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Problem 

Monocular 3D people tracking is usually under-constrained. 

Priors resolve ambiguities but are difficult to learn because: 
  human parameterizations are high-dimensional  
  training data is hard to acquire 



Approach 

Mocap Data Pose Model 

Learning 

Prior 

Video Pose 

Tracking 



Human Parameterization 

Global pose: 

Joint angles: 



Latent Variable Models / Dimensionality Reduction 

Joint angle pose space (Y) Low-dim. latent space (X) 

Mapping from latent points to poses,  
Smooth density function over pose 



Latent Variable Models / Dimensionality Reduction 

PCA / PPCA 
[Sidenbladh et al ’00; Urtasun et al ’04; 
….] 

Isomap / LLE / Spectral Methods  
[Lee & Elgammal ’04; Sminchisescu & 
Jepson ’04; Wang et al ’03; …  ] 

Mixture models 
[Howe et al, 99; Sminchisescu & 
Jepson ’04; … ] 



Gaussian Process Latent Variable Model (GPLVM) 

Probabilistic, nonlinear dimensionality reduction [Lawrence 04] 
  a nonlinear mapping from latent positions to pose space 
  a smooth density function over pose space 
  learning based on little data and minimal parameter tuning 

Pose Space (Y) 
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Latent Space (X) 



GPLVM 
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The nonlinear manifold is modeled by Gaussian Process regression, 
with model averaging used to integrate out uncertainty in the model. 

GP variance 
depends on x 
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For the GPLVM we learn the GP mapping and the latent coordinates 
of the training poses. 



GPLVM Learning 

data likelihood prior 



Image likelihood 

GPLVM prior 

The model       then provides a density function over new poses,   
with negative log likelihood: 

Pose Space (Y) Latent Space (X) 
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3D People Tracking 

Image Observations: 

Global 
pose 

Joint 
angles 

Latent 
coordinates 

GPLVM: 

State: 

Likelihood Dynamics + GPLVM 

Posterior Distribution: 

Online estimation by hill climbing on the negative log posterior: 



Measurement Model (WSL 2D Tracker) 

2D positions of  J  joints are tracked (up to IID Gaussian noise): 

                is the perspective projection of point  j  at time  t.  

         is the associated image measurement  



Temporal Dynamics 

A  2nd-order Markov model is assumed for joint angles and global 
position / orientation, with IID Gaussian process noise: 

with predictions:  



GPLVM Prior: Walking 

1 gait cycle on a treadmill 
(84 joint angles, 24 active set points) 



Tracking: Walking 

Tracked 2D Points Projected 3D Model 

Animations from other viewpoints 



SGPLVM Prior: Golf Swing 

1 swing of golf club from CMU mocap database 
(72 joint angles, 19 active set size) 
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Tracking: Short Swing 

Animations from other viewpoints 

Projected 3D Model 



Tracking: Full Swing 

Animations from other viewpoints 

Projected 3D Model 



Summary 

Key Ideas: 

  Prior models of human motion learned using the Gaussian 
Process Latent Variable Model 

  Learning from just single training motion 

  ML tracking with hill-climbing on log posterior 

Limitations / Future work: 

  Learning is sensitive to initialization and priors on model 
parameters 

  Works best for small training sets 

  Temporal dynamics and appearance models used 


