Studying the Structure and Dynamics of Business Ecosystems

Rahul Kapoor
The Wharton School

AOM Professional Development Workshop
August 10, 2013
Typical Context for Innovation

“In this paper, we focus on the problem of product development, taking as the unit of analysis a manufactured product sold to an end user and designed, engineered, and manufactured by a single product-development organization.” (Henderson and Clark, 1990)

Useful representation when innovation is isolated within the firm and/or the user

This assumption is becoming increasingly problematic as firms are becoming more specialized and technologies more complex.
Shift in the Computer Industry

Computer Industry (1980)
- **sales & distribution**
- **application software**
- **operating system**
- **computer**
- **chips**

<table>
<thead>
<tr>
<th></th>
<th>IBM</th>
<th>DEC</th>
<th>Sperry Univac</th>
<th>Wang</th>
</tr>
</thead>
</table>

Computer Ecosystem (1995)
- **sales & distribution**
- **application software**
- **operating system**
- **computer**
- **chips**

<table>
<thead>
<tr>
<th>Retail Stores</th>
<th>Superstores</th>
<th>Dealers</th>
<th>Mail Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>application software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
</tr>
<tr>
<td>Word Perfect</td>
</tr>
<tr>
<td>Etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>operating system</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS and Windows</td>
</tr>
<tr>
<td>OS/2</td>
</tr>
<tr>
<td>Mac</td>
</tr>
<tr>
<td>UNIX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compaq</td>
</tr>
<tr>
<td>Dell</td>
</tr>
<tr>
<td>Packard Bell</td>
</tr>
<tr>
<td>HP</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>Etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Architecture</td>
</tr>
<tr>
<td>Motorola</td>
</tr>
<tr>
<td>RISC</td>
</tr>
</tbody>
</table>

Source: Andrew Grove, *Only the Paranoid Survive* (1996)
Context for Innovation: System of Interdependent Activities/Technologies

Suppliers

Complementors

Innovation

Market

Firm

User

Innovation

C1

C2

S1

S2

S3

C1

C2
Electric Cars Ecosystem

- Battery Makers
- Electric Motor Suppliers
- General Suppliers
- Auto Firms
- Utilities
- Charging Stations
- Dealers
- Consumer
- Garages
Semiconductor Manufacturing Ecosystem

- **Semiconductor Manufacturer**
 - Mentor Synopsys
 - Applied Materials
 - ASML
 - Nikon
 - KLA-Tencor
 - Photronics
 - Toppan
 - Shipley
 - JSR

- **EDA Software**
 - Mentor
 - Synopsys

- **Lithography Equipment**
 - ASML
 - Nikon

- **Metrology Equipment**
 - KLA-Tencor

- **Mask**
 - Photronics
 - Toppan

- **Resist**
 - Shipley
 - JSR

- **Lasers**
 - Cymer

- **Lens /Optics**
 - Zeiss

- **Research Institutes/Labs**
 - IBM
 - Intel
 - Samsung
 - TSMC
 - Sandia
 - Fraunhofer

- **Consortia**
 - SEMATECH
 - ASET
 - SELETE

- **Universities**
Explicit Recognition of Technological Interdependencies: Not New!

• Business History
 - System-based view of technology
 - Rich description of evolutionary processes

• IO Economics
 - Standards/Network Effects/Two-sided markets
 - Pricing as a primary firm-level “lever” to manage interdependencies

• Org. Sociology
 - Social construction of technology
 - Social groups, identity, legitimacy as shaping tech. evolution

• Strategy
 - Complementary assets
 - Firm’s value appropriation through specialized comp. assets
 - Focus on firm-level value chain (manufacturing, marketing, distribution)
Opportunities for Strategy Scholars (That I have Benefitted From!)

• Firm Boundaries
 - Emphasis has been on dyadic buyer-supplier interactions
 - Opportunities to explicitly consider:
 • Complementors
 • System-level interdependencies
Complementors and Firm Boundaries

(Kapoor and Lee, 2013)
Unpacking Different Types of Complementarities
Existing Approach

- Complement is a “number”
- The more complements (number and variety) the better for the platform
- No difference between phone, browser, map and Angry Birds
Different Types of Interdependence

- **Two-way interdependence**

 Both goods are essential for creating value

 - Razor and Blade
 - Wireless Handset and Mobile Operating System

- **One-way interdependence**

 One good is essential for the other to create value but not vice versa

 - TV and DVR
 - Social Networking and Social Gaming
Look Beyond Dyads to Identify System-level Effects
Complementarities in the Smartphone Ecosystem

(Chatain and Kapoor, 2013)
More Opportunities

• Industry Evolution
 - *Emphasis has been on describing changes over the industry life cycle (entry, exit, #firms, innovative activity) and performance differences based on when firms entered the industry*
 - *Opportunities to explicitly consider different types of firms (suppliers, complementors, integrated, specialized etc.)*
 - *Distribution of value among actors over time*
Evolution of Global Semiconductor Industry

Number of Firms

- 1984
- 1986
- 1988
- 1990
- 1992
- 1994
- 1996
- 1998
- 2000
- 2002
- 2004
- 2006
- 2008

- 50
- 70
- 90
- 110
- 130
- 150
- 170
- 190
- 210
- 230
- 250

Rahul Kapoor, AOM 2013 PDW on Business Ecosystems
From Semiconductor Industry to Semiconductor Ecosystem

Pre-1980

Systemic Innovation

| Design (Autonomous Innovation) | Manufacturing (Autonomous Innovation) | Marketing & Sales |

Post-2000

Systemic Innovation

| Design (Autonomous Innovation) | Manufacturing (Autonomous Innovation) | Marketing & Sales |

IDM Firms

Foundry Firms

Fabless Firms

(Kapoor, 2013)
Number of Entrants in the Global Solar PV Industry

(Kapoor and Furr, 2013)
Entry in the Global Solar PV Industry

- Entrants pursued four distinct technology choices
- Technologies differed in performance at the time of entry
Technologies also differed in the extent to which the key complementary technologies were available at the time of entry.
Main Findings

• Entrants into emerging industries face a trade-off between technology superiority and the availability of complementary technologies

• Diversifying entrants are more likely to trade-off technology superiority for the availability of complementary technologies

• Start-up entrants are more likely to trade-off the availability of complementary technologies for technology superiority
Even More Opportunities

• Technology Transitions
 - *Emphasis has been on focal technology/firms (incumbents vs. entrants)*
 - *Opportunities to explicitly consider:*
 - System-level technology dynamics (e.g., technological bottlenecks; component vs. architectural changes)
 - Performance for different types of firms in the system
With Opportunities Come Challenges

Novelty Challenges (for Strategy crowd)

- How is this different from literatures on alliances, buyer-supplier relationships, networks, network effects, population ecology, firm boundaries?
- What are the unique concepts and causal mechanisms?

Empirical Challenges

- High level of contextual knowledge
- Data requirements are significantly broader
 - Publicly available archival datasets not adequate

Theoretical Challenges

- Ecosystems have many transactions, different types of firms and a number of interconnected industries
- Leveraging prior work on different units of analysis (transaction, firm and industry)
Addressing Challenges

• Leveraging the Ecosystem - greater collaboration within the research community

 Complementarities in theories, methods and data

• Leveraging new developments in:

 ➢ Mathematics (e.g., graph theory)

 ➢ Complex systems (not just an evolutionary process but the one which has a role for “Strategy”)

 ➢ Other fields??

• Dedicated avenues (conferences/workshops) for discussing and developing new ideas

• Special Issue in SMJ or Strategy Science
Thank You