Observable Subspaces for 3D Human Motion Recovery

Andrea Fossati, Mathieu Salzmann, Pascal Fua

Computer Vision Laboratory (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Task

3D Human Body Tracking from Monocular Sequences

Standard Approaches

The articulated body models used to represent human motion typically have many degrees of freedom, usually expressed as joint angles that are highly correlated. The true range of motion can therefore be represented by latent variables that span a low-dimensional space.

Standard approaches that adopt this idea have typically 2 main drawbacks: - Initialization both of the latent variables and of the pose is not straightforward.

- The used variables usually do not have an intuitive meaning.

Contribution

We propose to make use of directly observable image quantities as latent variables to overcome both issues

Training

Skating & Skiing (Feet' Trajectory) Golf (Hands' Trajectory)

Run-Time

Results

EPFL.CHI CVLAB.EPFL.CHI CVLAB.EPFL.CHI CVLAB.EPFL.CHI CVL

Xi

y_i

 α_i

Xi

