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Abstract

In this paper we elaborate on Swiss Solvency Test (SST) consistent
group diversification effects via optimizing the web of capital and risk
transfer (CRT) instruments between the legal entities. A group level SST
principle states that subsidiaries can be sold by the parent company at
their economic value minus some minimum capital requirement. In a nu-
merical example we examine the dependence of the optimal CRT on this
minimum capital requirement. Our findings raise the question of how to
actually implement this group level SST principle and how to define the
respective level of minimum capital requirements, in particular.

Key words: Convex Optimization, Group Diversification, Minimum
Capital Requirement, Swiss Solvency Test

1 Introduction

The Swiss Solvency Test (SST) provides a consistent framework both for le-
gal entity and group solvency capital requirements. The underlying reference
methodology has recently been outlined in a working paper [2]. This method-
ology relies on a set of principles which are summarized in stylized form below:

(i) An insurance group is composed of different legal entities (parent company
and subsidiaries) which are potentially supervised by different regulators
or unregulated, and a web of legally binding capital and risk transfer
(CRT) instruments between these legal entities.

(ii) The calculation of available and required capital of a regulated entity
has to include the CRT instruments and interdependencies with all other
group entities.
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(iii) Group diversification effects only exist due to the web of CRT instruments.

(iv) Subsidiaries can be sold by the parent company at their economic value
(available capital) minus some minimum capital requirement1. Owning a
subsidiary is in this sense a fungible2 value.

Examples of risk transfer instruments are intra-group retrocession, securi-
tization of future cash flows, guarantees and other contingent capital solutions
while capital transfer instruments are for example cash-bonds or dividends.

The above principles go well with the bottom-up3 framework for group di-
versification via optimal legally enforceable CRTs that we developed in [4]. The
aim of this paper is to elaborate on the common methods in [4] and the group
level SST. For this purpose, we formalize the above group level SST principles.

In a first step, a common set of legally binding CRT instruments is iden-
tified. The risk management’s objective is then to minimize the group capital
requirements by an optimal choice of the CRT. This leads to a well-posed convex
optimization problem. The first order conditions induce a consistent valuation
principle (compatible with any prior valuation principle) for CRT instruments.

We then distinguish a particular optimal (“equilibrium”) CRT which does
not affect the entities’ individual available capitals, and which is fair in the
sense that no lower than the group level of diversification can overturn the
diversification benefit of the entire group. Due to the bottom-up approach, an
extra capital allocation step is not necessary. In fact, in the context of the
optimized capital and risk structure, the allocated capital is just given by the
individual entity’s required capital.

It turns out that the definition of the minimum capital requirement in Prin-
ciple (iv) has a strong impact on the optimal CRT and the respective group
diversification effects. Indeed, in a numerical example we show that if the mini-
mum capital requirement is defined as market value margin (or cost of capital),
as proposed in [2], then Principle (iv) dominates the effect of any other CRT. In
fact, almost the fully consolidated diversification effect is obtained. This raises
the question of how to implement, or modify, Principle (iv). We propose that,
in any case, the minimum capital requirement in Principle (iv) be distinguished
from the market value margin.

The remainder of the paper is as follows. Section 2 contains the formal prob-
abilistic setup for the group capital structure (available capital). In Section 3 we
discuss the solvency capital requirement (required capital) from different points
of view: stand alone and non diversified, fully consolidated, and SST compat-
ible via CRTs, which formalizes the above group level SST Principles (i)–(iv).
Section 4 contains the main results. We characterize optimal CRTs and show
how to find them by solving a well-posed convex optimization problem. In Sec-
tion 5 we illustrate our findings by a concrete example and elaborate on the

1In the SST [2] framework, this is the “market value margin” or “cost of capital”
2Fungibility in this context refers to the ability to convert assets into cash or other forms

of capital which can be transferred. In general, lack of fungibility has to be taken into account
in the SST calculations.

3“Bottom-up” here means based on the risk assessments on a legal entity level.
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impact of the minimum capital requirement on the optimal CRT. We conclude
by Section 6. The Appendix (Sections A–C) contains some notation and facts
from convex analysis and the proofs of our theorems.

2 Group Capital Structure

We consider an insurance group consisting of m + 1 legal entities: the parent
company (entity 0) and m subsidiaries (entities 1, . . . ,m). Values at the be-
ginning of the accounting year are deterministic and denoted by small letters.
Values at the end of the accounting year are random and denoted by capital
letters. We model this randomness, or risk, with the space of integrable random
variables L1 on a probability space (Ω,F , P). We assume that all values are
already discounted by the prevailing risk free rate.

The current available capital (value of asset-liability portfolio) of entity i is
defined as

ci = ai − `i

where ai and `i denote the value of assets and best estimate of liabilities, re-
spectively. The terminal value of the asset-liability portfolio of entity i is given
as

Vi = Ai − Fi − Li (1)

where Ai and Li denote the terminal value of assets and best estimate of lia-
bilities, respectively, and Fi denotes the claims payments during the accounting
year. As in [4] we assume a linear valuation principle V : L1 → R such that

ci = V(Vi) (2)

for all entities i.

Remark 2.1. In view of Principle (iv), owning the subsidiaries is an asset
for the parent company. But to avoid double counting, we assume that a0

and A0 are net of the value of owning the subsidiaries. We do, however, take
Principle (iv) into account for the realizable distribution of terminal available
capital in (7) and (8) below. See also Remark 3.2

3 Required Capital

The SST risk measure is the expected shortfall ES on the confidence level of
99%. The stand alone solvency requirement for entity i is

ES(Vi −mvmi) ≤ 0 (3)

where mvmi denotes the market value margin (or cost of capital, see [1]) that
is needed at the end of the accounting year to assure the run-off of the asset-
liability portfolio. Put (3) in words: the risk of missing the market value margin
(Vi < mvmi) is acceptably low.
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The calculation of mvmi is part of the solo SST. Hence we can assume that
mvmi is a given deterministic parameter. The stand alone required capital (or
target capital) for entity i accordingly is

kstal,i = ES(Vi −mvmi − ci) = ES(Vi) + mvmi + ci. (4)

This results in a non diversified group required capital on a stand alone basis of

kstal =
∑

i

kstal,i. (5)

Remark 3.1. The required capital as an indicator for the risk profile has to be
considered with respect to the available capital. Indeed, suppose the available
capital is increased by adding assets to its portfolio. In absolute terms, this
certainly improves the financial strength for backing the liabilities. And yet,
due to the riskiness of the additional assets, the required capital increases too.
Hence optimizing the risk profile subject to regulatory requirements amounts to
minimize the difference between required and available capital. This approach
is taken up below.

3.1 Consolidated View

Under a fully consolidated view (one group balance sheet, assuming full fungibil-
ity of capital) the group solvency requirement would be ES (

∑
i Vi −mvmi) ≤ 0,

and the fully diversified group required capital would amount to

kcons = ES

(∑
i

Vi −mvmi − ci

)
= ES

(∑
i

Vi

)
+
∑

i

(mvmi + ci). (6)

In particular, the consolidated group market value margin is given as sum of
the respective stand alone margins mvmi.

Combining (4) and (6), we obtain a (hypothetical) consolidated relative di-
versification effect of

bcons = 1− kcons

kstal
.

However, this approach is not in line with regulatory practice! According to
Principle (iii) of the group level SST, group diversification effects can only be
realized via legally binding CRTs.

3.2 CRT View

In view of Principle (iv), the surplus (Vi−mcri)+ of subsidiary i exceeding the
minimum capital requirement mcri is the maximal amount of capital which is
fungible and can be transferred to the parent company. The gross4 available

4That is, ingnoring the contingent CRT cash flows to be defined below in (10).
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capitals of the parent company and its subsidiaries, respectively, become

C0 = V0 +
m∑

i=1

(Vi −mcri)+ (7)

Ci = min{Vi,mcri}, i = 1, . . . ,m. (8)

We assume in the sequel that mcri is a deterministic parameter which can be
determined according to some SST guidelines.

Remark 3.2. In accordance to (7), the value of owning subsidiary i becomes
V((Vi −mcri)+). In view of Principle (iv), this value could be counted towards
the assets of the parent company, a0. But then, to avoid double counting of
capital, ai would have to be reduced by the same amount, lowering the rating
of subsidiary i substantially! This would not be in line with a going concern.

Anyhow, due to the cash-invariance of ES, the group capital requirement
does not depend on the initial allocation of available capital. Indeed, the group
management may redistribute current available capital across the group in order
to increase the rating of its subsidiaries. For example, transferring 100 m euro
risk free cash from the parent company to subsidiary 1, increases the subsidiary’s
available capital by 100 m euro (and reduces the parent company’s by 100 m
euro) without changing its required capital.

In view of Principle (i), we can assume that a well defined set of CRT
instruments exists, with future contingent values modelled by some linearly
independent random variables Z0, Z1, . . . , Zn in L1. We also assume that cash is
fungible between the entities as long as the payments at the end are determined
at the beginning of the accounting year. This is expressed by letting Z0 ≡ 1
denote the payoff of a cash-bond.

Formally, a CRT is a matrix x = (xj
i ) in R(m+1)×(n+1) satisfying the clearing

condition ∑
i

xj
i = 0, j = 0, . . . , n, (9)

which yields the following realizable distribution of available capital across the
entities

CCRT,i = Ci +
∑

j

xj
iZj , i = 0, . . . ,m. (10)

The objective of the group (see Remark 3.1) is to minimize the difference
between required and available capital, hence to find an optimal CRT x̂ which
solves the optimization problem

min
(x0,...,xm)

∑
i

ES

Ci +
∑

j

xj
iZj

 (11)

subject to the clearing condition (9). The resulting group capital requirement
becomes

kCRT =
∑

i

kCRT,i

5



with

kCRT,i = ES(CCRT,i −mvmi − ci) = ES(CCRT,i) + mvmi + ci. (12)

Notice that kCRT,i obtained in (12) can be interpreted as the capital allocated
to entity i. Hence, in our framework, we do not need an exogenous capital
allocation method. In fact, we will show in Theorem 4.4 below that this capital
allocation is fair in some specific sense.

The realizable relative diversification effect becomes

bCRT = 1− kCRT

kstal
.

Benchmark is the consolidated diversification effect bcons. From theory (subaddi-
tivity of ES) we already know that bCRT ≤ bcons. The goodness of our approach
below will be measured by how small we can make the difference bcons − bCRT.

4 Optimal CRTs

We now formalize the proposed framework and introduce the functions

ui(x) := ES

Ci +
∑

j

xjZj

 , (13)

for x = (x0, . . . , xn) ∈ Rn+1 and i = 0, . . . ,m. Note that ui is finite-valued
since, by assumption, all random variables considered are in L1.

As a consequence, we can express the constrained (m + 1)× (n + 1)-dimen-
sional optimization problem (11), subject to (9), as follows

minP
i xi=0

∑
i

ui(xi). (14)

Coherence of ES implies that ui is convex and “cash-invariant”

ui(x + re0) = ui(x)− r, ∀r ∈ R, (15)

where e0 = (1, 0, . . . , 0), e1, . . . , en denotes the standard basis on Rn+1. Hence
∂ui/∂x0 = −1. To simplify the subsequent discussion5, we assume that every

ui is differentiable on Rn+1. (16)

Adding long (assets) or short (liabilities) positions in the CRT instruments to
the portfolio (10) also changes its current value (available capital). To determine
the available and required capital therefore one needs to know the value of
adding positions in Z0, . . . , Zn. We assume that such value is given by a linear
indifference valuation principle as follows. Let xi ∈ Rn+1 represent the portfolio

5The following results also hold without this technical assumption, see [4].
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(10) of entity i. We call the linear functional V : L1 → R an indifference
valuation principle for entity i with respect to xi if adding positions z ∈ Rn+1 to
xi is less optimal (that is, requires more capital) than adding the value equivalent
cash amount of ∑

j

zjV(Zj) = p · z,

where the value vector p = p(V) ∈ Rn+1 is defined as pj := V(Zj), and · denotes
the scalar product. Formally, this means

ui(xi + z) ≥ ui(xi + (p · z)e0) ∀z ∈ Rn+1. (17)

From (17) and the cash-invariance property (15) we derive:

Lemma 4.1. V is an indifference valuation principle for entity i with respect
to xi if and only if

p = −∇ui(xi). (18)

In particular, we then have p · e0 = p0 = 1. Hence the value of a unit of cash is
one.

Proof. Cash-invariance (15) and (17) imply

ui(xi + z) ≥ ui(xi)− p · z ∀z ∈ Rn+1.

Hence −p ∈ ∂ui(xi) is a subgradient of ui at xi. Since, by assumption (16), ui

is differentiable at xi, it thus follows that −p = ∇ui(xi), see Section A. The
last statement follows again from the cash-invariance (15).

Consistent valuation across the entities therefore can only take place at CRTs
(x0, . . . , xm) where ∇u0(x0) = · · · = ∇um(xm). It turns out that this is just
the first order condition for the optimization problem (14).

Theorem 4.2. Let (x̂0, . . . , x̂m) satisfy the clearing condition (9). The follow-
ing are equivalent:

(i) (x̂0, . . . , x̂m) is a minimizer for (14);

(ii) ∇u0(x̂0) = · · · = ∇um(x̂m);

(iii) (x̂j
i , i = 1, . . . ,m, j = 1, . . . , n) ∈ Rm×n is a minimizer for the uncon-

strained m× n-dimensional convex optimization problem

min
(xj

i )∈Rm×n

(
u0

(
0,−

m∑
i=1

x1
i , . . . ,−

m∑
i=1

xn
i

)
+

m∑
i=1

ui(0, x1
i , . . . , x

n
i )

)
,

(19)
and x̂j

0 = −
∑m

i=1 x̂j
i .
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Remark 4.3. Note that a minimizer for (14) is never unique: due to cash-
invariance (15), rebalancing the cash x0

i 7→ x0
i +ri, for any transfer with

∑
i ri =

0, does not alter the aggregated capital requirements, as∑
i

ui(xi) =
∑

i

ui(xi + rie0).

Among the optimal CRTs there is a distinguished one:

Theorem 4.4. Let (x̂0, . . . , x̂m) be a minimizer for (14), and unambiguously
denote p = −∇ui(x̂i). Then xi := x̂i − (p · x̂i)e0 defines an optimal CRT which
is also individually optimal in the sense that

p · xi = 0 and min
p·z=0

ui(z) = ui(xi), (20)

for all entities i = 0, . . . ,m. Moreover, it is fair in the sense that∑
i∈I

ui(xi) ≤ minP
i∈I xi=0

∑
i∈I

ui(xi) (21)

for every level of diversification I ⊂ {0, . . . ,m}.

In view of (21) we may interpret

kCRT,i = ui(xi) + mvmi + ci, i = 0, . . . ,m (22)

as a fair capital allocation, as announced in Section 3.2 above.

Remark 4.5. In economic theory, the allocation (xi) satisfying (20) is called
an equilibrium, see [4].

Remark 4.6. Property (20) says in particular that the net value of the equi-
librium CRT xi is zero under the valuation principle p for every entity i. Hence
it does not affect the current available capital, and is thus distinguished.

Strictly speaking, in order that p be consistent with any prior linear valuation
principle (2), we have to assume that Vi does not lie in the linear span of
Z0, . . . , Zn, for all entities i. Since in this case, we are indeed free to specify
V(Zj) to be equal to pj , for all j = 0, . . . , n. This assumption is realistic, as in
general the initial asset-liability portfolio of entity i is more diverse than any
portfolio consisting solely of the CRT instruments.

Remark 4.7. There is empirical evidence that insurance companies price CRT
instruments based on (risk measure) equilibrium valuation principles, such as
the present one. Indeed, using date from the U.S. property-liability industry,
Cummins et al. [3] provide empirical tests which strongly support the theoret-
ical prediction that prices of illiquid, imperfectly hedgeable intermediated risk
products should depend upon firm capital structure, the covariability of the
risks with the firms’s other projects, and their marginal effects on the firm’s
insolvency risk.

As for the existence of an optimal CRT, we quote Corollary 7.2 in [4]:

Theorem 4.8. A minimizer for (14) always exists.
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5 Example

For illustration we consider an insurance group consisting of the parent company
and m = 1 subsidiary6. The current capital structure is

i ai `i ci

0 8 6 2
1 4 3 1.

Hence the parent company is twice the subsidiary in size. For simplicity, we
summarize Fi and Li in one variable, denoted Li, so that (1) reads Vi = Ai−Li.
For i = 0, 1, we model Ai normal and Li log-normal as

Ai = ai (1 + µ + σAWA)

Li = `i exp
(
σLWLi

− σ2
L/2

)
with asset return7 µ = 0.01 and volatility σA = 0.02, log-liability standard
deviation σL = 0.08, and W = (WA,WL0 ,WL1) a three dimensional standard8

normal distributed vector. Hence the asset returns for parent company and
subsidiary are perfectly correlated, while their liabilities are independent.

The SST field tests [1] have shown that the market value margin mvmi

ranges between 10% and 60% of the one year risk capital ci + ES(Vi). Consis-
tently with these empirical facts, we set

mvmi = 0.4× (ci + ES(Vi)), i = 0, 1.

The minimum capital requirement mcri will vary as a multiple qmcr ≥ 0 of
the stand alone one year required capital:

mcri = qmcr × (ci + ES(Vi)), i = 0, 1. (23)

An interesting indicator is the probability

pdefault = P[V1 < mcr1]

that the subsidiary defaults on the minimum capital requirement, see (7)–(8).
As CRT instrument we use quota share retrocession. The subsidiary can

cede a proportion of its liabilities to the parent company, that is, we set

Z0 = 1 and Z1 = L1.

The optimal quota follows by minimizing the group required capital (14).
Using Matlab with 106 sample points for W , we obtain the following stand

alone and consolidated numbers, respectively:

kstal,0 = 1.4× 1.3807 = 1.933, kstal,1 = 1.4× 0.693 = 0.970,

kstal = 2.903, kcons = 2.372, bcons = 0.183.
(24)

6This can also be interpreted as all subsidiaries summarized by a representative one.
7All values are already discounted by the prevailing risk free rate.
8That is, its coordinates are mutually independent.
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The CRT figures are determined for varying minimum capital requirement (23),
by numerically solving the unconstrained 1-dimensional convex optimization
problem (19). The results are as follows:

Figure 1 shows the non monotonic dependence of the group required capital
kcons and the equilibrium value p1 of the CRT instrument Z1 = L1 on the
minimum capital requirement factor qmcr. The maximal group required capital
of 2.594 is attained at qmcr = 1.2. On the other hand, for qmcr ≤ 0.4 we
obtain almost the fully consolidated diversification effect, see also Figure 3.
The minimal equilibrium value p1 of 3.19 is attained at qmcr = 1.5, which is still
greater than the best estimate `1 = E[L1] = 3 of L1. The positive difference
p1 − `1 equals the risk premium that the subsidiary is willing to pay for ceding
a part of its liability risk to the parent company.

[Insert Figure 1 about here]

Figure 2 shows the dependence of the equilibrium capital allocation kCRT,0+
kCRT,1 = kCRT, see (22), on the minimum capital requirement factor qmcr. The
required capital kCRT,0 of the parent company attains its maximum of 1.85 at
qmcr = 1.6.

[Insert Figure 2 about here]

Figure 3 shows the non monotonic dependence of the relative diversification
effect bCRT on the minimum capital requirement factor qmcr. The worst relative
diversification effect of 0.106 is attained at qmcr = 1.2. For qmcr ≤ 0.4, we have
bCRT ≥ 0.180, hence almost the fully consolidated relative diversification effect
(24), which is due to the very small default probability pdefault, see Figure 4.

[Insert Figure 3 about here]

Figure 4 shows the dependence of the optimal CRT x̂1
1 (in the figure denoted

by “x”) and the default probability pdefault on the minimum capital requirement
factor qmcr. Obviously, both variables are increasing. As for the optimal CRT,
we obtain that x̂1

1 → 0.878 for qmcr →∞. On the other hand, we observe that
x̂1

1 ≈ 0 (up to 5 digits) for qmcr ≤ 0.4. This is associated with very small default
probabilities of pdefault ≤ 0.003 for qmcr ≤ 0.4. Hence the effect of Principle (iv)
is essentially equivalent to a fully consolidated view if the minimum capital
requirement is defined as (small as) the market value margin. Is this reasonable?
We propose that, in any case, the minimum capital requirement in Principle (iv)
be distinguished from the market value margin.

[Insert Figure 4 about here]

Note that omitting Principle (iv) is equivalent to setting qmcr = ∞. From
Figure 3 we see that a minimum capital requirement of qmcr = 0.8 yields ap-
proximately the same diversification effect via CRTs as if Principle (iv) were
omitted.
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6 Conclusion

We have formally implemented the stylized principles of the group level SST.
We assumed that the risk management’s objective is to minimize the group
capital requirements by optimizing the web of CRT instruments between the
entities. This led to a well-posed convex optimization problem. As byproducts
we obtained a consistent valuation principle for the CRT instruments and a fair
(equilibrium) capital allocation.

In a numerical example we have elaborated on how the optimal CRT and
the respective group diversification effect depend on the minimum capital re-
quirement in SST Principle (iv). It turned out that the effect of Principle (iv)
is essentially equivalent to a fully consolidated view if the minimum capital re-
quirement is defined as (small as) the market value margin. This raises the
question of how to actually implement, or modify, Principle (iv). In any case,
the minimum capital requirement in Principle (iv) should be distinguished from
the market value margin. A systematic study is beyond the scope of this paper.
We recommend that this aspect be further discussed in the Solvency 2 process.

A Some Facts from Convex Analysis

The following proofs rely on general principles in convex analysis, which can be
found e.g. in [5]. Let f : Rd → (−∞,+∞] be a lower semi-continuous convex
function. Its conjugate,

f∗(q) := sup
x∈Rd

(q · x− f(x)),

is again a lower semi-continuous convex function f∗ : Rd → (−∞,+∞], and
f∗∗ = f (see Theorem 12.2 in [5]). The effective domain of f is defined as

dom(f) = {q | f(q) < ∞}.

The subgradients of f form a (possibly empty) convex set

∂f(x) =
{
q ∈ Rd | f(x + z) ≥ f(x) + q · z ∀z ∈ Rd

}
,

and are characterized by

q ∈ ∂f(x) ⇔ f(x) + f∗(q) = q · x, (25)

see Theorem 23.5 in [5]. Furthermore, ∂f(x) consists of a single element if and
only if f is differentiable at x. In this case ∂f(x) = {∇f(x)}, where ∇f denotes
the gradient of f , see Theorem 25.1 in [5].

B Proof of Theorem 4.2

It follows by the finiteness of ui and Theorem 5.4 in [5] that

u(y) := inf
y=

Pm
i=0 xi

m∑
i=0

ui(xi) (26)
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defines a convex function u : Rn+1 → [−∞,+∞). Theorem 16.4 in [5] states
that its conjugate satisfies

u∗(q) =
m∑

i=0

u∗i (q) ∀q ∈ Rn+1. (27)

Obviously, the constrained optimization problem (14) is equivalent to (26) for
y = 0.

(i)⇒(ii). By assumption, all random variables considered are in L1 and thus
u(0) =

∑m
i=0 ui(x̂i) > −∞, see (13). It follows from Theorem 7.2 in [5] that u is

finite-valued on Rn+1. In view of Theorem 23.4 in [5], there exists a subgradient
q ∈ ∂u(0). Using (25) and (27) and the clearing condition, we conclude that

u(0) = −u∗(q) =
m∑

i=0

−u∗i (q) =
m∑

i=0

(q · x̂i − u∗i (q)) ≤
m∑

i=0

ui(x̂i) = u(0).

Therefore q · x̂i − u∗i (q) = ui(x̂i) and thus q = ∇ui(x̂i), see (25), for all i.
(ii)⇒(i). Write q = ∇ui(x̂i). In view of (25) and (27), it follows that

u(0) ≥ −u∗(q) =
m∑

i=0

(q · x̂i − u∗i (q)) =
m∑

i=0

ui(x̂i).

Hence (x̂0, . . . , x̂m) is a minimizer for (14).
(i)⇔(iii). This follows from the cash-invariance (15).

C Proof of Theorem 4.4

We have, by the properties of ui and p,

inf
p·y=0

ui(y) = inf
y

ui(y − (p · y)e0) = inf
y

(ui(y) + p · y)

= − sup
y

(−p · y − ui(y)) = −u∗i (−p),

and on the other hand,

ui(xi) = ui(x̂i) + p · x̂i = −p · x̂i − u∗i (−p) + p · x̂i = −u∗i (−p). (28)

This proves (20). Using the clearing condition and (28) again, we obtain∑
i∈I

ui(xi) =
∑
i∈I

−u∗i (−p)

= infP
i∈I xi=0

∑
i∈I

(−p · xi − u∗i (−p)) ≤ infP
i∈I xi=0

∑
i∈I

ui(xi),

and the theorem is proved.
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Figure 1: Group required capital kCRT and price p1 of Z1 as functions of qmcr.
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Figure 2: Equilibrium capital allocation kCRT,0 + kCRT,1 = kCRT as function of
qmcr.
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Figure 3: Relative diversification effect bCRT as function of qmcr.

16



0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

q
mcr

 in %

Optimal CRT and Default Probability as Functions of q
mcr

 

 

x

p
 default

Figure 4: Optimal CRT x̂1
1 (in the figure denoted as “x”) and default probability

pdefault as functions of qmcr.
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