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Abstract. We provide a Frobenius type existence result for finite-dimensional
invariant submanifolds for stochastic equations in infinite dimension, in the
spirit of Da Prato and Zabczyk [5]. We recapture and make use of the conve-
nient calculus on Fréchet spaces, as developed by Kriegl and Michor [16]. Our
main result is a weak version of the Frobenius theorem on Fréchet spaces.

As an application we characterize all finite-dimensional realizations for a
stochastic equation which describes the evolution of the term structure of
interest rates.

1. Introduction

In this article we investigate the existence of finite-dimensional invariant mani-
folds for a stochastic equation of the type

drt = (Art + α(rt)) dt+
d∑

j=1

σj(rt) dW
j
t

r0 = h0

(1.1)

on a separable Hilbert space H , in the spirit of Da Prato and Zabczyk [5]. The
operator A : D(A) ⊂ H → H generates a strongly continuous semigroup on H .
Here d ∈ N, and W = (W 1, . . . ,W d) denotes a standard d-dimensional Brownian
motion defined on a fixed reference probability space (see [5]). The mappings
α : H → H and σ = (σ1, . . . , σd) : H → Hd satisfy a smoothness condition, to be
defined precisely in what follows (Section 4). We distinguish, in decreasing order of
generality, between (local) mild, weak and strong solutions of equation (1.1). The
reader is referred to [5] or [8] for the precise definitions.

Our motivation is coming from the theory of interest rates. The basic interest
rate contracts are the zero coupon bonds. The price at time t of a zero coupon
bond with maturity T ≥ t is given by

P (t, T ) = exp

(
−
∫ T−t

0

rt(x) dx

)
,
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where rt(x) denotes the instantaneous forward rate at time t for date t + x (this
notion has been introduced by Musiela [19]). Within the framework of Heath, Jar-
row and Morton (henceforth HJM) [14], for every T ≥ 0, the real-valued process
(rt(T − t))0≤t≤T is an Itô processes satisfying the so called HJM drift condition,
which assures the absence of arbitrage. It is shown in [8] that the stochastic evo-
lution of the entire forward curve, x 7→ rt(x) : R≥0 → R, can be described by a
stochastic equation of the above type (1.1), where H consists of real-valued continu-
ous functions on R≥0, the operator A = d/dx is the generator of the shift-semigroup
Sth = h(t+ ·), and α = αHJM is completely determined by σ according to the HJM
drift condition. We will be more precise about the HJM setup in Section 4 below.

There are several reasons why in practice one is interested in such HJM models
which admit a finite-dimensional realization (FDR) at every initial curve r0 ∈ H ,
see [1, 7, 8, 12]. The formal definition of an FDR is as follows.

Definition 1.1. Let m ∈ N and h0 ∈ H. An m-dimensional realization for (1.1)
at h0 is a pair (V, φ), where V ⊂ Rm is open, φ : V → H is a smooth immersion,
such that h0 ∈ φ(V ) and, for every h ∈ φ(V ), there exists a V -valued Itô process Z
such that φ(Z) is a local weak solution to (1.1) with r0 = h.

The notion of a smooth immersion is recaptured in Section 3 (see Lemma 3.1). By
convention, “smooth” is a synonym for C∞ (see Section 2 for a thorough discussion
on differential calculus).

Definition 1.2. A subset U of H is called locally invariant for (1.1) if, for every
initial point h0 ∈ U , there exists a continuous local weak solution r to (1.1) with
lifetime τ such that rt∧τ ∈ U , for all t ≥ 0.

For the notion of a finite-dimensional submanifold M of a Hilbert space and
its tangent spaces ThM, h ∈ M, we refer to Section 3. Finite-dimensional locally
invariant submanifolds for (1.1) have been characterized in [10], see also [8]. Here
we restate [10, Theorem 3].

Theorem 1.3. Suppose that α is locally Lipschitz continuous and locally bounded,
and σ is C1. Let M be an m-dimensional submanifold of H. Then the following
conditions are equivalent:

i) M is locally invariant for (1.1)
ii) M⊂ D(A) and

µ(h) := Ah+ α(h)− 1
2

d∑
j=1

Dσj(h)σj(h) ∈ ThM (1.2)

σj(h) ∈ ThM, j = 1, . . . , d, (1.3)

for all h ∈ M.

Hence the stochastic invariance problem to (1.1) is equivalent to the deterministic
invariance problems related to the vector fields µ, σ1, . . . , σd.

An FDR is essentially equivalent to a finite-dimensional invariant submanifold in
the following sense. If (V, φ) is an m-dimensional realization for (1.1) at some h0 ∈
H , then there exists an open neighborhood V0 of φ−1(h0) in Rm such that φ(V0) is
an m-dimensional submanifold, which is locally invariant for (1.1). The converse is
given by the following result, which is a restatement of [8, Theorem 6.4.1].
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Theorem 1.4. Let α, σ and M be as in Theorem 1.3. Suppose M is locally in-
variant for (1.1). Then, for any h0 ∈ M, there exists an m-dimensional realization
(V, φ) for (1.1) at h0 such that φ(V ) = U ∩M, where U is an open set in H.

Theorem 1.3 provides conditions for the invariance of a given submanifold M.
However, it does not say anything about the existence of an FDR for (1.1). This
issue will be exploited in the present article.

The FDR-problem consists of finding sufficient conditions on µ, σ1, . . . , σd for the
existence of FDRs. Björk et al [1], [3] translated this into an appropriate geometric
language. In [3] they completely solved the FDR-problem for equations (1.1) of
HJM type on a very particular Hilbert space. Their key argument is the classical
Frobenius theorem (see for example [17]), since they are looking for foliations (which
is the appropriate notion for the FDR-problem on Hilbert spaces). Therefore they
define a Hilbert space, H, on which A = d/dx is a bounded linear operator. As a
consequence H consists solely of entire analytic functions (see [3, Proposition 4.2]).
It is well known however that the forward curves implied by a Cox–Ingersoll–Ross
(CIR) [4] short rate model are of the form rt = g0 + rt(0)g1 where

g0(x) = d
eax − 1
eax + c

and g1(x) =
beax

(eax + c)2
,

for some a, b, c > 0 and d ≥ 0 (see e.g. [8, Section 7.4.1]). Since both g0 and g1,
when extended to C, have a singularity at x = (log(c)+iπ)/a, they cannot be entire
analytic. Hence the CIR forward curves do not belong to H. Since the CIR model
is one of the basic HJM models, the Björk-Svensson [3] setting is too narrow for
the HJM framework, even though all geometric ideas are already formulated there.

To overcome this difficulty we have to choose a larger forward curve space. But
we cannot do without the Frobenius theorem. The problem is that A is typically an
unbounded operator on H , so µ is not continuous and not even defined on the whole
space H (the choice of H = H in [3] is exactly made to overcome this problem).
The appropriate framework for an extended version of the Frobenius theorem is
thus given by the Fréchet space

D(A∞) :=
⋂
n∈N

D(An),

equipped with the family of seminorms

pn(h) =
n∑

i=0

‖Aih‖H , n ∈ N0.

We prove the existence of FDRs on this space under additional technical assump-
tions on α and σ1, . . . , σd. They have to map D(A∞) into itself and generate local
flows on D(A∞). However, as typical for Frécht spaces, smoothness of α and σ on
D(A∞) is not enough to guarantee the existence of local flows. Thus we shall pro-
vide sufficient conditions on the coefficients, which can be found in Hamilton [13] (α
and σ have to be so called Banach maps). Then the existence of FDRs on an open
subset U in D(A∞) is essentially equivalent to the boundedness of the dimension of
the Lie algebra generated by µ, σ1, . . . , σd on U . We do not obtain a true foliation
of U as in the finite-dimensional case, which is due to the fact that µ merely admits
a local semiflow on U and not a local flow. So we are led to the notion of a “weak
foliation”.
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We then exemplify the use of these results with the HJM framework. Here we
eventually obtain a striking global result. HJM models that admit an FDR at
any initial curve r0 are necessarily affine term structure models, in a sense to be
explained in Section 4 (see Remark 4.14).

The remainder of the paper is organized as follows. In Section 2 we provide a
convenient differential calculus on Fréchet spaces (and more general locally con-
vex spaces), as developped in [16]. We discuss the existence of local (semi)flows
related to smooth vector fields on a Fréchet space, based on the Banach map prin-
ciple (Theorems 2.10 and 2.13). In Section 3 we recapture the notion of a finite-
dimensional submanifold, and the Lie bracket of two smooth vector fields in a
Fréchet space. We point out the crucial fact that the Lie bracket of a Banach map
with a bounded linear operator is a Banach map (Lemma 3.4). After the definition
of a finite-dimensional weak foliation (Definition 3.7) we prove a Frobenius theorem
on Fréchet spaces (Theorem 3.9). In Section 4 we provide the rigorous setup for
HJM models. Under the appropriate assumptions we solve the FDR-problem and
give a global characterization of all finite-dimensional weak foliations.

2. Analysis on Fréchet Spaces

For the purposes of analysis on open subsets of Fréchet spaces we shall follow
two equivalent approaches. The classical Gateaux-approach as outlined in [13] and
so called “convenient analysis” as in [16]. On Fréchet spaces these two notions of
smoothness coincide and convenient calculus is an appropriate extension of analysis
to more general locally convex spaces. Furthermore these methods allow simple and
elegant calculations. The main advantage of convenient calculus is however, that
one can give a precise analytic meaning (in simple terms) to geometric objects on
Fréchet spaces as for example vector fields, differential forms (see [16]).

Definition 2.1. Let E,F be Fréchet spaces and U ⊂ E an open subset. A map
P : U → F is called Gateaux-C1 if

DP (f)h := lim
t→0

P (f + th)− P (f)
t

exists for all f ∈ U and h ∈ E and DP : U × E → F is a continuous map.

For the definition of Gateaux-C2-maps the ambiguities of calculus on Fréchet
spaces already appear. Since there is no Fréchet space topology on the vector space
of continuous linear mappings L(E,F ) one has to work by point evaluations:

Definition 2.2. Let E,F be Fréchet spaces and U ⊂ E an open subset. A map
P : U → F is called Gateaux-C2 if

D2P (f)(h1, h2) := lim
t→0

DP (f + th2)h1 −DP (f)h1

t

exists for all f ∈ U and h1, h2 ∈ E and D2P : U×E×E → F is a continuous map.
Higher derivatives are defined in a similar way. A map is called Gateaux-smooth
or Gateaux-C∞ if it is Gateaux-Cn for all n ≥ 0.

The next Theorem collects all essential results of Gateaux-Calculus for our pur-
poses (see [13], pp. 73–84, pp. 99–100):

Theorem 2.3. Let E,F,G be Fréchet spaces and U ⊂ E be open in E. Let
P : U ⊂ E → F and Q : V ⊂ F → G be continuous maps:
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i) If P and Q are Gateaux-Cn, then Q◦P is Gateaux-Cn and the usual chain
rule holds.

ii) Let U be convex: P is Gateaux-C1 if and only if there exists a continuous
map L : U × E × E → F , linear in the last variable, such that for all
f1, f2 ∈ U

P (f1)− P (f2) = L(f1, f2)(f1 − f2).

iii) If P is Gateaux-C1, then for f0 ∈ U and a continuous seminorm q on F ,
there is a continuous seminorm p on E and ε > 0 such that

q(P (f1)− P (f2)) ≤ p(f1 − f2)

for p(fi − f0) < ε, i = 1, 2.

For the construction of differential calculus on locally convex spaces we need
the concept of smooth curves into locally convex spaces and the concept of smooth
maps on open subsets of locally convex spaces. We remark that already on Fréchet
spaces the situation concerning analysis was complicated and unclear until conve-
nient calculus was invented (see [16], pp. 73–77, for extensive historical remarks).
The reason for inconsistencies can be found in the fundamental difference between
bounded and open subsets.

We denote the set of continuous linear functionals on a locally convex space E
by E′c. A subset B ⊂ E is called bounded if l(B) is a bounded subset of R for all
l ∈ E′c. A multilinear map m : E1 × ...×En → F is called bounded if bounded sets
B1× ...×Bn are mapped onto bounded subsets of F . Continuous linear functionals
are clearly bounded. The locally convex vector space of bounded linear operators
with uniform convergence on bounded sets is denoted by L(E,F ), the dual space
formed by bounded linear functionals by E′. These spaces are locally convex vector
spaces we shall need for analysis (see [16], 3.17).

Definition 2.4. Let E be a locally convex space, then c : R → E is called smooth
if all derivatives exist as limits of difference quotients. The set of smooth curves is
denoted by C∞(R, E).

A subset U ⊂ E is called c∞-open if c−1(U) is open in R for all c ∈ C∞(R, E).
The generated topology on E is called c∞-topology and E equiped with this topology
is denoted by c∞E.

If U is c∞-open, a map f : U ⊂ E → R is called smooth if f ◦ c ∈ C∞(R,R) for
all c ∈ C∞(R, E).

These definitions work for any locally convex vector space, but for the following
theorem we need a weak completeness assumption. A locally convex vector space
E is called convenient if the following property holds: a curve c : R → E is smooth
if and only if it is weakly smooth, i.e. l ◦ c ∈ C∞(R,R) for all l ∈ E′. This is
equivalent to the assertion that any smooth curve c : R → E can be (Riemann-)
integrated in E on compact intervals (see [16], 2.14). The spaces L(E,F ) and E′

are convenient vector spaces (see [16], 3.17), if E and F are convenient.

Theorem 2.5. Let E,G,H be convenient vector spaces, U ⊂ E, V ⊂ G c∞-open
subsets:

i) Smooth maps are continuous with respect to the c∞-topology.
ii) Multilinear maps are smooth if and only if they are bounded.
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iii) If P : U → G is smooth, then DP : U → L(E,G) is smooth and bounded
linear in the second component, where

DP (f)h :=
d

dt
|t=0P (f + th).

iv) The chain rule holds.
v) Let [f, f + h] := {f + sh for s ∈ [0, 1]} ⊂ U , then Taylor’s formula is true

at f ∈ U , where higher derivatives are defined as usual (see iii.),

P (f + h) =
n∑

i=0

1
i!
DiP (f)h(i) +

∫ 1

0

(1− t)n

n!
Dn+1P (f + th) (h(n+1))dt

for all n ∈ N.
vi) There are natural convenient locally convex structures on C∞(U,F ) and we

have cartesian closedness

C∞(U × V,H) ' C∞(U,C∞(V,H)).

via the natural map f 7→ f̌ : U → C∞(V,H) for f ∈ C∞(U × V,H). This
natural map is well defined and a smooth linear isomorphism.

vii) The evaluation and the composition

ev : C∞(U,F )× U → F, (P, f) 7→ P (f)

. ◦ . : C∞(F,G) × C∞(U,F ) → C∞(U,G), (Q,R) 7→ Q ◦R
are smooth maps.

viii) A map P : U ⊂ E → L(G,H) is smooth if and only if (evg ◦P ) is smooth
for all g ∈ G.

Proof. For the proofs see [16] in Subsections 3.12, 3.13, 3.18, 5.11, 5.12, 5.18. �
Convenient Calculus is an extension of the Gateaux-Calculus to locally convex

spaces, where all necessary tools for analysis are preserved. Since typically vector
spaces like C∞(U,F ) or L(E,F ) are not Fréchet spaces, this extension is very useful
for the analysis of the geometric objects in Section 3.

Theorem 2.6. Let E,F be Fréchet spaces and U ⊂ E a c∞-open subset, then U
is open and P : U ⊂ E → F is Gateaux-smooth if and only if P is smooth (in the
convenient sense).

Proof. By Theorem 4.11 of [16] we get that U is open since c∞E = E. Assume that
P is Gateaux-smooth, then by the chain rule for Gateaux-Cn maps (see Theorem
2.3, i.) the composition P ◦ c is Gateaux-Cn for all n ≥ 0 and all smooth curves
c ∈ C∞(R, E), so P is smooth in the convenient sense. If P is smooth in the
convenient sense, then the first derivative DP as defined in Theorem 2.5 exists and
is continuous as map DP : U × E → F by cartesian closedness and the fact that
c∞E = E (see Theorem 2.5, i.). The same reasoning holds for higher derivatives,
so we obtain that P is Gateaux-Cn for all n ≥ 0. �

Since we shall calculate with semiflows and semigroups of bounded linear oper-
ators, we shall need convenient calculus on domains of the form [0, ε[×U , where U
is open in a Fréchet space E. The definition of smooth maps is straightforward due
to the simple strucure of convenient calculus.

Let K be a convex set with non-void interior K◦ in a Fréchet space E and F
a convenient vector space, then f : K → F is called smooth if f ◦ c : R → F is
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smooth for all smooth curves c ∈ C∞(R, E) with c(R) ⊂ K. We have the following
properties (for a proof see [16], pp. 247–254):

Theorem 2.7. Let K be a convex subset with non-void interior K◦ in a Fréchet
space E, F a convenient space and P : K → F a map.

i) P is smooth if and only if P is smooth on K◦ and all derivatives Dn(P |K◦)
extend continuously (with respect to the c∞-topology to K) to K.

ii) If P is smooth and DP : K → L(E,F ) a continuous extension of D(P |K◦),
then the chain rule holds, i.e. for c ∈ C∞(R, E) with c(R) ⊂ K we have
(P ◦ c)′(t) = DP (c(t)) · c′(t).

iii) There exists a bounded linear extension operator

C∞([0, ε[, F ) → C∞(R, F ).

Consequently we can reformulate all assertions of Theorem 2.5 for maps on
[0, ε[×U with U open in a Fréchet space, since ([0, ε[×U)◦ =]0, ε[×U , in particular,
the chain rule and cartesian closedness hold. The time derivatives at 0 can be
calculated as right derivatives by the bounded linear extension operator. This
convenient approach is through its generality and simplicity much more practical
than the equivalent Gateaux approach.

In the sequel we shall apply concepts from both approaches: Gateaux-smoothness
for existence theorems and convenient analysis for the sake of generality, simplicity
and elegance. Notice that convenient calculus provides a very powerful tool for
analysis in concrete calculations, too (see [16] for many examples and [23] for a
particularly simple proof of a general Frobenius Theorem).

Concerning differential equations, there are possible counterexamples on non-
normable Fréchet spaces in all directions, which causes some problems in the foun-
dations of differential geometry (see [16] and the excellent review article [18]). Nev-
ertheless a useful generalization of the existence theorem for differential equations
on Banach spaces is given by the following Banach map principle (see [13] for details,
compare also [16], 32.14 for weaker results in a more general situation).

If not otherwise stated, E and F denote Fréchet spaces and B a Banach space in
what follows. Given P : U ⊂ E → E a smooth map. We are looking for solutions
of the ordinary differential equation with initial value g ∈ U

f :]− ε, ε[→ U smooth
d

dt
f(t) = P (f(t))

f(0) = g ∈ U.
If for any initial value g in a small neighborhood V of f0 ∈ U there is a unique

smooth solution t 7→ fg(t) for t ∈] − ε, ε[ depending smoothly on the initial value
g, then Fl(t, g) := fg(t) defines a local flow, i.e. a smooth map

Fl :]− ε, ε[×V → E

Fl(0, g) = g

F l(t, F l(s, g)) = Fl(s+ t, g)

if s, t, s+t ∈]−ε, ε[ and Fl(s, g) ∈ V . If there is a local flow around f0 ∈ U (this shall
mean once and for all: “in an open, convex neighborhood of f0”), the differential
equation is uniquely solvable around f0 ∈ U and the dependence on initial values is
smooth (see Lemma 2.11 for the proof). Notice at this point that it is irrelevant if
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we define “smooth dependence” on initial values via maps V → C∞(]− ε, ε[, E) or
V×]− ε, ε[→ E by cartesian closedness. We shall denote fg(t) = Flt(g) = Fl(t, g).

Definition 2.8. Given a Fréchet space E, a smooth map P : U ⊂ E → E is called
a Banach map if there are smooth (not necessarily linear) maps R : U ⊂ E → B
and Q : V ⊂ B → E such that P = Q ◦R

U ⊂ E
P //

R %%KKKKKK
KKKK

E

V ⊂ B

Q

;;wwwwwwwww

where B is a Banach space and V ⊂ B is an open set.

A vector field P on an open subset U ⊂ E is a smooth map P : U → E. We
denote by B(U) the set of Banach map vector fields and by X(U) the convenient
space of all vector fields on an open subset of a Fréchet space E.

Theorem 2.9. B(U) is a C∞(U,R)-submodule of X(U).

Proof. We have to show that for ψ, η ∈ C∞(U,R) and P1, P2 ∈ B(U) the linear
combination ψP1 + ηP2 ∈ B(U). Given Pi = Qi ◦Ri for i = 1, 2 with intermediate
Banach spaces Bi, then ψP1+ηP2 = Q◦R with Q : R2×V1×V2 ⊂ R2×B1×B2 → E
and R : U → R2 ×B1 ×B2 such that

Q(r, s, v1, v2) = rQ1(v1) + sQ2(v2)

R(f) = (ψ(f), η(f), R1(f), R2(f))

So the sum ψP1 + ηP2 is a Banach map and therefore the set of all Banach map
vector fields carries the asserted submodule structure. �

Theorem 2.10 (Banach map principle). Let P : U ⊂ E → E be a Banach map,
then P admits a local flow around any point g ∈ U .

Proof. For the proof see [13], Theorem 5.6.3. �

Parameters and time-dependence are treated in the following way. Given an
open subset of parameters Z ⊂ V of a Banach space V and P : I × Z × U → E,
where I is a open set in R and U is open in E, such that Pt,p = Qt,p ◦ Rt,p, where
Q and R depend smoothly on time and parameters, P admits a unique smooth
solution for any initial value f0 ∈ U at any time point t0 ∈ I depending smoothly
on parameters, time and initial values.

For the proof of this assertion we look at the extended space G := R × V × E

with P̃ (t, p, f) = (1, 0, Pt,p(f)) and

Q̃(t, p, z) = (1, 0, Qt,p(f))

R̃(t, p, f) = (t, p, Rt,p(f))

with Banach space B̃ := R× V ×B.
We can replace in the above definition of a local flow the interval ]−ε, ε[ by [0, ε[

to obtain local semiflows, see Theorem 2.7 for details in calculus. The initial value
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problem

f : [0, ε[→ U smooth
d

dt
f(t) = P (f(t))

f(0) = g ∈ U.
admits unique solutions around an initial value depending smoothly on the initial
values if and only if a local semiflow exists. The notion of a local semiflow is
redundant on Banach spaces.

Lemma 2.11. Let Fl be a local semiflow on [0, ε[×U → E, then the map P (f) :=
d
dt |t=0Fl(t, f) is a well defined smooth vector field. We obtain

DFlt(f)P (f) = P (Flt(f))

and the initial value problem has unique solutions for small times which coincide
with the given semiflow.

Proof. The equation follows by the flow property and the definition of P immedi-
ately:

DFlt(f)P (f) =
d

ds
F lt(Fls(f))|s=0 =

d

ds
F lt+s(f)|s=0 = P (Flt(f)).

Given a solution f : [0, δ[→ E of the initial value problem associated to P with
f(0) = f0 ∈ U , then

d

ds
F lt−s(f(s)) = −P (Flt−s(f(s))) + P (Flt−s(f(s))) = 0

Flt−s(f(s)) = f(t)

for all 0 ≤ s ≤ t, whence uniqueness for the solutions of the initial value problem.
�

We are in particular interested in special types of differential equations on Fréchet
spaces E, namely Banach map perturbed bounded linear equations. Given a
bounded linear operator A : E → E, the abstract Cauchy problem associated
to A is given by the initial value problem associated to A. We assume that there
is a smooth semigroup of bounded linear operators S : R≥0 → L(E,E) such that

lim
t↓0

St − id

t
= A

which is a global semiflow for the linear vector field f 7→ Af . Notice that the
theory of bounded linear operators on Fréchet spaces contains as a special case
Hille-Yosida-Theory of unbounded operators on Banach spaces (see for example
[22]).

Given a strongly continuous semigroup St for t ≥ 0 of bounded linear operators
on a Banach space B, then D(An) with the respective operator norms pn(f) :=∑n

i=0 ||Aif || for n ≥ 0 and f ∈ D(An) is a Banach space, where the semigroup
restricts to a strongly continuous semigroup S(n). Consequently the semigroup
restricts to the Fréchet space D(A∞). This semigroup is now smooth, since it
is sufficient – by Theorem 2.5, viii. – to show smoothness of t 7→ Stf for all
f ∈ D(A∞). This is true since AnStf = StA

nf for t ≥ 0 and f ∈ D(A∞).
For the purposes of classification in Section 4 we shall need the following result.



10 DAMIR FILIPOVIĆ AND JOSEF TEICHMANN

Lemma 2.12. Let A be the generator of a strongly continuous semigroup S on a
Banach space B, then the operator A : D(A∞) → D(A∞) is a Banach map if and
only if A : B → B is bounded.

Proof. For the properties of D(A∞) see [20], in particular it is a Fréchet space with
seminorms pn(f) =

∑n
i=0 ||Aif ||. If A : D(A∞) → D(A∞) is a Banach map in a

neighborhood U of a point f0, then there are smooth maps R : U ⊂ D(A∞) → X
and Q : V ⊂ X → D(A∞) such that A = Q ◦ R and X is a Banach space. By
differentiation at f0 we obtain

A = DQ(f0) ·DR(f0)

which means in particular by continuity that there exists n ≥ 0 such that DR(f0)
can be extended continuously to a linear mapping DR(f0) : D(An) → X (see
Theorem 2.3, iii.). So A : D(An) → D(An) is a continuous mapping.

We recall the Sobolev Hierarchy for strongly continuous semigroups (see [20])
defined by the following commutative diagram

B
S

(0)
t //

R(λ)

��

B

R(λ)

��
D(A)

S
(1)
t //

R(λ)

��

D(A)

R(λ)

��
D(A2)

S
(2)
t //

��

D(A2)

��. . . . . .

Here R(λ) := (λ − A)−1 denotes the resolvent at a point of the resolvent set,
which defines an isomorphism from D(An) to D(An+1). The semigroups S(n) are
defined by restriction and are strongly continuous in the respective topologies. The
generator of S(n) is given through A restricted to D(An+1). If A is continuous on
D(An) then S(n) is a smooth group, so by climbing up through the isomorphisms
S(0) is a smooth group and therefore the infinitesimal generator is continuous, since
it is everywhere defined, by the closed graph theorem. �

Given a Banach map P : U ⊂ E → E, we want to investigate the solutions of
the initial value problem

d

dt
f(t) = Af(t) + P (f(t)), f(0) = f0.

Theorem 2.13. Let E be a Fréchet space and A be the generator of a smooth
semigroup S : R → L(E) of bounded linear operators on E. Let P : U ⊂ E → E
be a Banach map. For any f0 ∈ U there is ε > 0 and an open set V containing f0
and a local semiflow Fl : [0, ε[×V → U satisfying

d

dt
F l(t, f) = AFl(t, f) + P (Fl(t, f))

Fl(0, f) = f

for all (t, f) ∈ [0, ε[×V .
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Proof. The arguments follow a proof for the case A = 0 in [13]. We prove the
theorem by constructing a solution to the integral equation arising from variation
of constants:

Fl(t, f) = Stf +
∫ t

0

St−sP (Fl(s, f))ds

for small positive time intervals and an open neighborhood of a given initial value
f0. Given f0 ∈ U there exists a seminorm p on E and δ > 0 such that

||R(f1)−R(f2)|| ≤ p(f1 − f2)

for p(fi − f0) < δ and i = 1, 2, where ||.|| denotes the norm on B. Furthermore
given g0 ∈ B, then for any seminorm q on F there are constants Cq and δq such
that

q(Q(g1)−Q(g2)) ≤ Cq||g1 − g2||
for ||gi− g0|| < δq and i = 1, 2. Both assertions follow from Theorem 2.3,iii. By the
uniform boundedness principle the set of continuous linear operators {St}0≤t≤T is
uniformly bounded for any fixed T ≥ 0, i.e. for any seminorm p on E there is a
seminorm qp such that

p(Stf) ≤ qp(f)
for t ≤ T and for all f ∈ E. We denote by C([0, ε], B) continuous curves on the
interval [0, ε] to B, g0 := R(f0). Without any restriction we can assume that f0 = 0
and g0 = 0 by translations. We can then define a mapping

M : U ′ × V ′ ⊂ E × C([0, ε], B) → V ′

such that M(f, h)(t) = R(Stf +
∫ t

0 St−sQ(h(s))ds) for t ∈ [0, ε]. Given h ∈
C([0, ε], B) such that ||h(t)|| ≤ θ for 0 ≤ t ≤ ε with {h| supt ||h(t)|| ≤ θ} ⊂ V ′, we
have

p(Stf +
∫ t

0

St−sQ(h(s))ds) ≤ qp(f) + ε(qp(Q(g0)) + Cqpθ)

provided θ ≤ δqp . This can be made smaller than θ if ε is appropriately small and
U ′ := {f ∈ E with qp(f) < η} with η appropriately small. In particular Cqpε < 1.
If we assume these conditions, then M is well defined, continuous and furthermore

sup
t
||M(f, h1)(t) −M(f, h2)(t)|| ≤ ε sup

t
qp(Q(h1(t))−Q(h2(t)))

≤ Cqpε sup
t
||h1(t)− h2(t)||

Consequently M(f, .) is a contraction in V ′ with contraction constant bounded
uniformly in f ∈ U ′ by a constant strictly smaller than 1. It follows that there is a
unique h(t, f) for any f ∈ U ′ depending continuously on f , such that

M(f, h) = h

by the contraction mapping theorem. We define

Fl(t, f) := Stf +
∫ t

0

St−sQ(h(s, f))ds

and obtain

Fl(t, f) = Stf +
∫ t

0

St−sP (Fl(s, f))ds

sinceR(Fl(t, f)) = h(t, f) by construction. Any solution of the initial value problem
is therefore unique by the Banach contraction principle. By induction with Theorem
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2.3, i.), smoothness with respect to time is easily established. For the first derivative
one can calculate the limits directly.

Concerning smoothness with respect to the initial value, we proceed in the fol-
lowing way. We show that there exist directional derivatives and calculate them.
By Taylor’s formula we obtain

P (f1)− P (f2) = L(f1, f0) · (f1 − f2)

where L(x1, x2) · h :=
∫ 1

0 DP (x0 + s(x1 − x0)) · hds is a Banach map in all three
variables (see Theorem 2.3, ii.). So we can solve the system given by

(f0, f1, h) 7→ (Af0 + P (f0), Af1 + P (f1), Ah+ L(f1, f2) · h)
with the “flow”-construction from above

Fl(t, f0, f1, h) = (Fl(t, f0), F l(t, f1),M(t, f0, f1, h)),

smooth in time and continuous in initial values, where the dependence on h is
homogenous, so the “flow” can be defined everywhere in h. By uniqueness of the
“flow” the identity

d

dt
(Fl(t, f0)− Fl(t, f1))

= A(Fl(t, f0)− Fl(t, f1)) + L(Fl(t, f0), F l(t, f1)) · (Fl(t, f0)− Fl(t, f1))

leads to
M(t, f0, f1, f0 − f1) = Fl(t, f0)− Fl(t, f1).

By homogenity in h we obtain the existence of the directional derivatives and its
continuity in point and direction at the domain of definition, so the solution is
Gateaux-C1, by induction we can proceed since we can write down an initial value
problem for the derivative DFlt which has the same form as the treated equation
on an extended phase space. �

3. Submanifolds and Weak Foliations in Fréchet Spaces

We are interested in the geometry generated by a finite number of vector fields
given on an open subset of a Fréchet space E. Therefore we need the notions of
finite-dimensional submanifolds (with boundary) of a Fréchet space (see [16] for all
details and more). Here and subsequent E denotes a Fréchet space.

A chart on a set M is a bijective mapping u : U → u(U) ⊂ EU , where EU

is a Fréchet space and U ⊂ M , u(U) ⊂ EU is open. We shall denote a chart by
(U, u) or (u, u(U)). For two charts (Uα, uα), (Uβ, uβ) the chart changing are given
by uαβ := uα ◦ u−1

β : uβ(Uαβ) → uα(Uαβ), where Uαβ := Uα ∩ Uβ . An atlas is a
collection of charts such that the Uα form a cover of M and the chart changings
are defined on open subsets of the respective Fréchet spaces. A C∞-atlas is an
atlas with smooth chart changings. Two C∞-atlases are equivalent is their union
is an C∞-atlas. A maximal C∞-atlas is called a C∞-structure on M (maximal is
understood with respect to some carefully chosen universe of sets). A (smooth)
manifold is a set together with a C∞-structure.

A smooth mapping F : M → N between smooth manifolds is defined in the
canonical way, i.e. for any m ∈ M there is a chart (V, v) with F (m) ∈ V , a chart
(U, u) of M with m ∈ U and F (U) ⊂ V , such that v ◦ F ◦ u−1 is smooth. This is
the case if and only if F ◦ c is smooth for all smooth curves c : R →M , where the
concept of a smooth curve is easily set upon.
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The final topology with respect to smooth curves or equivalently the final topol-
ogy with respect to all inverses of chart mappings is the canonical topology of the
smooth manifold. We assume manifolds to be smoothly Hausdorff (see the discus-
sion in [16], p. 265), i.e. the real valued smooth functions on M separate points.

A submanifold N of a Fréchet manifold M is given by a subset N ⊂M , such that
for each n ∈ N there is a chart (u, u(U)), a splitting E = E′×E′′ and u(U) = V ×W
with u(N) = V × {u(n)′′}. By a splitting we shall always understand E′ and E′′

as closed subspaces of E.
An n-dimensional manifold with boundary is defined as ordinary manifold except

that we take open subsets in a halfspace Rn
+ := {x ∈ Rn with xn ≥ 0}. For the

notion (without surprises) of smooth mappings on such open sets see any textbook
on differential geometry, for example [17]. The boundary {x ∈ Rn with xn = 0} of
the subspace models the boundary ∂N of the manifold N , which is canonically a
manifold without boundary of dimension n − 1. We denote the interior by N◦ :=
N \ ∂N . A submanifold with boundary is given by the analogue submanifold
structure.

We restrict ourselves to finite-dimensional submanifolds with boundary M of
Fréchet spaces: A parametrization of M is an injective, smooth mapping φ : U ⊂
R

n
+ → E such that φ(U) ⊂ M is open in M and Dφ(u) is injective for all u ∈ U .

In this case φ(U) naturally is a submanifold with boundary again. Given a finite
dimensional submanifold with boundaryM , then the map u−1|V×u(n)′′ : V → E is a
parametrization of M . The tangent space TmM of a finite dimensional submanifold
with boundary is defined by parametrizations: given a parametrization φ of M
with m ∈ φ(U), then Tφ(u)M := Dφ(u)(Rn) for u ∈ U . The tangent space TrM
is certainly independent of the chosen parametrization, since it is equally given at
interior points by the space of all vectors c′(0) with c : R → E smooth, c(R) ⊂ M
and c(0) = r by the submanifold property.

Therefore a smooth map F : M → N , where M and N are submanifolds defines
a linear map TrF : TrM → TF (r)N via c′(0) 7→ (F ◦ c)′(0), which is given through
DF (r) · c′(0).

Lemma 3.1 (Submanifolds by Parametrization). Let E be a Fréchet space and
φ : U ⊂ Rn

+ → E a smooth immersion, i.e. for u ∈ U the map Dφ(u) is injective,
then for any u0 ∈ U there is a small open neighborhood V of u0 such that φ(V ) is
a submanifold with boundary of E and φ|V is a parametrization.

Proof. We assume – by translation – φ(u0) = 0, since it is a local result. Given
a linear basis e1, ..., en of Rn, we get linearly independent vectors Dφ(u0)(ei) =:
fi ∈ E. We choose l1, ..., lm linearly independent linear functionals, such that
li(fj) = δij and get a splitting E = E′ ×E′′ with dimE′ = n via E′′ := ∩m

i=1 ker li.
The projection on the first variable p1 induces a local diffeomorphism p1 ◦ φ on a
small open neighborhood V of u0 ∈ U by the classical inverse function theorem and
the extension result in Theorem 2.7. The inverse is denoted by ψ : V ′ ⊂ E′ → V .
Now we construct a new diffeomorphism

η(u, f ′′) = (p1 ◦ φ(u), f ′′ + p2 ◦ φ(u))

on V ×W ′′, which is invertible by the above considerations:

η−1(g′, g′′) = (ψ(g′), g′′ − p2 ◦ φ(ψ(g′))),
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η−1defines a submanifold chart for φ(V ) since

η−1(φ(u)) = (u, 0)

for u ∈ V by definition. �

Definition 3.2. A vector field X on a open subset U ⊂ E of a Fréchet space is
a smooth map X : U → E. The set of all vector fields on U is denoted by X(U).
Given a diffeomorphism F : U → V , i.e. F and F−1 are smooth, the map

(F ∗Y )(f) := DF (f)−1(Y (F (f)))

is well defined for Y ∈ X(V ) and defines a bounded linear isomorphism F ∗ : X(V ) →
X(U) by cartesian closedness (see Theorem 2.5). It is called the pull-back of vector
fields, furthermore F∗ := (F ∗)−1 is called the push forward. The Lie bracket of
two vector fields X,Y ∈ X(U) is defined by the following formula:

[X,Y ](f) = DX(f) · Y (f)−DY (f) ·X(f)

and is a bounded, skew-symmetric bilinear map from X(U)× X(U) into X(U).

We can treat the pull back as in finite dimensional analysis due to convenient
calculus. In the Gateaux approach we are forced to formulate each of these results
by point evaluations. Nevertheless it is natural to talk of analytic properties of the
objects themselves.

Proposition 3.3. Let U ⊂ E be an open subset. Given two vector fields X,Y ∈
X(U), where X admits a local flow FlX : I × U → E, then

[X,Y ] =
d

dt
(FlX−t)

∗Y |t=0.

Furthermore for any diffeomorphisms F : U → V , G : V →W

F ∗[X,Y ] = [F ∗X,F ∗Y ]

and
(G ◦ F )∗ = F ∗ ◦G∗, (G ◦ F )∗ = G∗ ◦ F∗.

Consequently the pull back is a bounded Lie algebra isomorphism, since vector fields
constitute a Lie algebra with the Lie bracket. Finally we obtain the useful formula
for a smooth map H : S → U , where S ⊂ E is open:

d

dt
F ◦ FlXt ◦H = (F∗X)(F ◦ FlXt ◦H),

where we only assume that X generates a semiflow FlX : I × U → E.

Proof. (see [16], 32.15) We can calculate directly with the flow FlX for the vector
field X
d

dt
(FlX−t)

∗Y (f)|t=0 =
d

dt
DFlXt (FlX−t(f)) · Y (FlX−t(f))|t=0

= DX(f) · Y (f)−D2FlX0 (f)(X(f), Y (f))−DY (f) ·X(f)

= [X,Y ](f)

for f ∈ U . We applied the flow property (Fl−t)
−1 = Flt for small t and the

chain rule of convenient analysis. The interchange of d
dt and D is possible due
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to the symmetry of second derivatives. The two following properties are clear by
calculating both sides directly. The last equation can is proved by

d

dt
F ◦ FlXt (H(f)) = DF

(
FlXt (H(f))

) ·X(FlXt (H(f))) = (F∗X) (F (FlXt (H(f))))

for f ∈ U by the definition of the push forward. �

The following crucial lemma collects algebraic properties of Banach map vector
fiels.

Lemma 3.4. Let U be an open set in a Fréchet space E, then B(U) is a subalgebra
with respect to the Lie bracket. Let A be a bounded linear operator on E, then
[A,B(U)] ⊂ B(U). Consequently the Lie algebra L(E) acts on B(U) by the Lie
bracket.

Proof. Given two Banach maps P1 and P2, DP1(f)·P2(f) = DQ1(R1(f))·DR1(f)·
P2(f) holds, which can be written as composition of DQ1(v) · w for v, w ∈ B and
(R1(f), DR1(f)·P2(f)) for f ∈ U . So the Lie bracket lies in B(U). Given A ∈ L(E),
we see that AP1(f)−DP1(f)·Af is a Banach map by an obvious decomposition. �

We denote by 〈. . .〉 the generated vector space over the reals R. which means
that Df is vector space generated by the set S of local vector fields at f ∈ U :

Definition 3.5. Let E be a Fréchet space, U an open subset. A distribution on U
is a collection of vector subspaces D = {Df}f∈U of E. A vector field X ∈ X(U) is
said to take values in D if X(f) ∈ D(f) for f ∈ U . A distribution D on U is said
to be involutive if for any two locally given vector fields X,Y with values in D the
Lie bracket [X,Y ] has values in D.

A distribution is said to have constant rank if dimR Df is locally constant f ∈ U .
A distribution is called smooth if there is a set S of local vector fields on U such
that

Df = 〈{X(f)|(X : UX → E) ∈ S and f ∈ UX}〉.
We say that the distribution admits local frames on U if for any f ∈ U there is an
open neighborhood f ∈ V ⊂ U and n smooth, pointwise linearly independent vector
fields X1, ..., Xn on V with

〈X1(g), ..., Xn(g)〉 = Dg

for g ∈ V .

Remark 3.6. Given a distribution D on U generated by a set of local vector fields
S, such that the dimensions of Df are bounded by a fixed constant N . Let f ∈ U
be a point with maximal dimension nf = dimR Df , then there are nf smooth local
vector fields X1, ..., Xnf

∈ S with common domain of definition U ′ such that

〈X1(f), ..., Xn(f)〉 = Df .

Choosing nf continuous linear functionals l1, ..., lnf
∈ E′ with li(Xj(f)) = δij , then

the continuous mapping M : U ′ → L(Rnf ), g 7→ (li(Xj(g))) has range in the
invertible matrices in a small neighborhood of f . Consequently in this neighborhood
the dimension of Dg is at least nf . It follows by maximality of nf that it is exactly
nf . In particular the distribution admits a local frame at f .

The concept of weak foliations will be perfectly adapted to the FDR-problem:
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Definition 3.7. A weak foliation F of dimension n on an open subset U of a
Fréchet space E is a collection of submanifolds with boundary {Mr}r∈U such that

i) For all r ∈ U we have r ∈Mr and the dimension of Mr is n.
ii) The distribution

D(F)(f) := 〈TfMr for all r ∈ U with f ∈Mr〉
has dimension n for all f ∈ U , i.e. given f ∈ U the tangent spaces TfMr

agree for all Mr 3 f . This distribution is called the tangent distribution
of F .

Given any distribution D we say that D is tangent to F if D(f) ⊂ D(F)(f) for all
f ∈ U .

Classically one is interested in the existence of tangent weak foliations for a
given distribution of minimal dimension m. Therefore we shall need the following
essential lemma.

Proposition 3.8. Let D be an involutive, smooth distribution of constant rank n
on an open subset U of a Fréchet space E. Let X and Y be vector fields with values
in D and let X admit a local flow, then

(FlXt )∗(Y )(f) ∈ Df

for f ∈ U , where it is defined.

Proof. Given a local frame X1, ..., Xn on an open neighborhood V of f0, we have
by involutivity that [X,Xi] =

∑n
k=1 P

k
i Xk. Notice that P k

i are smooth functions
locally on V . Given g ∈ V and n linear independent functionals lm such that
lm(Xj(g)) = δmj, then

lm([X,Xi](f)) =
n∑

k=1

P k
i (f)lm(Xk(f))

for all f ∈ V . Since the matrix M(f) := (lm(Xk(f))) is invertible at g and has
smooth entries, it is invertible on an open neighborhood of g, and the inverse has
smooth entries. The smooth inverse matrix applied to the left hand vector proves
smoothness of P k

i . With the above formula and Lemma 3.3 we get

d

dt
(FlXt )∗(Xi) = − d

ds
(FlXt−s)

∗(Xi)|s=0

= − d

ds
(FlX−s)

∗(FlXt )∗(Xi)|s=0

= −[X, (FlXt )∗(Xi)]

= −(FlXt )∗[X,Xi]

= −
n∑

k=1

P k
i ◦ FlXt (FlXt )∗(Xk)

which is a linear equation with time-dependent real valued coefficients gk
i (t) :=

−P k
i (FlXt (f)) on En for hi(t) := (FlXt )∗(Xi)(f) at any point f in an open neigh-

borhood of f0, namely
d

dt
hi(t) =

n∑
k=1

gk
i (t)hk(t)
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with hi(0) ∈ E. The solution of this differential equation is given by the classical
time dependent flow associated to the smooth matrix t 7→ (gk

i (t)) applied to a
vector in En. If we are given a flow for a vector field the solutions are unique due
to Lemma 2.11. Consequently provided the initial values lie in Dn

f the solution lies
in Dn

f for small times by the subspace property, but (FlX0 )∗(Xi)(f) = Xi(f) ∈ Df

for f ∈ U . �

Theorem 3.9. Let D be an smooth distribution of constant rank n on an open
subset U of a Fréchet space E. Assume that for any point f0 the distribution admits
a local frame of vector fields X1, ..., Xn, where X1, ..., Xn−1 admit local flows FlXi

t

and Xn admits a local semiflow FlXn
t . Then D is involutive if and only if it is

tangent to an n-dimensional weak foliation.

Proof. We suppose that D is involutive. Let f0 ∈ U be fixed, then there are on some
open set V , with f0 ∈ V , n linearly independent vector fields X1, ..., Xn generating
eachDf for f ∈ V . Furthermore local flows FlXi :]−ε, ε[×V0 → V for i = 1, ..., n−1
and a local semiflow FlXn : [0, ε[×V0 → V exist for V0 ⊂ V open with f0 ∈ V0 and
some ε > 0. We define the candidate parametrization α(u, r) = FlX1

u1
◦ ... ◦FlXn

un
(r)

on W1×V1, where V1 open with f0 ∈ V1 and W ⊂ Rn
+ open, convex around 0. This

is possible due to continuity of the (semi-)flows.
We can calculate the tangent spaces on the canonical basis of Rn: by cartesian

closedness we obtain the derivative of FlX1
u1
◦...◦FlXn

un
with respect to ui immediately

by Proposition 3.3

∂

∂ui
FlX1

u1
◦ ... ◦ FlXn

un
=
(
(FlX1

u1
)∗...(Fl

Xi−1
ui−1

)∗Xi

)
◦ FlX1

u1
◦ ... ◦ FlXn

un

with F = FlX1
u1
◦ ... ◦ FlXi−1

ui−1 and H = Fl
Xi+1
ui+1 ◦ ... ◦ FlXn

un
. So we arrive at

D1α(u, r)(ei) =
(
(FlX1

u1
)∗...(Fl

Xi−1
ui−1

)∗Xi

)
(α(u, r))

for 1 ≤ i ≤ n. By Proposition 3.8 these vectors lie in Dα(u,r) and are linearly
independent for u ∈ W2 and r ∈ V2 with W2 ⊂ W1 open, convex around 0 and
V2 ⊂ V1 open around f0. They generate the distribution in a small neighborhood by
a dimension argument. It is essential that the first n− 1 vector fields admit a local
flow. So we obtain a family of tangential manifolds for D. Each parametrization
for fixed r defines locally a smooth submanifold with boundary α(u1, .., un−1, 0, r)
by redoing the proof of Lemma 3.1 with continuously parametrized immersions.
Consequently we can find an open set V2 ⊂ E and W2 ⊂ Rn

+ such that α|W2×V2

defines a weak foliation with tangent distribution D.
Suppose now that there is a weak foliation F = {Mr}r∈U of dimension n. We

apply the above notation on a subset V , where we have a local frameX1, ..., Xn with
the stated properties. Given r ∈ V , there exists a finite dimensional submanifold
with boundary Mr and Xi(f) ∈ TfMr for 1 ≤ i ≤ n at any interior point f ∈Mr

◦.
By Lemma 2.11 the local flows FlXi

t restrict locally to Mr
◦ for 1 ≤ i ≤ n− 1 since

the vector fields Xi are tangent to Mr and admit local flows around any interior
point of Mr.

So for small t and Y ∈ X(U) with values in D the pull back (FlXi
t )

∗
Y (f) takes

values in Df for f in the interior ofMr, since it can be calculated as pull back of the
restriction FlXi

t |Mr . The smooth map t 7→ (FlXi
t )

∗
Y (f) takes values in the finite
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dimensional space Df , so the derivative lies there by closedness, but the derivative
equals [Xi, Y ](f) by Proposition 3.3.

We do not know whether r ∈Mr lies on the boundary of Mr or not, but we can
approximate r by interior points fm → r as m→∞. At r the vector space Dr has
a basis X1(r), ..., Xn(r): given n linearly independent linear functionals lr1, ..., l

r
n

with lri (Xj(r)) = δij . We can choose V sufficiently small such that the smooth
matrix f 7→ M(f) := (li(Xj(f)) is invertible for f ∈ V , hence the inverse matrix
N(f) := M(f)−1 defines linear functionals lfi :=

∑n
k=1N(f)ikl

r
k for 1 ≤ i ≤ n,

which depend smoothly on f and satisfy lfi (Xj(f)) = δij for f ∈ V . The associated
projections pf := id − ∑n

k=1 l
f
kXk(f) detect whether a vector field on V takes

values in Df or not: for Z ∈ X(V ) we obviously have pf (Z(f)) = 0 if and only if
Z(f) ∈ Df , for f ∈ V . However, pfm([Xi, Y ](fm)) = 0 for m ≥ 1 as calculated
above, so by continuity pr([Xi, Y ](r)) = 0 for 1 ≤ i ≤ n− 1.

Hence [Xi, Xj ] takes values in D locally for 1 ≤ i, j ≤ n and D is therefore
involutive since we can due the procedure everywhere on U . �
Remark 3.10. For details on Frobenius theorems in the classical setting see [15].
The phenomenon that there is no Frobenius chart is due to the fact that there is
one vector field among the vector fields X1,...,Xn (generating the distribution D)
admitting only a local semiflow. If all of them admitted flows, there would exist a
Frobenius chart, which can be given by a construction outlined in [23]. The non-
existence of a Frobenius-chart means that the leafs cannot be parallelized, since they
follow semiflows, which means that ”gaps” between two leafs can occur and leafs
can touch. This is an infinite dimensional phenomenon, which does not appear in
finite dimensions.

4. Finite-dimensional Realizations for HJM Models

In this section we apply the preceding results to characterize those HJM models
that satisfy the appropriate Frobenius condition (see condition (F) below), which
is essentially equivalent to the existence of FDRs at any inital curve. We will
demonstrate that this condition yields a very particular geometry of the invariant
submanifolds – loosely speaking, each of them is a band of copies of an affine
submanifold.

Remark 4.1. Although we subsequently focus on HJM models, many arguments can
be carried over to more general stochastic equations (1.1) in the spirit of Da Prato
and Zabczyk [5].

First we provide the rigorous setup for HJM models, summarizing [8]. The
Hilbert space H of forward curves is characterized by the properties

(H1): H ⊂ C(R≥0; R) with continuous embedding (that is, for every x ∈ R≥0,
the pointwise evaluation evx : h 7→ h(x) is a continuous linear functional
on H), and 1 ∈ H (the constant function 1).

(H2): The family of right-shifts, Stf = f(t+ ·), for t ∈ R≥0, forms a strongly
continuous semigroup S on H .

(H3): There exists a closed subspace H0 of H such that

S(f, g)(x) := f(x)
∫ x

0

g(η) dη,

defines a continuous bilinear mapping S : H0 ×H0 → H .
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We write shortly S(f) for S(f, f). We assume that the volatility coefficients σj

map H into H0. Then the HJM drift coefficient

α = αHJM :=
d∑

j=1

S(σj) : H → H (4.1)

is a well-defined map. Hence an HJM model is uniquely determined by the specifi-
cation of its volatility structure σ = (σ1, . . . , σd).

As an illustration we shall always have the following example in mind (see [8,
Section 5]).

Example 4.2. Let w : R≥0 → [1,∞) be a non-decreasing C1-function such that
w−1/3 ∈ L1(R≥0). We may think of w(x) = eαx or w(x) = (1 + x)α, for α > 0 or
α > 3, respectively. The space Hw consisting of absolutely continuous functions h
on R≥0 and equipped with the norm

‖h‖2
w := |h(0)|2 +

∫
R≥0

∣∣∣∣ ddxh(x)
∣∣∣∣2 w(x) dx

is a Hilbert space satisfying (H1)–(H2). Property (H3) is satisfied for H0 = Hw,0 :=
{h ∈ Hw | limx→∞ h(x) = 0}.

The operator A is the generator of the shift semigroup S. It is easy to see that
D(A) ⊂ {h ∈ H ∩ C1(R≥0; R) | (d/dx)h ∈ H} and Ah = (d/dx)h. Without much
loss of generality we shall in fact assume

(H4): D(A) = {h ∈ H ∩ C1(R≥0; R) | (d/dx)h ∈ H}.
Also (H4) is satisfied for the spaces Hw from Example 4.2.

Denote by A0 : D(A0) ⊂ H0 → H0 the restriction of A to H0. That is, D(A0) =
{h ∈ D(A) ∩ H0 | Ah ∈ H0}. The definition of the Fréchet space D(A∞0 ) :=
∩n∈ND(An

0 ) is obvious. The next result follows immediately from (H1), (H3) and
(H4).

Lemma 4.3. For any f, g ∈ D(A0) we have S(f, g) ∈ D(A) and

AS(f, g) = S(Af, g) + S(f,Ag) + f ev0(g).

Hence S : D(A∞0 )×D(A∞0 ) → D(A∞) is a continuous bilinear mapping.

The preceding specifications for σ are still too general for concrete implementa-
tions. We actually have the idea of σ being sensitive with respect to functionals
of the forward curve. That is, σj(h) = φj(`1(h), . . . , `p(h)), for some p ≥ 1, where
φj : Rp → D(A∞0 ) is a smooth map and `1, . . . , `p denote continuous linear func-
tionals on H (or even on C(R≥0; R)). We may think of `i(h) = (1/xi)

∫ xi

0 h(η) dη
(benchmark yields) or `i(h) = evxi(h) (benchmark forward rates). This idea is
(generalized and) expressed in terms of the following regularity and non-degeneracy
assumptions:

(A1): σj = φj ◦ ` where ` ∈ L(H,Rp), for some p ∈ N, and φj : Rp → D(A∞0 )
are smooth and pointwise linearly independent maps, 1 ≤ j ≤ d. Hence
σ : H → D(A∞0 )d is a Banach map (see Definition 2.8).

(A2): For every q ≥ 0, the linear map (`, `◦A, . . . , `◦Aq) : D(A∞) → Rp(q+1)

is open.
(A3): A is unbounded; that is, D(A) is a strict subset of H . Equivalently,
A : D(A∞) → D(A∞) is not a Banach map (see Lemma 2.12).
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We believe that this setup is flexible enough to capture any reasonable HJM model.
Assumption (A2) is essential for the strong characterization result in Theorem 4.10
below. Intuitively, (A2) says that the following interpolation problem is well-posed
on D(A∞): given a smooth curve g : R≥0 → R, for any finite number of data
of the form I = (`(g), `((d/dx)g), . . . , `((d/dx)qg)) ∈ Rp(q+1) we can find an in-
terpolating function h ∈ D(A∞) with (`(h), . . . , ` ◦ Aq(h)) = I. Notice, however,
that degenerate examples such as the following are excluded: let p = 3 and `(h) =
(ev0(h), ev1(h),

∫ 1

0
h(x) dx). Then ` ◦ A(h) = (ev0(Ah), ev1(Ah), ev1(h) − ev0(h)).

Thus the rank of (`, ` ◦A) is at most 5, and (`, ` ◦A) : D(A∞) → R6 cannot be an
open map.

Combining Lemma 4.3 and (A1) yields

Lemma 4.4. S(σj) : H → D(A∞) is a Banach map, for every 1 ≤ j ≤ d, hence
also αHJM .

By the discussion after the proof of Lemma 2.11, the semigroup S leaves D(A∞)
invariant and is smooth on D(A∞). Hence by (A1) and Lemma 4.4 the assumptions
of Theorem 2.13 are satisfied, and the vector field h 7→ µ(h) = Ah + αHJM (h) −
(1/2)

∑d
j=1Dσj(h)σj(h), see (1.2), admits a local semiflow on D(A∞).

Lemma 4.5. Let X1, . . . , Xk be linearly independent Banach maps on an open set
U in D(A∞), for some k ∈ N. Then the set

N = {h ∈ U | µ(h) ∈ 〈X1(h), . . . , Xk(h)〉}
is closed and nowhere dense in U .

Proof. Clearly, N is closed by continuity of µ and X1, . . . , Xk. Now suppose there
exists a set V ⊂ N which is open in D(A∞). For every h ∈ V there exist unique
numbers c1(h), . . . , ck(h) such that

µ(h) =
k∑

j=1

cj(h)Xj(h). (4.2)

We can choose linear functionals ξ1, . . . , ξk on D(A∞) such that the k × k-matrix
Mij(h) := ξi(Xj(h)) is smooth and invertible on V (otherwise we choose a smaller
open subset V ). Hence

ci(h) =
k∑

j=1

M−1
ij (h)ξj(µ(h))

are smooth functions on V . Then (4.2) implies that A is a Banach map on V . But
this contradicts (A3), whence the claim. �

The vector fields µ, σ1, . . . , σd induce two distributions on D(A∞): their linear
span D = 〈µ, σ1, . . . , σd〉, and the Lie algebra DLA generated by all multiple Lie
brackets of these vector fields. As a consequence of (A1) and Lemma 4.5 there
exists a closed and nowhere dense set N in D(A∞) such that

dimDLA ≥ dimD = d+ 1 on D(A∞) \ N . (4.3)

Remark 4.6. The preceding observation proves a conjecture in [3], namely that
every nontrivial generic short rate model is of dimension 2 (see [3, Remark 7.1]).
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The existence of an FDR at some initial point is a singular event, in general.
The concept of a finite-dimensional weak folitation is thus appropriate for the FDR-
problem. By Definition 3.7 an n-dimensional weak foliation F on some open subset
U in D(A∞) is a collection {Mh}h∈U of n-dimensional submanifolds with boundary
in D(A∞). Notice that by the canonical embedding D(A∞) ↪→ H every Mh is also
a submanifold with boundary in H .

Remark 4.7. We are thus looking for FDRs in D(A∞). This seems to be a re-
striction since the original HJM model (1.1) is defined on H. However, as it was
stated in Theorem 1.3, any finite-dimensional invariant submanifold M in H lies
necessarily in D(A). Under the preceding assumptions on σ, we show in [11] that
necessarily M ⊂ D(A∞) (as a set), and if dimM = d+ 1 then M is even a sub-
manifold in D(A∞). From this point of view the following results are essentially
optimal.

The following is a modification of the necessary condition in Theorem 3.9.

Proposition 4.8. Let U be an open set in D(A∞), and F an n-dimensional weak
foliation on U , for some n ∈ N. If D is tangent to F then DLA ⊂ D(F) on U .

Proof. Let X and Y be vector fields on U with values in D(F), and such that X
admits a local flow on U . Then it follows as in the second part of the proof of
Theorem 3.9 that [X,Y ] takes values in D(F) on U . Hence by the very defintion
of DLA, Lemma 3.4 and Theorem 2.10 we obtain, by induction, that DLA ⊂ D(F)
on U , and the proposition is proved. �

Let U denote an open connected set in D(A∞) in what follows. Proposition 4.8
tells us that boundedness of dimDLA on U is a necessary condition for the existence
of a finite-dimensional weak foliation on U . To avoid difficult to analyse degenerate
situations where dimDLA is not constant on U , we shall only consider the non-
degenerate case. This is our appropriate Frobenius condition

(F): DLA has constant finite dimension NLA on U .
Here and subsequently, we let (F) be in force. In view of (4.3) we have NLA ≥ d+1.

Proposition 4.9. We have

µ(h) /∈ 〈σ1(h), . . . , σd(h)〉, ∀h ∈ U. (4.4)

Moreover, for any h0 ∈ U there exists an open neighborhood V and Banach maps
Xd+1, . . . , XNLA−1 on V such that

DLA = 〈µ, σ1, . . . , σd, Xd+1, . . . , XNLA−1〉 on V .

In particular, DLA is tangent to an NLA-dimensional weak foliation F on U .

Proof. Suppose µ(h0) ∈ 〈σ1(h0), . . . , σd(h0)〉, for some h0 ∈ U . By the definition
of DLA and Lemma 3.4 there exist NLA − d Banach maps Xd+1, . . . , XNLA on U
such that

DLA(h) = 〈σ1(h), . . . , σd(h), Xd+1(h), . . . , XNLA(h)〉,
for h = h0, and hence for all h in a neighborhood of h0, by continuity. But
this implies that µ(h) lies in the span of Banach maps, for all h in an open set.
This contradicts Lemma 4.5, whence (4.4). The rest of the proposition follows by
Remark 3.6 and Theorem 3.9. �

In the following theorem we provide the full classification of F .
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Theorem 4.10. Under the above assumptions there exist linearly independent con-
stant vectors λ1, . . . , λNLA−1 ∈ D(A∞) such that DLA = 〈µ, λ1, . . . , λNLA−1〉 and

σj ∈ 〈λ1, . . . , λNLA−1〉 , 1 ≤ j ≤ d, (4.5)

on U .

Proof. Define the smooth map Γ :=
∑d

j=1 Γj : Rp → D(A∞) by

Γj(y) := S(φj(y))− 1
2
Dφj(y) (`(φj(y))) .

So that we can write µ(h) = Ah+Γ(`(h)). Let 1 ≤ i, j ≤ d. We already know from
Lemma 3.4 that [σi, σj ] and [µ, σj ] are Banach maps. In fact, a straightforward
calculation yields the decompositions

[σi, σj ] = φij ◦ ` : D(A∞) → R
p → D(A∞),

[µ, σj ] = δj ◦ (`, ` ◦A) : D(A∞) → R
2p → D(A∞),

for smooth maps φij : Rp → D(A∞) and δj : R2p → D(A∞). Here the linearity of
` is essential, see (A1). Now fix h0 ∈ U . By induction of the preceding argument
and Proposition 4.9 there exists an open neighborhood V of h0, an integer q ≥ −1,
and linearly independent Banach maps X1, . . . , XNLA−1 with decomposition

Xi = Ψi ◦ (`, . . . , ` ◦Aq) : D(A∞) → R
p(q+1) → D(A∞), (4.6)

for smooth maps Ψi : Rp(q+1) → D(A∞) such that

DLA = 〈µ,X1, . . . , XNLA−1〉 on V . (4.7)

Notice that the case q = −1 is included in a consistent way: it simply means that
Xi in (4.6) is constant.

There exists a minimal integer, still denoted by q, with the above properties. We
shall show that q = −1.

We argue by contradiction and suppose that q ≥ 0. We claim that then there
exists smooth maps Ψ̃i : R

pq → D(A∞) such that we can replace Xi in (4.7)
with X̃i = Ψ̃i ◦ (`, . . . , ` ◦ Aq−1). Indeed, since [µ,Xi] is a Banach map on V (see
Lemma 3.4), for every h ∈ V there exists numbers cij(h) such that

[µ,Xi](h) =
NLA−1∑

j=1

cij(h)Xj(h), 1 ≤ i ≤ NLA − 1. (4.8)

As in the proof of Lemma 4.5 we find linear functionals ξ1, . . . , ξNLA−1 on D(A∞)
such that the (NLA − 1) × (NLA − 1)-matrix Mij(y) := ξi(Ψj(y)) is smooth and
invertible on W := (`, . . . , ` ◦Aq)(V ), which is an open set in R

p(q+1) by (A2). By
explicit calculation we obtain

[µ,Xi] = ∆i ◦ (`, . . . , ` ◦Aq+1) (4.9)

where
∆i(y, z) = (A+DΓ(y0) ◦ `) ·Ψi(y)

−DΨi(y) ·




y1
...
yq

z

+


`(Γ(y0))

...

...
(` ◦Aq)(Γ(y0))


 ,

(4.10)
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for (y, z) = (y0, . . . , yq, z) ∈ Rp(q+1) × Rp. Equating (4.8) and (4.9), applying the
functionals ξk and inverting gives that

(y, z) 7→ γij(y, z) :=
NLA−1∑

k=1

M−1
kj (y)ξk(∆i(y, z))

are smooth functions from W ′ := (`, . . . , ` ◦ Aq+1)(V ) into R, and they satisfy
cij(h) = γij ◦ (`, . . . , ` ◦Aq+1)(h) on V , hence

∆i(y, z) =
NLA−1∑

j=1

γij(y, z)Ψj(y), ∀(y, z) ∈W ′. (4.11)

Differentiating (4.11) with respect to z (which makes sense since W ′ is open by
(A2)) yields, see (4.10),

DyqΨi(y) =
NLA−1∑

j=1

Dzγij(y, z)Ψj(y), ∀(y, z) ∈ W ′.

Arguing again by linear independence of Ψ1, . . . ,ΨNLA−1 we see that the R
p-valued

maps
Dzγij(y, z) ≡: βij(y)

depend only on y. We may assume that W = W0 × W1 where W0 ⊂ Rpq and
W1 ⊂ Rp are open such that (y0, z0) := ((`, . . . , `◦Aq−1)(h0), `◦Aq(h0)) ∈W0×W1,
and W1 is star-shaped with respect to z0 (otherwise replace V accordingly). Now
let (y, z) ∈W0×W1 and define ψ(t) := Ψ((y, z0 + t(z− z0))). Then there exists an
open interval I containing [0, 1] such that

d

dt
ψi(t) =

NLA−1∑
j=1

(βij((y, z0 + t(z − z0))) · (z − z0))ψj(t)

ψi(0) = Ψi(y, z0), i = 1, . . . , NLA − 1,

for t ∈ I. This system of differential equations has a unique solution, which is of
the form

ψi(t) =
NLA−1∑

j=1

αij(t)ψj(0),

for some smooth curves αij : I → R. In particular, for t = 1,

Ψi(y, z) =
NLA−1∑

j=1

αij(1)Ψj(y, z0).

This way we find a smooth matrix-valued map, again denoted by (αij), on W0×W1

such that

Ψi(y, z) =
NLA−1∑

j=1

αij(y, z)Ψj(y, z0), ∀(y, z) ∈ W0 ×W1.

But this implies that µ and the Banach maps Ψj(·, z0) ◦ (`, . . . , ` ◦ Aq−1) span the
Lie algebra DLA on V . Whence the claim.

But q was supposed to be minimal – a contradiction. Hence q = −1; that is,
X1, . . . , XNLA−1 in (4.7) can be chosen constant on some neighborhood of h0. Since
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h0 ∈ U was arbitrary and U is connected, the theorem now follows by a continuity
argument. �

Theorem 4.10 is a global result in so far as it holds for every open connected set
U in D(A∞) where (F) is satisfied. We now are interested in the question whether
U can be chosen to be the entire space D(A∞). In other words, whether there exist
a priori structural restrictions on the choice of U . In view of (F) and Theorem 4.10
it is clear that U must not intersect with the singular set

Σ := {h ∈ D(A∞) | µ(h) ∈ 〈λ1, . . . , λNLA−1〉}. (4.12)

By Lemma 4.5, Σ is closed and nowhere dense in D(A∞).

Lemma 4.11. If (4.5) holds on D(A∞), then Σ lies in a finite-dimensional linear
subspace O in D(A∞) with NLA ≤ dimO ≤ NLA + (NLA − 1)2.

Proof. Since σ is continuous, (4.5) holds on H . Assumption (A1) yields

〈σ1(h), . . . , σd(h)〉 ⊂ D(A∞0 ), ∀h ∈ H.
Hence there exists d ≤ d∗ ≤ NLA − 1 such that (after a change of coordinates if
necessary) λ1, . . . , λd∗ ∈ D(A∞0 ), and

σi(h) =
d∗∑

j=1

βij(h)λj , 1 ≤ i ≤ NLA − 1, ∀h ∈ H, (4.13)

for smooth functions βij : H → R. Moreover, Dσi(h)σi(h) ∈ 〈λ1, . . . , λNLA−1〉, for
all h ∈ H . By (1.2) hence

Σ = {h ∈ D(A∞) | ν(h) ∈ 〈λ1, . . . , λNLA−1〉} ,
where ν := A+ αHJM . Since Λij := S(λi, λj) is a well-defined element in D(A∞),
for all 1 ≤ i, j ≤ d∗, we obtain

ν(h) = Ah+
d∗∑

i,j=1

aij(h)Λij , ∀h ∈ D(A∞), (4.14)

where aij(h) :=
∑d

k=1 βki(h)βkj(h), see (4.1). Hence h ∈ Σ if and only if there
exist real numbers c1(h), . . . , cNLA−1(h) such that

Ah+
d∗∑

i,j=1

aij(h)Λij =
NLA−1∑

i=1

ci(h)λi. (4.15)

LetR be the subspace spanned by λ1, . . . , λNLA−1 and Λ11, . . . ,Λd∗d∗ , and let I be a
set of indices (i, j) such that {λ1, . . . , λNLA−1,Λij | (i, j) ∈ I} is linear independent
and spans R. In view of (4.15) it is clear that Σ lies in O := A−1(R). Since
the kernel of A is spanned by 1 (see (H1)), the dimension of O is 1 + dimR =
NLA + |I|. �

Hence the maximal possible choice of U is D(A∞) \ Σ. In this case we can say
more about Σ.

Lemma 4.12. Suppose that U = D(A∞) \ Σ. Then h ∈ Σ implies

h+ 〈λ1, . . . , λNLA−1〉 ⊂ Σ.
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Proof. By Theorem 4.10 and since [µ, λi] is a Banach map on U (see Lemma 3.4),
we have

[µ, λi](h) = Dµ(h)λi ∈ 〈λ1, . . . , λNLA−1〉, (4.16)
for all h ∈ D(A∞) \ Σ, and hence for all h ∈ D(A∞), by smoothness of µ. Now let
h ∈ Σ and u ∈ RNLA−1. Using Taylor’s formula (Theorem 2.5) we calculate

µ

(
h+

NLA−1∑
i=1

uiλi

)
= µ(h) +

NLA−1∑
i=1

ui

∫ 1

0

Dµ

(
h+ t

NLA−1∑
i=1

uiλi

)
λi dt, (4.17)

which lies in 〈λ1, . . . , λNLA−1〉 by (4.16), and the lemma follows. �

We now can give the classification of the corresponding HJM models as well.

Theorem 4.13. Suppose (F) holds on U = D(A∞)\Σ, where Σ is given by (4.12).
Then, for every h0 ∈ D(A∞), there exists an RNLA−1-valued diffusion process Y
with Y0 = 0 such that

rt = Flµt (h0) +
NLA−1∑

i=1

Y i
t λi (4.18)

is the unique continuous local solution to (1.1) with r0 = h0. If h0 ∈ Σ we can even
choose Y such that

rt = h0 +
NLA−1∑

i=1

Y i
t λi. (4.19)

In particular, Σ is locally invariant for (1.1).

The coordinate process Y will be explicitely constructed in the proof below
(see (4.24)).

Remark 4.14. HJM models that satisfy (4.18), or (4.19), are known in the finance
literature as affine term structure models. Hence Theorem 4.13 can be roughly
reformulated in the following way: HJM models that admit an FDR at every inital
point h0 ∈ D(A∞) are necessarily affine term structure models.

Affine term structure models have been extensively studied in [7], [8], [6] (see also
references therein).

Proof. By smoothness of σ and µ, (4.5) and (4.16) hold on H and D(A∞), respec-
tively. Let h0 ∈ D(A∞)\Σ and Mh0 a leaf of the weak foliation F through h0 (see
Proposition 4.9). As in the proof of Theorem 3.9 we obtain a parametrization of
Mh0 at h0 by

α(u, h0) = Flµu0
(h0) +

NLA−1∑
i=1

uiλi, u = (u0, . . . , uNLA−1) ∈ [0, ε)× V, (4.20)

for some ε > 0 and some open neighborhood V of 0 in RNLA−1, where Flµ is the
local semiflow induced by µ. (Strictly speaking, α(·, h0) is a parametrization of a
submanifold with boundary of Mh0 .) Now we proceed as in [8, Section 6.4] to find
the appropriate coordinate process Y . Using Taylor’s formula we obtain as in (4.17)

µ(α(u, h0)) = µ
(
Flµu0

(h0)
)

+
NLA−1∑

i=1

b̃i(u, h0)λi

= Dα(u, h0) · (1, b̃1(u, h0), . . . , b̃NLA−1(u, h0)),

(4.21)
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where b̃i(·, h0) : [0, ε)× V → R are smooth maps well specified by

NLA−1∑
i=1

b̃i(u, h0)λi :=
NLA−1∑

i=1

ui

∫ 1

0

Dµ

(
Flµu0

(h0) + t

NLA−1∑
i=1

uiλi

)
λi dt.

On the other hand, we have

σi(α(u, h0)) = Dα(u, h0) · (0, ρi(u, h0), 0, . . . , 0), 1 ≤ i ≤ d, (4.22)

where ρi(·, h0) = (ρi1(·, h0), . . . , ρid∗(·, h0)) : [0, ε) × V → Rd∗ are smooth maps
given by

ρij(u, h0) := βij(α(u, h0)),

see (4.13). Define the smooth map bi(·, h0) : [0, ε)× V → R by

bi(u, h0) :=

{
b̃i(u, h0) + 1

2

∑d
j=1Dρji(u, h0) · ρj(u, h0), 1 ≤ i ≤ d∗,

b̃i(u, h0), d∗ < i ≤ NLA − 1.
(4.23)

Then the stochastic differential equation
dY i

t = bi((t, Yt), h0) dt+
d∑

j=1

ρji((t, Yt), h0) dW
j
t , 1 ≤ i ≤ d∗,

dY i
t = bi((t, Yt), h0) dt, d∗ < i ≤ NLA − 1,
Y0 = 0,

(4.24)

has a unique V -valued continuous local solution. By Itô’s formula it follows that
rt = α((t, Yt), h0) is the unique continuous local solution to (1.1), see [8, Section 6.4],
whence the theorem is proved for h0 ∈ D(A∞) \ Σ.

Now let h0 ∈ Σ. By Lemma 4.12, the (NLA − 1)-dimensional affine submanifold
Nh0 := h0 + 〈λ1, . . . , λNLA〉 lies in Σ. Since (1.2) and (1.3) are clearly satisfied for
all h ∈M = Nh0 , Theorem 1.3 gives that Nh0 is locally invariant for (1.1). Replace
α in (4.20) by

α̃(u, h0) := h0 +
NLA−1∑

i=1

uiλi, u = (u1, . . . , uNLA−1) ∈ R
NLA−1,

which is a parametrization of Nh0 . A similar procedure as above yields an RNLA−1-
valued diffusion process Y such that rt = α̃(Yt, h0) is the unique continuous lo-
cal solution to (1.1), whence (4.19). (Notice that, by construction, Y is time-
homogeneous.) Since Flµt (h0) ∈ Nh0 , for all t ≥ 0 where it is defined, it is easy to
modify Y such that (4.18) is satisfied too. �

We remark that the form of the FDRs, (4.18) and (4.24), has already been derived
in [2] and [3] under the assumption of (4.5) and DLA = 〈µ, λ1, . . . , λNLA−1〉. In
this article we provided the sufficiency and necessity of these conditions and its
consequences in a more general (and appropriate) functional-analytic setup.

We finally show that λ1, . . . , λNLA−1 have to satisfy a functional relation which
depends on βij (see (4.13)). Let the assumptions of Theorem 4.13 be in force. As
shown in the proof of Lemma 4.11 we obtainDLA = 〈ν, λ1, . . . , λNLA−1〉 on D(A∞).
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Hence, as in (4.16), there exist smooth functions cij on D(A∞) such that

Dν(h)λi = Aλi +
d∗∑

k,l=1

(Dakl(h)λi) Λkl =
NLA−1∑

j=1

cij(h)λj , ∀h ∈ D(A∞). (4.25)

Here we have used the notation from the proof of Lemma 4.11, see (4.14). Now fix
h ∈ D(A∞). Expressed as a point-wise equality for functions, (4.25) reads

d

dx

λi(x) +
1
2

d∗∑
k,l=1

(Dakl(h)λi) Λk(x)Λl(x)

 =
NLA−1∑

j=1

cij(h)λj(x), ∀x ∈ R≥0,

where Λi(x) :=
∫ x

0 λi(η) dη. Integration with respect to x yields

d

dx
Λi(x) = −1

2

d∗∑
k,l=1

(Dakl(h)λi) Λk(x)Λl(x) +
NLA−1∑

j=1

cij(h)Λj(x) + λi(0),

for all x ∈ R≥0. Thus every h ∈ D(A∞) implies a system of ODEs (Riccati
equations) for the functions Λ1, . . . ,ΛNLA−1, which have to hold simultaneously for
all h ∈ D(A∞).
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