Robust Visual Golf Club Tracking

Vincent Lepetit, Nicolas Gehring, Pascal Fua CVlab - EPFL

Aim

1.5 sec

- Completely automatic video based system.
 - No user intervention.
 - Use of a single video (PAL) camera.
 - No external expensive devices.
 - No specifically instrumented golf clubs or clothing.
- Usable in natural environments
 - Cluttered (fixed) background

Club: thin, specular reflexion, moves very fast (up to 170km/h).

t

 $t + \frac{1}{25} \sec t$

3

- Club extraction
- Tracking algorithm with
 - local motion model
 - global motion model

Dealing with interlaced images

• For each frame:

50 « half-images » per second

Detection of moving objects

Detection of adjacent parallel segments under the moving-object mask

1. Edges detection

2. Segment detection (contour extraction, polygonal approximation)

3. Parallel segment detection and fusion

Some results of the parallel segments detection

• The resulting segment is only a part of the shaft Search for the shaft end-points

 Looking for the club head in the movingobject mask (as the last white point)

• Looking for the "hands" in the color image

- Results
 - In this example, two hypothesis:

– Others results:

- Heuristics for removing some hypotheses
 - Given a 2D point somewhere between the golfer shoulders,
 we can remove some physically impossible hypotheses

- No accurate position for this point needed
- Can be easily provided by the user

Why we still need a tracking algorithm ?

• Some wrong hypotheses can not be removed:

Tracking

- Many visual tracking techniques have been proposed in the computer vision literature.
 - Data Association approaches (MHT)
 - ConDensation
 - Based on recursive motion models: Xt+1 = f(Xt)
 - Difficult to consider a specific motion such as a golf swing.
 - Suffer from a lack of robustness for practical applications when:
 - Frequent mis-detections
 - Large acceleration
 - Abrupt motion changes

New tracking algorithm

- Idea:
 - Take into account previous frames + next frames
 - Consider the detections in these frames to locally estimate the club shaft motion

New algorithm

MLESAC applied to tracking:

- Choose randomly 3 frames (in the previous and next frames)
- Choose randomly one detection in these frames
- Compute the shaft motion assuming a locally constant acceleration
- Estimate the shaft position in the previous and next frames Several examples:

- Compute the support of the predicted motion *i.e.* the number of frames where there is a detection near the predicted position
- Repeat and keep the shaft motion with the maximum likelihood Deals easily with mis-detections and false-alarms Robust motion estimation

Motion estimation

• **Parametrisation** of the shaft (double-pendulum model):

 $\boldsymbol{s} = [Shoulders, L, R, \Psi, \phi]$

• Estimation

- From the three randomly selected shafts s_i , s_j , s_k ,
- assuming a constant acceleration for all the parameters,
 - we can predict the position, velocity and acceleration of the shaft
 - **s** $_{0}$ = [Shoulders $_{0}$, L $_{0}$, R $_{0}$, $\Psi _{0}$, $\varphi _{0}$] in the current frame:

$$A = \begin{bmatrix} 1 & i & \frac{i(i-1)}{2} \\ 1 & j & \frac{j(j-1)}{2} \\ 1 & k & \frac{k(k-1)}{2} \end{bmatrix} \qquad \begin{bmatrix} \Psi_0 \\ \dot{\Psi}_0 \\ \ddot{\Psi}_0 \end{bmatrix} = A^{-1} \begin{bmatrix} \Psi_i \\ \Psi_j \\ \Psi_k \end{bmatrix}$$

• we can also predict the position in the other frames:

. . .

$$\Psi_n = \Psi_0 + n\dot{\Psi}_0 + \frac{n(n-1)}{2}\ddot{\Psi}_0$$

Maximum Likelihood Estimation

- M_t motion at time t
- $Z_t = \{z_{t-nB} \dots z_{t+nA}\}$ detection sets for frames $t-n_B$ to $t+n_A$

$$M_{t} = \underset{M}{\operatorname{arg\,max}} p(Z_{t} \mid M) \delta(M)$$

- Random sampling: $\tilde{M} = \underset{M_s}{\operatorname{arg\,max}} p(Z_t | M_s) \delta(M_s)$
- is an initial estimate of M_t , and refined using all the correct detections

$$p(Z_t \mid M_S) = \prod_{i=n_B}^{+n_A} \underbrace{p(\mathbf{Z}_{t+i} \mid y_{t+i,S})}_{\text{Classical observation model}}$$

Advantages

• The shaft position can be estimated when it is not detected, with very good accuracy:

- Using the next frames makes the tracker:
 - More robust
 - More accurate
 - Almost Automatic!

Other results same parameters

Making the tracker more robust

• Using a global motion model

Temporal Segmentation of the Sequence

upswing

Separated jebetory i Estimation - upswing

- downswing

expressed in polar coordinates system

Simple polynomial functions of rather small degrees

Same algorithm than before, with a global motion model

- •Robust estimation (b)
- •Refinement using the complete support (c)

Experimental results

Further Research

- Define a better global motion model (PCA ?)
- Analysis of the motion parameters
- Tracking of the golfer body