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Many state-of-the-art segmentation algorithms rely on Markov (MRF') or Conditional Random Field models (CRF) designed to
enforce spatial and global consistency constraints. This is often accomplished by introducing additional latent variables to the
model, which can greatly increase its complexity:.

In a series of experiments on the PASCAL and the MSRC datasets, we were unable to find evidence of a significant performance
increase attributable to the introduction of such constraints. On the contrary, we found that similar levels of performance can be
achieved using a much simpler design that essentially ignores these constraints.

Overview of the studied CRF models

)

(a) Potts model

(b) Robust PY model [3]

(¢) Harmony model [1]  (d) Class independent model (DPG)

Notations
e Set of nodes V =
e Set of edges £ =

V), V,) where global nodes V, encode high-level preferences and local nodes V; represent superpixels|5|.
g g

(&1, &,) where & model the relationship between neighboring local nodes and &, link local nodes to global nodes

E,(Y[X) = Z Di(y:) + » Pyl yz,y] + ) Gyl yz,yg (1)

1€V data term (Z 9)659 global term
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where y; € {1, , K} are class labels for superpixels and y, € {0, 1} represent the states of global preferences.
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e The data term D;(y;) encourages agreement between a node’s label y; and the local image evidence z;. ¢, is the output score
returned by an SVM classifier.
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e The pairwise term P;;(y;, y;) represents the cost of transition from class y; to y;, and is expressed in a non-parametric form.

e To enforce global consistency, a set of global nodes are introduced, resulting in a global term.

Parameter learning

e We express Eq. 1 in a linear form E,(X,Y) =w - U(X,Y) and we learn w = [w” w’ w®| using structured SVM.

e We also experimented with the learning method proposed by [1] that can only be applied to the simplest model with a few
number of parameters.

The figure on the right shows the learned pairwise
term w’ (z;, ;, yi, y;) iIn matrix form where columns
indicate classes y; belonging to superpixel ¢ and rows
indicate classes y; belonging to neighboring j for the

MSRC-21 dataset. Red colors indicate that ; is
likely to appear above y;.

Models Tested

e D model — Includes only the data term, consisting of the SVM classifiers scores. Equivalent to an energy function
Eu(Y1X) = > icy, Dilyi).

e DP model — Considers both the data and pairwise terms of the energy function, i.e.
Ey(Y|X) = icp Dilyi) + Z(i,j)e& Pii(yi, y;)-

e DG model — Considers the data term and the global term without the pairwise term, i.e.

Ew(Y’X) — Zievl D%(yZ) T Z(i,g)e&, Gig(yiv yg)'

e DPG model — The tull model described in Eq. 1, including the data, pairwise and global terms.

e D-sampling — Like the D model, only considers the data term. Use the sampling method of [1] to learn the parameters.

Features
e The following features are used to train S = 6 classifiers whose response ¢, is weighted in the data term D;(y;).

e Local features: set of quantized visual words over five different neighborhood scales, which provides a histogram-like
descriptor. Visual words are created by extracting SIF'T and color histograms.

e Global features: similar to the local tfeatures, but extracted over the entire image.

MSRC Results

e When only local features are considered, there is a clear advantage to adding spatial and global constraints (as indicated in red).

e When adding global features, this gain disappears, reflecting the relative weakness of spatial and global constraints
relative to the global features.
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DG model

DPG model
D-sampling

D model

DP model

94 59 72 67 95 70 66 86 45 93 72 68 27 52 27 43 70 1 19 37 67
86 72 79 75 95 93 49 85 38 81 83 64 39 63 49 68 68 38 63 9 70
91 70 83 70 97 83 65 82 93 91 69 67 13 86 64 65 83 23 31 20 72
88 83 79 82 95 87 70 85 81 97 69 72 27 83 46 60 74 27 49 28 75
83 74 50 72 89 86 68 73 69 83 67 69 22 68 25 67 54 14 46 50 69
94 91 72 87 97 90 76 72 83 86 88 93 62 90 89 85 97 0 83 0 & 77
87 83 73 78 94 95 78 85 68 96 89 71 41 96 83 85 87 49 52 38 &80 76
DG model 86 93 80 94 90 87 88 74 80 85 86 96 35 96 80 65 96 0 77 26 81 76
DPG model 87 87 84 7593 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27 80 76
D-sampling 50 83 87 81 84 90 97 72 75 79 90 95 79 52 97 81 80 89 51 64 60 79 T8
6] 49 88 79 9797 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67

2] 5397 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68
[4] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09 86 75
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(a) Original images (b) D model with local features, (¢) DPG model with local features, (d) D model with local+global features, (e) DPG model with local+global features, (f)
D-sampling with local+global features, (g) Ground-truth.

VOC Results
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VALIDATION SET

D model 31.7 9.7 1.1 91 09 30 274 129 144 0.0 21.2 0.0 00 3.7 268 229 00 30.0 9.6 23.1 0.0
DP model 29.3 13.0 22 28 7.7 128 36.6 24.3 19.7 3.6 192 02 146 19 253 177 1.3 126 6.1 191 5.5
DG model 762 308 6.8 1.6 0.0 44 341 07 23504 283 03 26 6.5 462 114 0.0 0.0 22 399 0.1

DPG model 67.3 224 155 18.0 154 0.0 284 245 187 0.0 30.5 46 0.5 6.0 289 23.0 3.6 0.0 129 33.1 7.3
D-sampling 76.2 23.3 11.7 6.4 6.8 9.0 244 240 136 3.2 114 0.0 14.7 103 24.1 245 40 203 3.8 146 11.7 16.1

Local features

S=H

D model 73.0 389 13.3 21.1 25.7 12.2 37.7 32.7 29.0 0.4 355 11.5 95 188 30.1 1.8 6.5 36.1 81 43.7 199 24.1
DP model 76.7 29.8 16.8 6.0 21.6 13.2 39.8 33.0 16.1 0.0 25.5 0.5 21.8 13.8 45.1 341 3.0 35.0 29 472 263 242
DG model 741 27.8 0.2 229 20.8 16.7 32.5 29.1 254 7.1 30.8 14.9 15.7 16.0 45.5 29.3 5.7 323 172 42.0 00 24.1

DPG model 64.3 27.1 182 23.1 21.0 15.0 35.3 29.2 23.7 7.8 16.9 21.5 17.3 188 30.7 31.5 6.7 27.8 12.2 39.5 26.7 24.5
D-sampling 78.8 44.1 21.0 16.9 28.7 24.8 59.3 40.0 30.3 7.0 26.8 6.8 182 17.0 352 34.3 31.2 187 11.5 47.3 181 29.3

Local+Global features
S=6

TEST SET

BONN SVR 84.2 52.5 274 32.334.547.4 60.6 54.842.69.0 32.9 25.2 27.1 324 47.1 38.3 36.850.321.9 35.2 40.9 39.7
BROOKES 70.1 31.0 18.8 19.5 23.9 31.3 53.5 45.3 244 82 31.0 164 158 27.3 481 31.1 31.0 27.5 19.8 34.8 26.4 30.3
STANFORD 80.0 38.8 21.5 13.6 9.2 31.1 51.8 444 25.7 6.7 26.0 12.5 12.8 31.0 41.9 44.4 57 375 10.0 33.2 323 29.1
UC3M 734 459 123 145 223 9.3 46.8 38.3 41.7 0.0 35.9 20.7 34.134.8 335 24.6 4.7 25.6 13.0 26.8 26.1 278
UOCTTT 80.0 36.7 23.9 20.9 18.8 41.0 62.7 49.0 21.5 83 21.1 7.0 164 28.2 425 40.5 19.6 33.6 13.3 34.1 48.5 31.8
Harmony FG-BG  80.2 57.028.7 29.3 31.7 27.0 57.6 48.5 352 83 29.9 22.6 252 33.0 52.6 35.9 25.2 39.7 16.9 434 24.7 358

Original DPG model D-sampling

DPG model 64.8 33.4 16.6 17.8 23.4 17.2 45.7 35.0 30.3 6.0 21.5 21.0 21.9 29.6 32.6 29.6 23.3 249 15.7 26.4 21.1 26.6
D-sampling 77.9 49.4 23.1 19.2 24.8 26.1 52.4 449 32.9 6.5 35.8 22.3 25.5 21.9 58.1 34.6 26.8 39.9 17.5 38.0 25.3 33.5
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