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Abstract. Viability and invariance problems related to a stochastic equation
in a Hilbert space H are studied. Finite dimensional invariant C2 submani-
folds of H are characterized. We derive Nagumo type conditions and prove a
regularity result: Any weak solution, which is viable in a finite dimensional
C2 submanifold, is a strong solution.

These results are related to finding finite dimensional realizations for sto-
chastic equations. There has recently been increased interest in connection
with a model for the stochastic evolution of forward rate curves.

1. Introduction

Consider a stochastic equation{
dXt = (AXt + F (t,Xt)) dt+B(t,Xt) dWt

X0 = x0
(1)

on a separable Hilbert space H . Here W denotes a Q-Wiener process on some
separable Hilbert space G. The operator A is the infinitesimal generator of a
strongly continuous semigroup in H . The random mappings F = F (t, ω, x) and
B = B(t, ω, x) satisfy appropriate measurability conditions.

This paper studies the stochastic viability and invariance problem related to
equation (1) for finite dimensional regular manifolds in H . A subset M of H is
called (locally) invariant for (1), if for any space-time initial point (t0, x0) ∈ R+×M
any solution X(t0,x0) to (1) is (locally) viable inM, i.e. stays (locally) onM almost
surely.

Our purpose is to characterize invariant finite dimensional C2 submanifolds M
of H in terms of A, F and B. Under mild conditions on F and B it is shown
that M lies necessarily in the domain D(A) of A. The Nagumo type consistency
conditions

µ(t, ω, x) := Ax+ F (t, ω, x)− 1
2

∑
j

DBj(t, ω, x)Bj(t, ω, x) ∈ TxM (2)

Bj(t, ω, x) ∈ TxM, ∀j, (3)

equivalent to local invariance of M, are derived. Here Bj :=
√
λjBej , where

{λj , ej} is an eigensequence defined by Q. If moreover M is closed we can prove
that local invariance implies invariance.
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The vector fields µ(t, ω, . ) and Bj(t, ω, . ) are shown to be continuous onM. It
turns out that the stochastic invariance problem related to (1) is equivalent to the
set of deterministic invariance problems related to µ(t, ω, . ) and Bj(t, ω, . ).

By a solution to (1) we mean a weak solution, which in contrast to a strong
solution is the natural concept for stochastic equations in Hilbert spaces (see below
for the exact definitions). It is well known that under some Lipschitz and linear
growth conditions on F andB, a classical fixed point argument ensures the existence
of a unique weak solution X to (1), see [6]. But there is nothing comparable for
the existence of a strong solution, due to the discontinuity of A. However we
derive the following regularity result : If dimH < ∞, any linear operator on H is
continuous and the concepts of a weak and strong solution to (1) coincide (at least
if dimG <∞). We show that this is also true in the general case provided that X
is viable in a finite dimensional C2 submanifold of H .

The main idea behind the proofs is the fact that locally any finite dimensional
submanifold M of H can be projected diffeomorphically onto a finite dimensional
linear subspace of D(A?), where A? is the adjoint of A. Thus any weak solution
viable in M is locally mapped onto a finite dimensional semimartingale, which
can be “pulled back” by Itô’s formula (this is why we assumed M to be C2).
This way equation (1) is locally transformed into a finite dimensional stochastic
equation, which in our setting has a unique strong solution. We use implicitly
that A? restricted to a finite dimensional subset of its domain D(A?) is bounded.
Therefore this idea cannot be directly extended to infinite dimensional invariant
submanifolds.

Many phenomena, say in physics or economics, are described by stochastic equa-
tions of the form (1). The Hilbert spaceH is typically a space of functions. Suppose
(1) represents a stochastic model. Let G := {G(·, z) | z ∈ Z} be a parametrized
family of functions in H , for some parameter set Z ⊂ Rm. Assume that G is used
for statistical estimation of the model coefficients A, F and B in (1). That is, one
observes the Z-valued process Z which is related to X by

G(·, Zt) = Xt. (4)

The following problems naturally arise:
i) What are the sufficient and necessary conditions on G such that there exists a

non-trivial Z-valued process Z satisfying (4)? We then say that the model is
consistent with G.

ii) If so, what kind of dynamics does Z inherit from X by (4)? (Notice that X is
a priori a weak solution to (1), hence not a semimartingale in H .)

If G is regular enough, then G is an m-dimensional C2 submanifold in H . Accord-
ingly our results apply: Problem i) is solved by the consistency conditions (2) and
(3). These can be expressed in local coordinates involving the first and second order
derivatives of G, making them feasible for applications. By our regularity result, Z
is an Itô process. This responds to Problem ii).

Similar invariance problems have been studied in [3], [4] and [17]. In [3] and [4]
the consistency problem for HJM models is solved. However they work with strong
solutions in a Hilbert space, which in general is a rather cutting restriction. In
[17] the invariance question for finite dimensional linear subspaces with respect to
Ornstein–Uhlenbeck processes is completely solved and applied to various interest
rate models. But the methods used in [17] have not yet been established for general
equations (1). Therefore our results cannot straightly been obtained that way.



INVARIANT MANIFOLDS FOR STOCHASTIC EQUATIONS 3

Further recent results can be found in [2], [12] for finite dimensional systems, and
in [11], [16] for infinite dimensional ones. See also the references therein. Compared
to these studies we put very mild assumptions on the coefficients of (1), which is
due to the strong structure of M.

The paper is organized as follows. In Section 2 we give the exact setting for
equation (1) and define (local) weak and strong solutions. Some classical results on
stochastic equations are presented. Section 3 contains the main results on stochastic
viability and invariance for finite dimensional C2 submanifolds. The proofs are
postponed to Sections 4 and 5, where we also recall Itô’s formula for our setting.
We sketch an application of the obtained results for HJM models in Section 6. The
appendix includes a summary on finite dimensional submanifolds in a Hilbert space.
Their crucial properties are deduced.

2. Preliminaries on stochastic equations

For the stochastic background and notations we refer to [6]. We are given a proba-
bility space (Ω,F ,P) together with a normal filtration (Ft)0≤t<∞. Let H and G be
separable Hilbert spaces and Q ∈ L(G) a self-adjoint strictly positive operator. Set
G0 := Q1/2(G), equipped with the scalar product 〈u, v〉G0 := 〈Q−1/2u,Q−1/2v〉G.
We assume W in (1) to be a Q-Wiener process on G and Tr Q < ∞. Otherwise
there always exists a separable Hilbert space G1 ⊃ G on which W has a realization
as a finite trace class Wiener process, see [6, Chapt. 4.3].

Denote by L0
2 := L2(G0;H) the space of Hilbert–Schmidt operators from G0

into H , which itself is a separable Hilbert space. We will focus on the stochastic
equation (1) under the following set of (standard) assumptions.
• The operator A is the infinitesimal generator of a strongly continuous semi-

group in H .
• The mappings F and B are measurable from (R+ × Ω × H,P ⊗ B(H)) into

(H,B(H)), resp. (L0
2,B(L0

2)).
• The initial value is a non random point x0 ∈ H .
Two processes Y and Z are indistinguishable if P[Yt = Zt, ∀t <∞] = 1. We will

not distinguish between them.
There is an equivalent way of looking at equation (1) which will be used here.

Let {ej} be an orthonormal basis of eigenvectors of Q, such that Qej = λjej for
a bounded sequence of strictly positive real numbers λj . Then {

√
λjej} is an

orthonormal basis of G0 and W has the expansion

W =
∑
j

√
λjβ

jej , (5)

where {βj} is a sequence of real independent (Ft)-Brownian motions. This series
is convergent in the space of G-valued continuous square integrable martingales
M2

T (G), for all T <∞.
Recall the following classical result on stochastic integration, see [6, Chapt. 4].

Proposition 2.1. Let E be a separable Hilbert space and σjt be E-valued predictable
processes, such that

∑
j ‖σ

j
t (ω)‖2E <∞ for all (t, ω) ∈ R+ × Ω and

P
[ ∫ t

0

∑
j

‖σjs‖2E ds <∞
]

= 1, ∀t <∞.
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Then the series of stochastic integrals

Mt :=
∑
j

∫ t

0

σjs dβ
j
s

converges uniformly on compact time intervals in probability. Moreover Mt is an
E-valued continuous local martingale and for any bounded stopping time τ

Mt∧τ =
∑
j

∫ t∧τ

0

σjs dβ
j
s =

∑
j

∫ t

0

σjs1[0,τ ](s) dβjs .

Set Bj(t, ω, x) :=
√
λjB(t, ω, x)ej ∈ H and take into account the identity

‖B(t, ω, x)‖2L0
2

=
∑
j

‖Bj(t, ω, x)‖2H <∞. (6)

Then equation (1) may be equivalently rewritten in the form dXt = (AXt + F (t,Xt)) dt+
∑
j

Bj(t,Xt) dβ
j
t

X0 = x0.

(1′)

Definition 2.2. An H-valued predictable process X is a local weak solution to (1),
resp. (1’), if there exists a stopping time τ > 0, called the lifetime of X, such that

P
[ ∫ t∧τ

0

(
‖Xs‖H + ‖F (s,Xs)‖H + ‖B(s,Xs)‖2L0

2

)
ds <∞

]
= 1, ∀t <∞

and for any t <∞ and ζ ∈ D(A?), P-a.s.

〈ζ,Xt∧τ 〉 = 〈ζ, x0〉+
∫ t∧τ

0

(
〈A?ζ,Xs〉+ 〈ζ, F (s,Xs)〉

)
ds

+
∫ t∧τ

0

〈ζ, B(s,Xs) dWs〉,
(7)

where ∫ t∧τ

0

〈ζ, B(s,Xs) dWs〉 =
∑
j

∫ t∧τ

0

〈ζ, Bj(s,Xs)〉 dβjs .

A local weak solution X is a local strong solution to (1), resp. (1’), if in addition

Xt∧τ ∈ D(A), dt⊗ dP-a.s.

P
[ ∫ t∧τ

0

‖AXs‖H ds <∞
]

= 1, ∀t <∞

and for any t <∞, P-a.s.

Xt∧τ = x0 +
∫ t∧τ

0

(
AXs + F (s,Xs)

)
ds+

∫ t∧τ

0

B(s,Xs) dWs,

where ∫ t∧τ

0

B(s,Xs) dWs =
∑
j

∫ t∧τ

0

Bj(s,Xs) dβjs .

If τ =∞ we just refer to X as weak, resp. strong solution.
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This definition may be straightly extended to random F0-measurable initial values
x0. Notice that the lifetime τ is by no means maximal.

Lemma 2.3. Let X be a weak solution to (1) and τ be a bounded stopping time.
Then Xτ+t is a weak solution to{

dYt = (AYt + F (τ + t, Yt)) dt+B(τ + t, Yt) dW̃t

Y0 = Xτ

(8)

with respect to the filtration F̃t := Fτ+t, where W̃t := Wτ+t −Wτ is a Q-Wiener
process with respect to F̃t. Moreover (5) induces the following expansion

W̃ =
∑
j

√
λj β̃

jej , (9)

where β̃jt := βjτ+t − βjτ is a sequence of real independent (F̃t)-Brownian motions.

Proof. First we show that W̃ is a Q-Wiener process with respect to F̃t. Obviously
W̃0 = 0 and W̃ is continuous and F̃t-adapted. Now we proceed as in the proof of [13,
Theorem (3.6), Chapter IV]. Let h ∈ G. Define the function f ∈ C∞(R+ × G;C)
as follows

f(t, x) := exp
(
i〈h, x〉G +

t

2
〈Qh, h〉G

)
.

Identify C ∼= R2, then compute

ft(t, x) =
1
2
f(t, x)〈Qh, h〉G ∈ L(R;C)

fx(t, x) = if(t, x)〈h, . 〉G ∈ L(H ;C)

fxx(t, x) = −f(t, x)〈h, . 〉G〈h, . 〉G ∈ L(H ×H ;C)

and Itô’s formula, see [6, Chapt 4.5], gives

f(t,Wt) = 1 + i

∫ t

0

f(s,Ws) d〈h,Ws〉G.

Since f(t,Wt) is uniformly bounded on compact time intervals, Mt := f(t,Wt)
is a complex martingale (its real and imaginary parts are martingales). By the
optional stopping theorem Mτ+t is a nowhere vanishing complex F̃t-martingale.
For 0 ≤ s < t <∞

E
[Mτ+t

Mτ+s
| F̃s

]
= 1.

Whence for A ∈ F̃s we get

E[1A exp(i〈h, W̃t − W̃s〉G)] = P[A] exp
(
− 1

2
(t− s)〈Qh, h〉G

)
.

Since this is true for any h ∈ G, the increment W̃t − W̃s is independent of F̃s
and has a Gaussian distribution with covariance operator (t − s)Q. Hence W̃ is a
Q-Wiener process with respect to F̃t.

Next we claim that ∫ τ+t

τ

Φs dWs =
∫ t

0

Φτ+s dW̃s, (10)
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for any predictable L0
2-valued process Φ with

P
[ ∫ t

0

‖Φs‖2L0
2
ds <∞

]
= 1, ∀t <∞.

If Φ is elementary and τ a simple stopping time, then (10) holds by inspection. The
general case follows by a well known localization procedure, see [6, Lemma 4.9].

Since X is a weak solution to (1), for ζ ∈ D(A?) we thus have

〈ζ,Xτ+t〉 = 〈ζ,Xτ 〉+
∫ τ+t

τ

(
〈A?ζ,Xs〉+ 〈ζ, F (s,Xs)〉

)
ds

+
∫ τ+t

τ

〈ζ, B(s,Xs) dWs〉

= 〈ζ,Xτ 〉+
∫ t

0

(
〈A?ζ,Xτ+s〉+ 〈ζ, F (τ + s,Xτ+s)〉

)
ds

+
∫ t

0

〈ζ, B(τ + s,Xτ+s) dW̃s〉.

Hence it follows that Xτ+t is a weak solution to (8).

In view of Lemma 2.3 the following definition makes sense.

Definition 2.4. For (t0, x0) ∈ R+ × H we denote by X(t0,x0) any (local) weak
solution to {

dXt = (AXt + F (t0 + t,Xt)) dt+B(t0 + t,Xt) dW
(t0)
t

X0 = x0

(11)

with respect to the filtration F (t0)
t := Ft0+t. Here W

(t0)
t := Wt0+t − Wt0 is a

Q-Wiener process with respect to F (t0)
t .

All results in this paper for local weak solutions X = X(0,x0) to (1) will straightly
apply for local weak solutions X(t0,x0) to (11). Hence they are stated only for the
case t0 = 0.

In the sequel we assume X to be a (local) weak solution to (1). The main results
of the next section follow under some regularity assumptions, which for clarity are
presented here in a collected form.

(A1): (continuity) There exists a continuous version of X , still denoted by X .
(A2): (differentiability) B(t, ω, . ) ∈ C1(H ;L0

2) for all (t, ω) ∈ R+ × Ω.
This implies Bj(t, ω, . ) ∈ C1(H ;H), and since

DBj(t, ω, x)Bj(t, ω, x) = (DB(t, ω, x)Bj(t, ω, x))
√
λjej

hence∑
j

‖DBj(t, ω, x)Bj(t, ω, x)‖2H ≤ ‖DB(t, ω, x)‖2L(H;L0
2)‖B(t, ω, x)‖2L0

2
<∞

and
∑

j DB
j(t, ω, . )Bj(t, ω, . ) ∈ C0(H ;H), for all (t, ω) ∈ R+ × Ω.

(A3): (integrability) For any t <∞ we have

E
[ ∫ t

0

(
‖Xs‖H + ‖F (s,Xs)‖H + ‖B(s,Xs)‖2L0

2

)
ds
]
<∞.
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(A4): (local Lipschitz ) For all T,R <∞ there exists a real constant C = C(T,R)
such that

‖F (t, ω, x)− F (t, ω, y)‖H + ‖B(t, ω, x)−B(t, ω, y)‖L0
2
≤ C‖x− y‖H

for all (t, ω) ∈ [0, T ]× Ω and x, y ∈ H with ‖x‖H ≤ R and ‖y‖H ≤ R.
(A5): (right continuity) The mappings F (t, ω, x) and B(t, ω, x) are right contin-

uous in t, for all x ∈ H and ω ∈ Ω.
Finally we present a classical existence and uniqueness result for local weak

solutions to equation (1).

Lemma 2.5. Assume (A4). Then for any x0 there exists a local weak solution to
(1) satisfying (A1). Moreover any weak solution to (1) satisfying (A1) is unique.

Proof. Let x0 ∈ H . Set l := 2‖x0‖H and define

F̃ (t, ω, x) :=

{
F (t, ω, x), if ‖x‖H ≤ l
F (t, ω, l

‖x‖H x), if ‖x‖H > l

and similarly B̃(t, ω, x). Then F̃ and B̃ are bounded and globally Lipschitz in x
on [0, T ]× Ω×H , for all T <∞. Hence by [6, Theorems 7.4 and 6.5] there exists
a unique continuous weak solution X̃ to (1), when replacing F by F̃ and B by B̃.
Define the stopping time τ := inf{t ≥ 0 | ‖X̃‖H ≥ l}. Then τ > 0 and Xt := X̃t∧τ
is a local weak solution to (1) with lifetime τ and satisfies (A1).

If X is a continuous weak solution to (1) then by the above arguments it is
unique on [0, τn] for n ≥ 2, where τn := inf{t ≥ 0 | ‖X‖H ≥ n‖x0‖H}. Now use
that τn ↑ ∞.

3. Invariant manifolds

Let M denote an m-dimensional C2 submanifold of H , m ≥ 1. See the appendix
for the definition and properties of a finite dimensional submanifold in a Hilbert
space. The concept of a submanifold is used in more than one sense in the literature,
see [5]. We therefore point out that M represents what is also called a regular or
embedded submanifold, i.e. the topology and differentiable structure on M is the
one induced by H . This allows for deriving global regularity and invariance results,
see Theorems 1 and 2 below.

Essential for our needs is the following observation. Since H is separable, there
exists a countable open covering (Uk)k∈N of M and for each k a parametrization
φk : Vk ⊂ Rm → Uk ∩M, where φk ∈ C2

b (Rm;H), see Remark A.3. Using the fact
that D(A?) is dense in H , by Proposition A.5 we can assume that for each k there
exists a linearly independent set {ζk,1, . . . , ζk,m} in D(A?) such that

φk(〈ζk,1, x〉, . . . , 〈ζk,m, x〉) = x, ∀x ∈ Uk ∩M. (12)

To simplify notation, we write 〈ζk, x〉 instead of (〈ζk,1, x〉, . . . , 〈ζk,m, x〉) and skip
the index k whenever there is no ambiguity.

For the sake of readability all proofs are postponed to the following sections.
First we state a (global) regularity result.

Theorem 1. Let X be a local weak solution to (1) with lifetime τ , assume (A1)
and

Xt∧τ ∈ M, ∀t <∞. (13)



8 DAMIR FILIPOVIĆ

Then there exists a stopping time 0 < τ ′ ≤ τ , such that X is a local strong solution
to (1) with lifetime τ ′.

If in addition τ =∞ and (A3) holds, then X is a strong solution to (1).

We can give sufficient conditions for a weak solution X to be viable inM. Notice
that µ(t, ω, x) in (2) is well defined by assuming (A2).

Theorem 2. Let X be a weak solution to (1) with X0 ∈M. Assume (A1), (A2)
and (A4). If M is closed, lies in D(A) and satisfies the consistency conditions
(2) and (3) for dt ⊗ dP-a.e. (t, ω) ∈ R+ × Ω, for all x ∈ M. Then (13) holds for
τ =∞.

Moreover A is continuous on M. Consequently (2) and (3) hold for all x ∈M,
for dt⊗ dP-a.e. (t, ω) ∈ R+ × Ω.

It turns out that the viability condition (13) is too weak to imply (2) and (3).
Neither does it imply thatM lies in D(A). As a link between Theorems 1 and 2 we
shall formulate equivalent conditions for (2) and (3). Rather than just asking for
the assumptions of Theorem 1 we have to require that (13) holds for any space-time
starting point (t0, x0).

Definition 3.1. The submanifold M is called locally invariant for (1), if for all
(t0, x0) ∈ R+ ×M there exists a continuous local weak solution X(t0,x0) to (11)
with lifetime τ = τ(t0, x0), such that

X
(t0,x0)
t∧τ ∈ M, ∀t <∞.

Observe that this definition involves local existence.

Theorem 3. Assume (A2), (A4) and (A5). Then the following conditions are
equivalent:

i) M is locally invariant for (1)
ii) M⊂ D(A) and (2), (3) hold for dt⊗ dP-a.e. (t, ω) ∈ R+ ×Ω, for all x ∈M.
iii) M⊂ D(A) and (2), (3) hold for all (t, x) ∈ R+ ×M, for P-a.e. ω ∈ Ω.

We finally mention the important case where M is a linear submanifold. Then
the above results are true under much weaker assumptions.

Theorem 4. If M is an m-dimensional linear submanifold, then Theorems 2 and
3 remain valid without assuming (A2) and with µ(t, ω, x) in (2) replaced by

ν(t, ω, x) := Ax + F (t, ω, x).

4. Proof of Theorem 1

We recall Itô’s formula for our setting.

Lemma 4.1 (Itô’s formula). Assume that we are given the continuous Rm-valued
adapted process

Yt = Y0 +
∫ t

0

bs ds+
∑
j

∫ t

0

σjs dβ
j
s ,
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where b and σj are Rm-valued predictable processes such that∑
j

‖σjt (ω)‖2Rm <∞, ∀(t, ω) ∈ R+ × Ω (14)

P
[ ∫ t

0

(
‖bs‖Rm +

∑
j

‖σjs‖2Rm
)
ds <∞

]
= 1, ∀t <∞ (15)

and Y0 is F0-measurable. Let φ ∈ C2
b (Rm;H). Then Jt := 1

2

∑
j D

2φ(Yt)(σ
j
t , σ

j
t ) is

an H-valued predictable process,

P
[ ∫ t

0

(
‖Dφ(Ys)bs‖H +

1
2

∑
j

‖D2φ(Ys)(σjs , σ
j
s)‖H

+
∑
j

‖Dφ(Ys)σjs‖2H
)
ds <∞

]
= 1, ∀t <∞, (16)

and φ ◦ Y is a continuous H-valued adapted process given by

(φ ◦ Y )t = (φ ◦ Y )0 +
∫ t

0

(
Dφ(Ys)bs + Js

)
ds+

∑
j

∫ t

0

Dφ(Ys)σjs dβ
j
s . (17)

Proof. Point-wise convergence of the series defining Jt follows from (14). Hence
Jt is predictable. Integrability (16) is a direct consequence of (15). Denote the
right hand side of (17) with It. Clearly by (16) it is a well defined continuous
adapted process in H , see Proposition 2.1. Choose an orthonormal basis {ei} in
H . It is enough to show equality (17) for each component with respect to {ei}.
Define φi(y) := 〈ei, φ(y)〉. Then φi ∈ C2

b (Rm;R) and Itô’s formula applies, see [6,
Theorem 4.17]. It follows

〈ei, (φ ◦ Y )t〉 = (φi ◦ Y )0 +
∫ t

0

(
Dφi(Ys)bs +

1
2

∑
j

D2φi(Ys)(σjs, σ
j
s)
)
ds

+
∑
j

∫ t

0

Dφi(Ys)σjs dβ
j
s

= 〈ei, It〉.

Proof of Theorem 1. Assume first that X is a weak solution, that is τ = ∞, and
that (A3) holds. Fix T > 0. Following [7, Lemma (3.5)] there exists an increasing
sequence of predictable stopping times 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ T with supn Tn =
T , such that on each of the intervals

[Tn, Tn+1] ∩ {Tn+1 > Tn}
the process X takes values in some Uα(n) (here [0, T ] × {Tn+1 > Tn} is identified
with {Tn+1 > Tn}). This holds due to (A1).

Now let n ∈ N0 and k = α(n). We will analyseX locally on Uk. For simplicity we
shall skip the index k for φk, Uk, Vk and ζk in what follows. Define the Rm-valued
predictable processes b and σj as

bt := 〈A?ζ,Xt〉+ 〈ζ, F (t,Xt)〉
σjt := 〈ζ, Bj(t,Xt)〉,
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where logically 〈A?ζ,Xt〉 stands for (〈A?ζ1, Xt〉, . . . , 〈A?ζm, Xt〉). Then b and σj

satisfy (14) and (15), see (6), and by the very definition of X

Yt := 〈ζ,Xt〉 = 〈ζ, x0〉+
∫ t

0

bs ds+
∑
j

∫ t

0

σjs dβ
j
s .

Hence Itô’s formula (Lemma 4.1) for φ ◦ Y applies. Since moreover Y(Tn+t)∧Tn+1

takes values in V on {Tn+1 > Tn}

X(Tn+t)∧Tn+1 = (φ ◦ Y )(Tn+t)∧Tn+1 , on {Tn+1 > Tn}. (18)

Now using (7), (17) and (18) we have for ξ ∈ D(A?)

0 =
∫ (Tn+t)∧Tn+1

Tn

(
〈A?ξ,Xs〉+ 〈ξ, F (s,Xs)〉

− 〈ξ,Dφ(Ys)bs +
1
2

∑
j

D2φ(Ys)(σjs , σ
j
s)〉
)
ds

+
∑
j

∫ (Tn+t)∧Tn+1

Tn

(
〈ξ, Bj(s,Xs)〉 − 〈ξ,Dφ(Ys)σjs〉

)
dβjs .

(19)

Notice that the series in the first integral converges point-wise and defines an H-
valued predictable process, see Lemma 4.1. By Proposition 2.1 the last term in (19)
is a continuous local martingale with respect to the filtration (FTn+t). Therefore

〈A?ξ,Xt〉 = 〈ξ,−F (t,Xt) +Dφ(Yt)bt +
1
2

∑
j

D2φ(Yt)(σ
j
t , σ

j
t )〉 (20)

on [Tn, Tn+1]∩{Tn+1 > Tn}, dt⊗ dP-a.s. (see the proof of [9, Proposition 3.2]). By
separability of H there exists a countable dense subset D ⊂ D(A?) such that (20)
holds simultaneously for all ξ ∈ D and for all (t, ω) ∈ [Tn, Tn+1] ∩ {Tn+1 > Tn}
outside an exceptional dt⊗ dP-nullset. Let (t, ω) be such a point of validity. Then
〈A?ξ,Xt(ω)〉 is a linear functional on D(A?), which is bounded on D by (20).
Hence it is bounded and therefore continuous on D(A?). Since A?? = A, see [14,
Theorem 13.12], we conclude that Xt(ω) ∈ D(A) and – using full notation again –

AXt + F (t,Xt) = Dφ(Yt)
(
〈A?ζ,Xt〉+ 〈ζ, F (t,Xt)〉

)
+

1
2

∑
j

D2φ(Yt)(〈ζ, Bj(t,Xt)〉, 〈ζ, Bj(t,Xt)〉)
(21)

on [Tn, Tn+1] ∩ {Tn+1 > Tn}, dt⊗ dP-a.s.
Similarly one shows that (compute the quadratic covariation of (19) with βj)

Bj(t,Xt) = Dφ(Yt)〈ζ, Bj(t,Xt)〉, ∀j, (22)

on [Tn, Tn+1] ∩ {Tn+1 > Tn}, dt⊗ dP-a.s.
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In view of (A3)

E
[ ∫ T

0

(
‖Dφ(Ys)bs‖H +

1
2

∑
j

‖D2φ(Ys)(σjs , σ
j
s)‖H +

∑
j

‖Dφ(Ys)σjs‖2H
)
ds
]

≤ C1E
[ ∫ T

0

(
‖bs‖Rm +

∑
j

‖σjs‖2Rm
)
ds
]

≤ C2E
[ ∫ T

0

(
‖Xs‖H + ‖F (s,Xs)‖H + ‖B(s,Xs)‖2L0

2

)
ds
]
<∞,

(23)

where C1 and C2 depend only on n.
Summing up over 0 ≤ n ≤ N − 1 we get from (21) and (23)

E
[ ∫ TN

0

‖AXs‖H ds
]
<∞, ∀N ∈ N.

Since limN ↑ TN = T

P
[ ∫ t

0

‖AXs‖H ds <∞
]

= 1, ∀t < T,

and by the identities (21) and (22)

Xt = x0 +
∫ t

0

(AXs + F (s,Xs)) ds+
∑
j

∫ t

0

Bj(s,Xs) dβjs .

Since T was arbitrary the second part of the theorem is proved.
Now assume X to be a local weak solution with lifetime τ . Let φ : V → U ∩M

be a parametrization in X0 satisfying (12). By (A1) there exists a stopping time
T1 > 0, such that Xt∧τ takes values in U on [0, T1]. Set τ ′ := τ ∧ T1.

The rest of the proof runs as before, only estimation (23) has to be replaced. We
give a sketch. Define

bt :=
(
〈A?ζ,Xt∧τ ′〉+ 〈ζ, F (t,Xt∧τ ′)〉

)
1[0,τ ′](t)

σjt := 〈ζ, Bj(t,Xt∧τ ′)〉1[0,τ ′](t).

Then

Xt∧τ ′ = (φ ◦ Y )t, ∀t <∞, (24)

where

Yt := 〈ζ,Xt∧τ ′〉 = 〈ζ, x0〉+
∫ t

0

bs ds+
∑
j

∫ t

0

σjs dβ
j
s .

Instead of (23) we now have (15) by the very definition of X . Using (24) and
Lemma 4.1 we get the relations (21) and (22) for X on [0, τ ′], dt ⊗ dP-a.s. In
particular Xt∧τ ′ ∈ D(A), dt⊗ dP-a.s. Hence from (16) and (21)

P
[ ∫ t∧τ ′

0

‖AXs‖H ds <∞
]

= 1, ∀t <∞

and

Xt∧τ ′ = x0 +
∫ t∧τ ′

0

(
AXs + F (s,Xs)

)
ds+

∑
j

∫ t∧τ ′

0

Bj(s,Xs) dβjs .
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5. Proof of Theorems 2, 3 and 4

A key step in proving Theorems 2, 3 and 4 consists in the following property.

Lemma 5.1. Assume (A2) and (A4). Let φ : V → U ∩M be a parametrization
satisfying (12). Suppose that U∩M ⊂ D(A). Then (2) and (3) hold for dt⊗dP-a.e.
(t, ω) ∈ R+ × Ω, for all x ∈ U ∩M if and only if

Ax+ F (t, ω, x) = Dφ(y)
(
〈A?ζ, x〉 + 〈ζ, F (t, ω, x)〉

)
+

1
2

∑
j

D2φ(y)(〈ζ, Bj(t, ω, x)〉, 〈ζ, Bj(t, ω, x)〉) (25)

Bj(t, ω, x) = Dφ(y)〈ζ, Bj(t, ω, x)〉, ∀j, (26)

where y = 〈ζ, x〉, for all x ∈ U ∩M, for dt⊗ dP-a.e. (t, ω) ∈ R+ × Ω.
Consequently A is contiuous on U ∩M.

Proof. Point-wise equivalence of (3) and (26), and of (2) and the relation

Ax+ F (t, ω, x)− 1
2

∑
j

DBj(t, ω, x)Bj(t, ω, x)

= Dφ(y)〈ζ, Ax + F (t, ω, x)− 1
2

∑
j

DBj(t, ω, x)Bj(t, ω, x)〉 (27)

follows from Lemma A.6. Assume (2) and (3) – and hence (26) and (27) – hold
for dt ⊗ dP-a.e. (t, ω) ∈ R+ × Ω, for all x ∈ U ∩M. But both sides of (26) are
continuous in x by (A2). Hence there exists a dt ⊗ dP-nullset N ⊂ R+ × Ω, such
that (26) is true simoultaneously for all x ∈ U ∩M and (t, ω) ∈ N c.

Fix (t, ω) ∈ N c. In view of (A2) Proposition A.7 applies and the last summand
in (25) equals

1
2

∑
j

DBj(t, ω, x)Bj(t, ω, x)− 1
2
Dφ(y)〈ζ,

∑
j

DBj(t, ω, x)Bj(t, ω, x)〉.

Hence (25) holds for (t, ω, x) ∈ N c × (U ∩M) if and only if (27) does so.
It remains to show validity of (25) for all x ∈ U ∩M, for dt⊗ dP-a.e. (t, ω). We

abbreviate the right hand side of (25) to R(t, ω, x). Then it reads

Ax = −F (t, ω, x) +R(t, ω, x) (28)

for dt ⊗ dP-a.e. (t, ω), for all x ∈ U ∩M. But due to (A4) the right hand side
of (28) is continuous in x, see (6). Hence for any (countable) sequence xn → x in
U ∩M we have Axn → Ax, by the closedness of A. In other words A restricted to
U ∩M is continuous. This establishes the lemma.

Proof of Theorem 2. Define the stopping time τ0 := inf{t ≥ 0 | Xt /∈ M}. By
closedness of M and (A1) we have Xτ0 ∈M on {τ0 <∞}. We claim τ0 =∞.

Assume P[τ0 < K] > 0 for a number K ∈ N. By countability of the cov-
ering (Uk) there exists a parametrization φ : V → U ∩ M, satisfying (12) and
P[Xτ0 ∈ U and τ0 < K] > 0. Define the bounded stopping time τ1 := τ0 ∧K and
set Y0 := 〈ζ,Xτ1〉. Since φ ∈ C2

b (Rm;H), the Rm-valued, resp. L2(G0;Rm)-valued
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mappings

b(t, ω, y) := 〈A?ζ, φ(y)〉 + 〈ζ, F (τ1(ω) + t, ω, φ(y))〉
σ(t, ω, y) := 〈ζ, B(τ1(ω) + t, ω, φ(y))( . )〉
σj(t, ω, y) :=

√
λjσ(t, ω, y)ej = 〈ζ, Bj(τ1(ω) + t, ω, φ(y))〉

are bounded and globally Lipschitz in y on [0, T ]×Ω×Rm for all T <∞, which is
due to (A4). By Lemma 2.3 the process W̃t := Wτ1+t−Wτ1 is a Q-Wiener process
expanded by {β̃jt } given by (9). Hence the stochastic differential equation in Rm

Yt = Y0 +
∫ t

0

b(s, Ys) ds+
∑
j

∫ t

0

σj(s, Ys) dβ̃js (29)

has a unique continuous strong solution Y , see [6, Theorem 7.4].
Now P[Y0 ∈ V | τ0 < K] · P[τ0 < K] = P[Y0 ∈ V and τ0 < K] > 0 and the distri-

bution of Y0 under P[ . | τ0 < K] is regular. Hence by normality of Rm there exists
two open sets V0, V1 such that V 0 ⊂ V1 ⊂ V 1 ⊂ V and P[Y0 ∈ V 0 and τ0 < K] > 0.
Define the (F̃t)-stopping time

τ2 :=

{
inf{t ≥ 0 | Yt /∈ V1}, if Y0 ∈ V 0 and τ0 < K

0, otherwise.
(30)

Then by continuity of Y we have P[τ2 > 0] = P[Y0 ∈ V 0 and τ0 < K] > 0 and

Y ∈ V on [0, τ2] ∩ {τ2 > 0}. (31)

From the boundedness of b and σ we derive

E
[ ∫ t

0

(
‖b(s, Ys)‖Rm +

∑
j

‖σj(s, Ys)‖2Rm
)
ds
]
<∞, ∀t <∞. (32)

Set X̃ := φ ◦ Y . The assumptions of Lemma 4.1 are satisfied, hence

X̃t = Xτ1 +
∫ t

0

(
Dφ(Ys)b(s, Ys) +

1
2

∑
j

D2φ(Ys)(σj(s, Ys), σj(s, Ys))
)
ds

+
∑
j

∫ t

0

Dφ(Ys)σj(s, Ys) dβ̃js , on [0, τ2] ∩ {τ2 > 0},
(33)

where the series in the first integral converges point-wise and defines an H-valued
predictable process. Moreover by (31) we have

X̃ ∈ (U ∩M) ⊂ D(A) on [0, τ2] ∩ {τ2 > 0}. (34)

Hence due to (A2) and (A4) Lemma 5.1 applies and

AX̃t + F (τ1 + t, X̃t) = Dφ(Yt)b(t, Yt) +
1
2

∑
j

D2φ(Yt)(σj(t, Yt), σj(t, Yt))

Bj(τ1 + t, X̃t) = Dφ(Yt)σj(t, Yt), ∀j,
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on [0, τ2] ∩ {τ2 > 0}, dt⊗ dP-a.s. This together with (32) and (33) implies

P
[ ∫ t∧τ2

0

‖AX̃s‖H ds <∞
]

= 1, ∀t <∞

X̃t∧τ2 = Xτ1 +
∫ t∧τ2

0

(
AX̃s + F (τ1 + s, X̃s)

)
ds+

∑
j

∫ t∧τ2

0

Bj(τ1 + s, X̃s) dβ̃js ,

on {τ2 > 0}. On the other hand we know by Lemmas 2.3 and 2.5 that Xτ1+t is the
unique continuous weak solution to dZt = (AZt + F (τ1 + t, Zt)) dt+

∑
j

Bj(τ1 + t, Zt) dβ̃j t

Z0 = Xτ1

Whence X̃t = Xτ1+t on [0, τ2]∩{τ2 > 0}. Because of (34) in particular Xτ1+τ2 ∈ M.
But by construction {τ0 < K} = {τ0 < K} ∩ {τ0 = τ1} and

0 < P[τ2 > 0] ≤ P[{τ1 + τ2 > τ1} ∩ {τ0 < K}] ≤ P[τ1 + τ2 > τ0],

which is absurd. Hence τ0 =∞.
The last statement of the theorem follows from Lemma 5.1 and (A2).

Proof of Theorem 3. i)⇒ii): Fix (t0, x0) ∈ R+ ×M and denote by X = X(t0,x0) a
continuous local weak solution to (11) with lifetime τ . We proceed as in the proof
of Theorem 1 and adapt the notation. Define the F (t0)

t -stopping time T1 > 0 with
the property that Xt∧τ ′ takes values in Uα(0) for τ ′ := τ ∧ T1. Analogously to (20)
we derive the equality

〈A?ξ,Xt〉 =
〈
ξ,− F (t0 + t,Xt) +Dφ(Yt)

(
〈A?ζ,Xt〉+ 〈ζ, F (t0 + t,Xt)〉

)
+

1
2

∑
j

D2φ(Yt)(〈ζ, Bj(t0 + t,Xt)〉, 〈ζ, Bj(t0 + t,Xt)〉)
〉
,

(35)

for all ξ ∈ D(A?) on [0, τ ′], dt⊗ dP-a.s. Due to (A4) and (A5) both sides of (35)
are right continuous in t. Hence for P-a.e. ω the limit t ↓ 0 exists. By (6) we can
interchange the limiting t ↓ 0 with the summation over j. Arguing as for (21) we
conclude that x0 ∈ D(A) and

Ax0 + F (t0, ω, x0) = Dφ(y0)
(
〈A?ζ, x0〉+ 〈ζ, F (t0, ω, x0)〉

)
+

1
2

∑
j

D2φ(y0)(〈ζ, Bj(t0, ω, x0)〉, 〈ζ, Bj(t0, ω, x0)〉), P-a.s.

Similarly

Bj(t0, ω, x0) = Dφ(y0)〈ζ, Bj(t0, ω, x0)〉, ∀j, P-a.s.

Since (t0, x0) was arbitrary, Lemma 5.1 yields condition ii).
ii)⇒i): Let (t0, x0) ∈ R+ ×M and let φ : V → U ∩M be a parametrization in

x0 satisfying (12). As in the proof of Theorem 2 (setting τ0 = τ1 = 0) we get a
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unique continuous strong solution Y to

Yt = 〈ζ, x0〉+
∫ t

0

(
〈A?ζ, φ(Ys)〉+ 〈ζ, F (t0 + s, φ(Ys))〉

)
ds

+
∑
j

∫ t

0

〈ζ, Bj(t0 + s, φ(Ys))〉 dβ(t0),j
s .

Here β(t0),j
t := βjt0+t − β

j
t0 is the sequence of (F (t0)

t )-Brownian motions related to
W

(t0)
t by (9). The stopping time τ2 given by (30) is strictly positive and Yt∧τ2 ∈ V .

Analysis similar to that in the proof of Theorem 2 shows that X(t0,x0)
t := (φ◦Y )t∧τ2

is a continuous local strong solution to (11) with lifetime τ2 and X(t0,x0)
t ∈ U ∩M,

for all t <∞.
ii)⇔iii): This is a direct consequence of Lemma 5.1 and (A5).

Proof of Theorem 4. In view of Proposition A.5 we can choose any parametrization
φk in (12) such that D2φk ≡ 0 on Vk. By straightforward inspection of the proofs
we see that Lemma 5.1 and Theorems 2 and 3 remain valid under the conditions
stated in the theorem.

6. Consistent HJM models

We shall briefly sketch how the theorems in Section 3 can be applied to the HJM
models. See [3], [17] and [10] for more details.

Fix α > 3. In [10] we introduce the appropriate model Hilbert space Hα, con-
sisting of weakly differentiable functions h : R+ → R and equipped with norm

‖h‖2α := |h(0)|2 +
∫
R+

|h′(η)|2 (1 + η)α dη.

Let A be the generator of the shift semigroup S(t)h(η) = h(η+ t) in Hα. Then the
stochastic evolution of the forward rate curve {Xt(η) | η ∈ R+} can be modeled by
equation (1), where F and B satisfy the HJM condition

F (t, ω, x)(·) =
∑
j

Bj(t, ω, x)(·)
∫ ·

0

Bj(t, ω, x)(η) dη. (36)

Hence any good choice of B yields an HJM model.
In practice, daily observations of the forward rate curve are provided by para-

metrized families G = {G(·, z) | z ∈ Z} of smooth curves in Hα, for a parameter
set Z ⊂ Rm. See [3] for concrete examples. If G is regular enough, we can check
whether any HJM model is consistent with G: combining the consistency conditions
(2) and (3) in local coordinates with the HJM condition (36) yields an algebraic
relation between G and Bj , which can be quite restrictive.

Widely used fitting procedures are the exponential-polynomial families. Their
consistency with HJM models has been discussed for constant Bj in [3] and for
general Bj in [9] and [8]. In the latter case however we started with a generic Z-
valued Itô process Z, which we inserted in (4). Problem ii) in Section 1, asserting
the generality of that approach, left open and is now clarified by the present results.
It turns out that – despite their popularity – exponential-polynomial families do
not go very well with HJM models.
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Appendix A. Finite dimensional submanifolds in Hilbert spaces

In this section we discuss and prove some crucial properties of finite dimensional
submanifolds in Hilbert spaces. Let E be a Hilbert space. For a direct sum de-
composition E = E1 ⊕ E2 we denote by Π(E2,E1) the induced projection onto E1.
Notice that in general Π(E2,E1) is by no means orthogonal.

First we summarize some well known facts about finite dimensional submanifolds
in E, see [1] for the general theory. For a detailed presentation we refer the reader
to [10]. Let k,m ∈ N. The following definition straightly extends the concept of a
regular surface in R3.

Definition A.1. A subset M ⊂ E is an m-dimensional Ck submanifold of E, if
for all x ∈M there is a neighborhood U in E, an open set V ⊂ Rm and a Ck map
φ : V → E, such that

i) φ : V → U ∩M is a homeomorphism
ii) Dφ(y) is one to one, for all y ∈ V .

The map φ is called a parametrization in x.
M is a linear submanifold, if for all x ∈M there exists a linear parametrization

of the form φ(y) = x+
∑m

i=1 yiei in x.

In what follows, M denotes an m-dimensional Ck submanifold of E. By the
Inverse Mapping Theorem, see [1, Theorem 2.5.12], one shows that M shares in
fact the characterizing property of a Ck manifold. That is, the change of parameters
is a Ck diffeomorphism. Therefore the following concept is well defined.

Definition A.2. For x ∈ M the tangent space to M at x is the subspace

TxM := Dφ(y)Rm, y = φ−1(x),

where φ : V ⊂ Rm →M is a parametrization in x.

It will be useful to extend a parametrization to the whole of Rm. Let x ∈ M
and φ : V → U ∩ M be a parametrization in x. Set y = φ−1(x). Since V is a
neighborhood of y there exists ε > 0 such that the open ball

B2ε(y) := {v ∈ Rm | |y − v| < 2ε}
is contained in V . On B2ε(y) one can define a function ψ ∈ C∞(Rm; [0, 1]) satisfying
ψ ≡ 1 on Bε(y) and supp(ψ) ⊂ B2ε(y), see [5, Theorem (5.1), Chapt. II]. Since φ is a
homeomorphism there exists a neighborhood U ′ of x in E with φ(Bε(y)) = U ′∩M.
Set φ̃ := ψφ. Then φ̃ ∈ Ckb (Rm;E) and φ̃|Bε(y) = φ|Bε(y) : Bε(y) → U ′ ∩M is a
parametrization in x. We have thus shown

Remark A.3. We may and will assume that any parametrization φ : V → U ∩M
extends to φ ∈ Ckb (Rm;E).

Let x ∈ M. Then TxM is spanned by some orthonormal set {e1, . . . , em}. The
following lemma is well known. Geometrically speaking, it says that locally in x,
the orthogonal projection of M onto TxM is a diffeomorphism. For a proof we
refer to [10].

Lemma A.4. There exists a parametrization φ : V → U ∩M in x such that

φ(〈e1, z〉, . . . , 〈em, z〉) = z, ∀z ∈ U ∩M.

The following result is crucial for our discussion on weak solutions to stochastic
equations which are viable in M.
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Proposition A.5. Let D ⊂ E be a dense subset. Then for any x ∈M there exist
elements ζ1, . . . , ζm in D and a parametrization φ : V → U ∩M in x such that

φ(〈ζ1, z〉, . . . , 〈ζm, z〉) = z, ∀z ∈ U ∩M.

If M is linear, then φ is linear: φ(v) = e0 +
∑m
i=1(

∑m
j=1 Nijvj)ei, for v ∈ V .

Proof. The idea is to find a decomposition E = E1 ⊕ E2, such that E1 is “not
too far” from TxM and such that E1 = span{ζ1 . . . , ζm} with ζ1 . . . , ζm ∈ D. The
expression “not too far” means that Π(E2,E1)|TxM : TxM→ E1 is an isomorphism.

Let {e1, . . . , em} be an orthonormal basis for TxM and let ψ : V1 → U1 ∩M the
parametrization in x given by Lemma A.4. Set y = ψ−1(x). Since D is dense in E,
there exist elements ζ1, . . . , ζm in D with ‖ζi − ei‖E < 2−m. Hence

|〈ζi, ej〉| ≤ |〈ei, ej〉|+ |〈ζi − ei, ej〉| < 2−m, if i 6= j

and

|〈ζi, ei〉| ≥ |〈ei, ei〉| − |〈ζi − ei, ei〉| > 1− 2−m.

The matrix M := (〈ζi, ej〉)1≤i,j≤m is therefore invertible, which follows from the
theorem of Gerschgorin, see [15]. Consequently the family {ζ1, . . . , ζm} is linearly
independent in E. Define E1 := span{ζ1, . . . , ζm} and let E2 be its orthogonal
complement. Since

Π(E2,E1)ej =
m∑
i=1

Mijfi, for 1 ≤ j ≤ m,

we see that Π(E2,E1)|TxM : TxM → E1 is an isomorphism. Let IE1 : E1 → Rm
denote the canonical isomorphism IE1 := (〈ζ1, ·〉, . . . , 〈ζm, ·〉). Then the map h :=
IE1 ◦ Π(E2,E1) ◦ ψ : V1 → Rm is Ck and Dh(y) = IE1 ◦ Π(E2,E1) ◦ Dψ(y) is one
to one. By the Inverse Mapping Theorem there exist neighborhoods W ⊂ V1 of y
and V ⊂ Rm of h(y) such that h : W → V is a Ck diffeomorphism. Since ψ is a
homeomorphism there is a neighborhood U ⊂ E of x with ψ(W ) = U ∩M. The
map φ := ψ ◦ h−1 : V → U ∩M is then the desired parametrization in x, that is
φ−1 = IE1 ◦Π(E2,E1) on U ∩M.

If M is linear, we choose ψ(u) = x +
∑m

i=1 uiei. An easy computation shows
that φ(v) = (x − (Π(E2,E1)|TxM)−1 ◦ Π(E2,E1)x) +

∑m
i=1(

∑m
j=1 M

−1
ij vj)ei. Setting

N := M−1 and e0 := x− (Π(E2,E1)|TxM)−1 ◦Π(E2,E1)x completes the proof.

The proof of Proposition A.5 asserts the existence of a particular parametrization
φ : V → U ∩M in x ∈ M related to the decomposition E = E1 ⊕E2. Actually E2

is complemented in E simultaneously by all tangent spaces TzM, z ∈ U ∩M.

Lemma A.6. Let φ : V → U ∩M be a parametrization. If there exist elements
ζ1, . . . , ζm in E with the property that

φ(〈ζ1, x〉, . . . , 〈ζm, x〉) = x, ∀x ∈ U ∩M,

then ζ1, . . . , ζm are linearly independent in E and

E = TxM⊕ E2, ∀x ∈ U ∩M,

where E2 is the orthogonal complement of span{ζ1, . . . , ζm}. Moreover the induced
projections are given by

Π(E2,TxM) = Dφ(y)(〈ζ1, ·〉, . . . , 〈ζm, ·〉), y = φ−1(x), ∀x ∈ U ∩M. (37)
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Proof. Define Λ := (〈ζ1, ·〉, . . . , 〈ζm, ·〉) ∈ L(E;Rm). Fix x ∈ U ∩M and let y =
φ−1(x). By assumption Λ ◦ φ(v) = v on V , therefore Λ ◦Dφ(y) = IdRm . It follows
that Λ|TxM : TxM→ Rm is an isomorphism. Consequently ζ1, . . . , ζm are linearly
independent in E.

Another consequence is that Λ : E → Rm is onto. Now the map Π := Dφ(y) ◦Λ
satisfies (i) Π ∈ L(E), (ii) N (Π) = N (Λ) = E2, (iii) R(Π) = TxM and (iv) Π2 = Π,
hence E = TxM⊕E2 and Π is the corresponding projection. Since x ∈ U ∩M was
arbitrary, this completes the proof.

Finally we derive a result which will prove crucial for Itô calculus on submani-
folds. In the remainder of this section we assume M to be a C2 submanifold. Let
B ∈ C1(E) have the property that

B(x) ∈ TxM, ∀x ∈M.

Fix x ∈ M and let φ : V → U ∩M be a parametrization in x. Set y = φ−1(x). For
δ > 0 small enough, the curve c : (−δ, δ)→ U ∩M

c(t) := φ(y + tDφ(y)−1B(x)), t ∈ (−δ, δ),
is well defined and satisfies c ∈ C1((−δ, δ);E), c(0) = x and c′(0) = B(x). Hence

d

dt
B(c(t))|t=0 = DB(x)B(x). (38)

Suppose now that φ satisfies the assumptions of Lemma A.6. To shorten notation,
we write 〈ζ, ·〉 instead of (〈ζ1, ·〉, . . . , 〈ζm, ·〉). By (37)

B(c(t)) = Dφ(〈ζ, c(t)〉)〈ζ, B(c(t))〉, ∀t ∈ (−δ, δ).
Differentiation with respect to t gives

d

dt
B(c(t))|t=0 = D2φ(y)(〈ζ, B(x)〉, 〈ζ, B(x)〉) +Dφ(y)〈ζ,DB(x)B(x)〉. (39)

Combining (37), (38) and (39) we get the following proposition.

Proposition A.7. Let M, B and φ : V → U ∩M be as above. Then

DB(x)B(x) = Dφ(y)〈ζ,DB(x)B(x)〉 +D2φ(y)(〈ζ, B(x)〉, 〈ζ, B(x)〉),
y = φ−1(x), is the decomposition according to E = TxM⊕ E2, for all x ∈ U ∩M.
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