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 Completely automatic video based system.
— No user intervention.
— Use of a single video (PAL) camera.
— No external expensive devices.
— No specifically instrumented golf clubs or clothing.

e Usable in natural environments
— Cluttered (fixed) background



Club: thin, specular reflexion, moves very fast
(up to 170km/h).
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e Club extraction

e Tracking algorithm with
— local motion model
— global motion model



Dealing with interlaced images
* For each frz&
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2 « half-images » from an interlaced image

50 « half-images » per second .



Detection of moving objects
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Hypothesis generation

Detection of adjacent parallel segments under the moving-object mask
1. Edges detection




Hypothesis generation

Some results of the parallel segments detection
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Hypothesis generation

e The resulting segment is only a part of the shaft
Search for the shaft end-points

. LOOkiDQ for the C_|Ub * Looking for the “hands” in
head in the moving- the color image
object mask (as the last

white point)




Hypothesis generation

Results
— In this example, two hypothesis:
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Hypothesis generation

* Heuristics for removing some hypotheses
— Given a 2D point somewhere between the golfer shoulders,
we can remove some physically impossible hypotheses

 No accurate position for this point needed
e Can be easily provided by the user
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Why we still need a tracking algorithm ?

 Some wrong hypotheses can not be removed:
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Tracking

 Many visual tracking technigues have been
proposed in the computer vision literature.
— Data Association approaches (MHT)
— ConDensation

— Based on recursive motion models: Xt+1 = f(Xt)

— Difficult to consider a specific motion such as a golf
swing.
— Suffer from a lack of robustness for practical
applications when:
* Frequent mis-detections
« Large acceleration
« Abrupt motion changes
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New tracking algorithm

e |dea:

— Take into account previous frames + next
frames

— Consider the detections In these frames to
locally estimate the club shaft motion
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New algorithm

MLESAC applied to tracking:

Choose randomly 3 frames (in the previous and next frames)
Choose randomly one detection in these frames

Compute the shaft motion assuming a locally constant
acceleration

Estimate the shaft position in the previous and next frames

Several examples: . .

Compute the support of the predicted motion i.e. the number of
frames where there is a detection near the predicted position

Repeat and keep the shaft motion with the maximum likelihood

Deals easily with mis-detections and false-alarms

Robust motion estimation
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Motion estimation

 Parametrisation of the shaft (double-pendulum model):

s = [Shoulders, L, R, ¥, ¢]

e Estimation
— From the three randomly selected shafts s;, s;, sy,

— assuming a constant acceleration for all the parameters,
» we can predict the position, velocity and acceleration of the shaft

[Shoulders o Lo Rog Wo ¢l inthe current frame:
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« we can also predict the position in the other frames:
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Maximum Likelihood Estimation

* M, motion at time t
o Z ={7_ g ---Z.n} detection sets for frames t-ng to t+n,

M, =argh|;nax pP(Z, |M)o(M)

- Random sampling: M =a&9max p(Z |Ms)o(M)
IS an initial estimate of M,, and refined using all the correct

detections

+nA

P(Z IMs) =[] P(Zsi | Yiis)

i=ng

Classical observation model
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Advantages

The shaft position can be estimated when it is not
detected, with very good accuracy:

Using the next frames makes the tracker:
— More robust

— More accurate

— Almost Automatic!
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Other results
same parameters




Making the tracker more robust

e Using a global motion model
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Temporal Segmentation of the Sequence

downswing
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SeparPed EnbeoTy EstipArEtien

— upswing
— downswing
expressed In polar coordinates system

22



240 -

220

200

= 180

160

140

120 -

Simple polynomial functions of rather small degrees
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imation

Same algorithm than before, with a global motion model

*Robust estimation (b)
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*Refinement using the complete support (c)
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Experimental results




Further Research

e Define a better global motion model
(PCA ?)

« Analysis of the motion parameters

e Tracking of the golfer body
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