rotationally invariant.
Calonder et al. ECCV’10
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Benchmarks Datasets

@Lob

Wall

Graffiti Fountain Trees
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Recognition rate [%]

Recognition rate [%]
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Recognition rate [%]
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BRIEF vs SIFT

FEDERALE DE LAUSANNE
#pts used: 1|2: 1000, 1]3: 1000, 1[4: 1000, 1|5: 1000, 1|6: 1000 #pts used: 0[1: 1000, 0|2: 1000, 0|3: 1000, 0[4: 1000, 0|5: 921
T T T T T

#pts used: 12: 1000, 1]3: 1000, 1]4: 1000, 1|5: 1000, 1|6: 593
100—— : : 100 : : 100 : : : : :
= I sift I sift I sift
[ brief-sift - [ brief-sift o [ brief-sift
%0 Cdsuf 7 90 - CJsurf I 0 i C_dsuf ]
I brief-surf - I brief-surf = I brief-surf
8o0f - 1 8o0f g 1 8of - 1
70+ b 70r a 70+ b
60- M 1 & ol . & ol 1
2 ]
® ©
50f _ 1 S sof 8 S sof f 1
S e
[=2 [=2
o o
40f 8 40t o 3 40t 4
is o
30 30+ a 30+ b
20+ 201 1 20 T
10 10 . 10 1
0 il Bl B o | | 1 il il il L L
112 113 114 115 o1 02 03 04 112 113 1]4 115
Dataset Dataset Dataset

Wall Fountain Trees

SIFT > BRIEF > SURF.

Be careful about interpreting benchmarks!
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Computational Issues

FEDERALE DE LAUSANNE
Computing N = 512 descriptors.

BRIEF-16
BRIEF-32
BRIEF-64

SURF

0 50 100 150 200 250 300 350
Description time [ms]

Matching N = 512 descriptors against N others.

BRIEF-16
BRIEF-32
BRIEF-64

SURF

0 5 10 15 20 25 30
Matching time [ms]

e Integral images can further decrease BRIEF's description time
by making smoothing faster.

e Intel Core i7 CPU's POPCOUNT instruction will drastically
speed-up the matching of binary vectors.

e Scale and rotational invariance need to be added in some
cases.
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2D Deformable Surfaces

* Problem Formulation
* Fast Matching

* Robust Optimization
* Lighting Correction

@/ch
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€. Correspondence Term

o<

Co 1s (CO)

cc=— |lex—Ts (o)’

Not robust to outliers!

@ch
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CNQ

Robustness to Mismatches

= wep(ller = Ts (eo)ll ,7)

ceC

where p is a robust estimator whose radius of confidence is r and w, € [0,1] a
weight associated to each correspondence.

( 3(r2—62)
5, r) = < 473 o<
p0,7) 0 otherwise

/ plx,r)de =1 Vr >0

— OO
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Iterative Reweighting
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Gauging Robustness

Probability of having 802 mesh vertices within 2 pixels of the solution

Outliers rate in input matches
© © © ©o ©o @©
N w ~ o, o ~

o
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20 40 60 80 100 120 140 160 180
Number of good input matches
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Visualizing the Deformations
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Semi-Implicit
Optimization Scheme
Minimize:
E(S) = )\Dep(S)—FEC(S)
ep(S) = %(XTKX+YTKY)
Satisfied when:
~ Je  Oec |
0 = X~ 9x - KX
Oe Oeo |
e )

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. IJCV, 1988.
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R Semi-Implicit

Optimization Scheme
Introduce viscosity term:

y 5’8(}
KX +aX =
0X
KY +aY e
QY —
oY
Time discretization:
(960
0 = KXi+a(Xi—Xi1)+ —
t t t OX |x=x, ,v=v, 4
880
0 = KY,+aY;—Y1)+ —
t t t Y X=X; 1,Y=Y;_1
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R Semi-Implicit

Optimization Scheme

Solve at each iteration:

85(;
(K + Ck])Xt = CkXt_l — —
0X X=X 1,Y=Y; 1
(980
(K—I—Oé[)Yt — OéY;g_l — <
oY X=Xt 1, Y=Y 1

--> Fast because K has only a few non zero
diagonals.
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Newton
Optimization Scheme

Taylor expansmn of data term: ,
)\DED(X, Y) —|—80(X, Y)

e(X,Y)
EZD(X, Y)

ec(X +dX,Y +dY)

% (X"KX +Y'KY)

A+ BdX +CdY +

1 1
§dXthX + §dYtEdY

Zhu and Lyu, ECCV’07
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vLab
Newton C

Optimization Scheme
At the minimum:

Oe
— % _ By DX + K(X +dX
0 e + + K(X +dX)
0 = g—;:O+EdY+K(Y+dY)

Solve at each iteration:
(K+D)dX =—B - KX
(K + E)dY =-C - KY
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Semi-Implicit vs Newton

Residuals as a function of the number of iterations: Semi-Implicit in green and Newton in blue.
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2D Deformable Surfaces

* Problem Formulation
* Fast Matching

* Robust Optimization
 Lighting Correction

@/ch
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Lighting
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Intensity Ratios

Reference image: I,., = L,A,
Input image: I, , = L;,A,
White image: I, = L,A,

Synthetic image: I, , = L; Ay
I;

= A,L,-2%

Ir,p
— IrwIi’p
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*Background Subtraction

Standard approach:
* Pixel-wise statistical background model.

Modified approach:

* Account for the fact that illuminations changes tend to be correlated.
* Model variations of intensity ratios as GMMs.

--> Effective for occlustion detection.
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Realistic Augmentation
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3D Deformale Surfaces

Reference

Input

O/Lab
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Problem Formulation

FEDERALE DE LAUSANNE

Input:
= Reference image.
= Corresponding 3D surface.
= Projection matrix P.
= 3D-to-2D correspondences between reference configuration and
input image.

—
=
—
e

Unknowns:
= Mesh vertex coordinates corresponding to input image

T
X = [wlvylazla T axnvaynv7znv]
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Ambiguity

Scale ambiguity Bas-Relief Ambiguity

. 3D Shape or deformation models are needed.

> How can we design models that do not make
unwarranted assumptions?
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3D Deformable Surfaces

* Linear Formulation.
 Inextensible surfaces.

« Sharply folding surfaces.

* Eliminating the reference image.
* Applications.
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Linear Formulation

Calibrated camera, A intrinsic parameters matrix.

Coordinates expressed in the camera referential.
Unknown mesh vertex coordinates: X=(v,,...,v, ), v, =(x;,y,,z,)"

Correspondences
— Barycentric coordinates from reference configuration: (a;.b;,c;)

. . T
— Current image location: (V) Vi
V.=av,+bv, +cC.v,
Vs
V2
A (u,v)"

l

= ;A(cziv1 +bv,+c,v;)

1

-~ N

Salzmann et al., CVPR’07
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Linear Formulation

u
A (51V1 + b2V2 + bng) =k (%
1

— k can be expressed in terms of the vertex coordinates using the last row.

_ vi -
[ blﬂ bgH b3H } Vo =0 y
- V3 —
with
u
H:A2><3_ [ v ]A37

where A5y 3 contains the first two rows of A, and Agz is the third one.

--> Each correspondence gives rise to two linear equations.
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Linear System and
Singular Values

X must be solution of MX =0

0 200 400 600 a00 1000 1200 1400

Singular values of M
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3D Deformable Surfaces

* Linear Formulation.

* Inextensible surfaces.

« Sharply folding surfaces.

* Eliminating the reference image.
* Applications.
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wnws Ilnextensible Meshes

A solution of the linear system belongs to the kernel of M :
MX=0= X=Y Bp,

where the p, are the eigenvectors corresponding to small eigenvalues.

Inextensible mesh :

Hziﬁipij - Eiﬁipik

for all neighboring vertices j and k.

2
= Cte

--> A system a quadratic equations that could be solved in closed form
using extended linearization, but with too many variables for existing

solvers.
Salzmann et al., ECCV’08
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Dimensionality Reduction

B Foane o

'S
[

with A

Salzmann et al., PAMI’07
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Degrees of Freedom

For an inextensible triangulation with V
vertices, E=EI+EDb edges, and F facets
with no holes:
—Euler formula
V+F-E=1 .
—Interior edges shared by two facets
3F=2Ei+Eb.
—Degrees of freedom
3V-E=6+Eb
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T e Reduced SySte m

MX=0
X=X, +SA
MS MX,| A I
= =0 05l
W 0 1

where the W is a diagonal matrix of modal penalty terms that depends

..............

on the eigenvalues of the training data covariance matrix.

e A can also be written as a weighted sum of eigenvectors
of the extended matrix.

 The inextensibility constraints give rise to a smaller set
of quadratic equations than can now be solved.




(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Independent Detection

e
IR
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AN E‘q

O/Lab
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In the presence of sharp folds:
e The Euclidean distance between discrete points decreases.
o Inextensibility constraints are not appropriate anymore.
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3D Deformable Surfaces

* Linear Formulation.

* |nextensible surfaces.

» Sharply folding surfaces.

* Eliminating the reference image.
* Applications.

@/ch
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ST Handlin Jd Creases

J

Replace inextensibility constraints by distance inequalities that:

e Let us reconstruct surfaces with sharp folds.

* Yield a convex formulation of the reconstruction problem.
Salzmann et al., CVPR’09
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e ne qua li ty Constraints

In the presence of sharp folds, geodesic distances remain constant,
but Euclidean ones may decrease.

Naive formulation :
X, = argminHMX

subject to

b

HVJ. —VkH < djk

for all neighboring vertices j and k.
20




"™ Pushing the Mesh Away (ob

e Inequality constraints do not prevent the mesh from shrinking.

e To this end, we push the points along their lines-of-sight as far
as the constraints allow.
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SRS ConveXx Formulation

maximize w, EpiTsl. - [MX]|

i=sN,

subject to HVJ-—VkHSlj,k , Y(j,k) € Edges

This is an SOCP problem, which can be solved using standard
numerical routines.
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Shape Regularization

e Regularization is needed to enforce smoothness on poorly textured
parts.

e To handle sharp folds, the global models must be replaced by local
ones.

pad ™\

AN

- Introduce a linear model for individual surfaces patches
X' =X} + Ac’
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Local Deformation Model

* To avoid having to explicitly force the coefficients of overlapping
patches to be consistent, we express them as

¢ =A"X-X}),
which arises from the orthonormality of the modes.

e Regularization is achieved by penalizing the coefficients associated
to high energy modes, which is done by minimizing

Y w|EPAT X - X))
isz
where X contains the eigenvalues of the training data covariance
matrix.

9
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Temporal Regularization

For short video-sequences, we can enforce temporal consistency
by introducing a second order---constant speed---motion model:

- We solve our optimization problem for 3 frames simultaneously,
and regularize the motion between frames by minimizing

HXt—l ) G G
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e Optical motion capture:

=
BVAVAWAN \
VAVAN ' NVAR /‘“\‘7/
LY SRR AN N/ \ \A
ARARRRY
/ \ %#\\\\ \ \ *‘\ \ {’ \\ /\\
AVAW QY \7\\?;\
\ A\ \ —\,
S\ /N NN
‘\K \‘/ \ Ay ,‘_\‘H \\\ /
S/ NATAY
‘\A'K AVAR
\‘*}M‘{ \\ /
L

* Correspondences:

» Sample the barycentric coordinates, project the 3D points,
add Gaussian noise with variance 5 to the image locations.

* Compute SIFT matches between the input images and the
reference. 26
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Synthetic Correspondences

Equality constraints
— Inequality constraints, w/o shape regularization.
15t --. Inequality constraints, with shape regularization

Mean reconstruction
error [mm] 10}

20 40 60 80 100
Frame #

T _,A%;,»»\V"; ]
SO S
"“Q‘;\!ﬁ N

27
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SIFT Correspondences
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SIFT Correspondences

151

10
Mean reconstruction
error [mm]

Equality constraints

Inequality constraints, !

w/o shape regularization.

Inequality constraints, », with shape regularization
i)
'|,"'\7 R

) y ¢ "
l,," " 1
} .
4 - -
1
1
]

Il' L 1]

40 60
Frame #
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Introducing Outliers

FEDERALE DE LAUSANNE

e Synthetic correspondences.
e Varying outlier rate.

Single frames Multiple frames

o]
o

 ——  w/0 shape regularization
- - - with shape regularization

o]
o

- ——  w/0 shape regularization
- == with shape regularization

(o)}
o
D
o

N
o

Mean Reconstruction Error [mm]
N N
o o

Mean Reconstruction Error [mm]
N
(@)

0 10 20 30 40 50 0 10 20 30 40 50
Ouitlier Rate [%] Outlier Rate [%]
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No motion model

Motion model Temporal smoothing
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Y Re P etitive Patterns

Problem:
* Correspondences are difficult to establish.

Solution:
* Simultaneously solve for correspondences and 3D shape.

Shaji et al., CVPR’10
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Mixed Integer

Quadratic Problem

min E(matching score) + E(match(Reconstruction Cost))
matches,reconstruction | \ J O\ v,

WV Vv
binary terms mixed terms

* Instance of a NP Hard Problem.

* Branch-and-bound methods that works well for this particular
problem.




M :
Iterations
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omparison

Ground Truth Mesh
Reconstruction by our method
Reconstruction by method of Salzmann et.al
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Talk Outline

* Linear Formulation.

* Inextensible surfaces.

« Sharply folding surfaces.

* Eliminating the reference image.
* Applications.
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Problem Formulation

Input Frame Support Frame

Varol et al., ICCV’09
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Compute local homographies

Enforce consistency

Fit a global surface
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Local Homographies

~ ) ~ () N 13
N 7/ /' i\ | !y' L/ ‘/ ;\ e
'J_{y' . l/'\l h i_)
1) 3 —
'\l_;' J' < "[ '\\,
12
e ( (e)
J N
& |(6) ( N ()
= ) @ - 10 (9
2/ e - (5) B -
\UD (2) =~ (%)
j‘]\l ) /l‘ i\ 5/
w | Y
! S~ ~
() N 2 . N7
=/ ¥,
- ) (
( ~ s ))
O} ©
i/

Input Image

Support Image

@/Lab

Assuming that the patch is fixed and that the support camera moves

P;

H;

— R@', ti, and n;

= K[R;|t;]

T

- R, —

/T

L~ =R,
dz

can be recovered up to a scale factor.
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Enforcing Consistency

* Turn pairs of matching points in each patch
into 3D points that lie on a plane by solving a
linear system per patch. The reconstruction is
performed up to a local scale factor.

« Compute the scale factors so that points
shared by several patches have the same 3D
coordinates by solving a global linear system.

--> 3D cloud up to a global scale factor.
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onsistent Point Cloud

Q/Lob
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Reconstructed point cloud

Fitted mesh using multiple-frames

Fitted mesh using single frame
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Input image with the projected mesh Fitted mesh using multiple-frames

Reconstructed point cloud Fitted mesh using single-frame
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Input (Paper [37]),n = 1,¢*=0.4 n=1 n =30 n = 60 n = 60 (out of 71) n = 60 (result of [5])

Input ot n = 100

./

1. Track triangle vertices over 4 or more frames.
2. Assume edge-length is preserved and reconstruct in 3D.
3. Enforce consistency of the resulting triangle soup.

Taylor, Jepson, and Kutulakos, CVPR’10
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3D Deformable Surfaces

* Linear Formulation.
 Inextensible surfaces.

« Sharply folding surfaces.

* Eliminating the reference image.
* Applications.




(Gl (Vlab

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Augmented Reality

Magic Book Magic Cushion

Scherrer et al. , Leonardo, special issue SIGGRAPH’09
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Photo A. PILPRE / Sea&CO

Runs at 8 Hz on an ordinary PC
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Wing Deformation

A

« Compare predicted and observed values.
* Improve simulation software until the two match.
--> Virtual wind tunnel.
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Wing Deformation
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Intelligence Gathering

361 elied JAE] o
e Automated reading of those banners
requires unwarping the surfaces.
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Laparoscopic Surgery

Q/Lab
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A Generic Paradigm

Automated 3D deformable surface detection:

* Reconstruct textured parts of a surface.
* Learn a deformation model from those.
* Apply it to reconstruct the rest of the surface.

- A robust method that is easy to deploy.
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