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Abstract

This paper provides sufficient and necessary conditions for the existence of equi-
librium pricing rules for monetary utility functions under convex consumption con-
straints. These utility functions are characterized by the assumption of a fully fun-
gible numeraire asset (“cash”). Each agent’s utility is nominally shifted by exactly
the amount of cash added to his endowment. We find the individual maximum utility
that each agent is eligible for in an equilibrium and provide a game theoretic point of
view for the fair allocation of the aggregate utility.

Key words: existence of equilibrium prices, monetary utility functions, Pareto
optimal allocation, convex consumption constraints

1 Introduction

Monetary utility functions are characterized by the assumption of a fully fungible nu-
meraire asset (“cash”) and the property that an agent’s utility is nominally shifted by
exactly the amount of cash added to his endowment. This “cash invariance” introduces
the possibility of “rebalancing of the cash” without restrictions at any time.

Jouini, Schachermayer and Touzi [27] provide an existence result for Pareto optimal
allocations in the case of law-invariant monetary utility functions, see also Filipović and
Svindland [19] for the non-monotone case. We extend the framework of [27] and consider
an infinite dimensional economy, where the agents are described by convex cash invariant
unbounded below consumption sets and monetary utility functions. It is well known that
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equilibria do not exist in general in such a framework. Explicit counter examples are given
in Delbaen [14] and [27].

On the other hand, existence results such as in [6, 9, 11, 33] do not apply for monetary
utility functions: the existence theorems for equilibria in Bewley [6] assume bounded below
consumption sets in L∞. The no-arbitrage based existence theorem in Werner [33], for
unbounded below consumption sets, only works in finite dimensional model spaces. But
also the extension of Werner’s results towards infinite dimensions in Dana and Le Van
[11] does not apply in our framework. Indeed, one can show that the set of the so-called
fair utility weight vectors in [11] is always empty for monetary utility functions: in the
notation of [11] it follows that “U(0)” is of the form {v ∈ Rm | 〈v, 1〉 ≤ c} for some
c ≥ 0; therefore the polar cone “D” is generated by (1, . . . , 1) and thus has empty interior.
Finally, monetary utility functions are not of mean variance type as in Dana [9]. We refer
to [11] for a more thorough overview of the economics literature on the existence issue.

This leads us to develop another concept, that of an equilibrium pricing rule. Such
pricing rules support uniformly asymptotic optimal allocations. We provide sufficient and
necessary conditions for the existence of equilibrium pricing rules. This applies in particu-
lar if a financial market is assumed (Example 3.11). Moreover, in our setup, we show that
the existence of an equilibrium is equivalent to the existence of a Pareto optimal alloca-
tion. The equilibrium pricing rules coincide with the super-gradients of the representative
agent’s utility function. We make essential use of the fact that this utility function does
not depend on the individual agents’ initial endowments (it is just the convolution of the
individual utility functions) and that the set of super-gradients is not empty if it is finite
valued. For each pricing rule we then can calculate the maximum utility that each agent
is qualified for given his initial endowment. Moreover, we provide a game theoretic point
of view for the fair allocation of the aggregate utility.

Assuming the space L∞ of essentially bounded payoffs, the pricing rules are only finitely
additive in general. We therefore provide necessary and sufficient conditions under which
the equilibrium pricing rules are given as expectation operators and thus are σ-additive.

Monetary risk measures have recently attracted much attention in the mathematical
finance community, see e.g. [3, 4, 21]. Monetary utility functions are, up to the sign,
identical to convex risk measures. Heath and Ku [25] characterize Pareto optimality for
convex risk measures in a simpler framework without constraints, similar to the setup
in [4]. That characterization is extended in Burgert and Rüschendorf [7]. In particular,
they introduce trading constraints described by a linear subspace. Acciaio [1] provides
explicit calculations of Pareto optimal allocations for some particular monetary utility
functions. Equilibria for positively homogeneous convex (this is, coherent) risk measures
in connection with financial markets have also been recently considered in Cherny [8].
Our paper is more general and encompasses the above in that it considers general concave
monetary utility functions including convex trading constraints. Moreover, we provide
explicit conditions for the existence of equilibrium pricing rules.

Monetary utility functions can be seen as particular type of niveloid in the spirit of
[15] and [28]. Within the traditional class of expected utility functions, only the affine and
entropic utility functions are monetary. In fact, the latter is defined as the scaled logarithm
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of the exponential utility (see [21]), which induces the same preference order as – and is thus
equivalent to – the exponential utility function. However, extending the class of expected
utility functions to multi-prior utility functions (see [24]) enlarges the intersection with
the class of monetary utility functions. Eventually, all monetary utility functions belong
to a general class of utility functions recently introduced by Maccheroni, Marinacci and
Rustichini in [28]. A typical example of preferences induced by a monetary utility function
is the monotone version of the mean-variance preferences of Markovitz and Tobin (see for
instance [29]). A detailed study concerning equilibria and Pareto optimality for monetary
utility functions under constraints, such as provided by this paper, is therefore needed.
Notice that by switching the sign, which turns utility functions into risk measures, our
results can also be used to do derive fair values for optimal risk exchanges subject to
constraints (see for instance [17]).

The outline of the paper is as follows. In Section 2 we introduce the notion of a
monetary utility function restricted to a convex cash invariant subset of L∞. From convex
duality theory there results a representation of any monetary utility function in terms
of its conjugate function. It is key that the inf in the representation is always attained
(Proposition 2.5). The section concludes with the definition and basic properties of super-
gradients of monetary utility functions.

Section 3 contains our main results. We introduce the economy and define equilibrium
pricing rules. As illustrative example we consider the case with a financial market. We
then provide sufficient and necessary conditions for the existence of (both, finitely additive
and σ-additive) equilibrium pricing rules. Moreover, we show that the existence of an
equilibrium is equivalent to the existence of a Pareto optimal allocation in our framework.
Finally, we provide a game theoretic point of view on the optimality of an equilibrium.

Section 4 contains the key results on the constrained convolution of monetary utility
functions, which are at the core for the proofs of the main theorems. It also briefly discusses
the representative agent view.

In Section 5 we characterize Pareto optimality and resolve some issues regarding the
market clearing.

For the sake of readability, some proofs are postponed to the appendix.

2 Monetary utility functions on subsets of L∞

Throughout this paper, we fix a probability space (Ω,F , P ). All equalities and inequalities
between random variables are always understood in the P -almost sure sense.

L∞ and L1 denote the Banach spaces of all essentially bounded and integrable random
variables, respectively, where random variables which are P -almost surely equal are iden-
tified. (L∞)∗ denotes the dual space of L∞. It is well known, that (L∞)∗ can be identified
with the space of all bounded finitely additive signed measures on (Ω,F) which vanish on
P -null sets. We shall write

(L∞)∗+ := {µ ∈ (L∞)∗ | 〈µ, ξ〉 ≥ 0 ∀ξ ≥ 0} and P :=
{
µ ∈ (L∞)∗+ | 〈µ, 1〉 = 1

}
. (2.1)
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P is the convex set of pricing rules.
A function f : L∞ → R := [−∞,∞] is proper if f <∞ and its domain

dom(f) := {ξ ∈ L∞ | f(ξ) > −∞}

is non-empty (since in this paper we consider concave functions, the signs in this definition
are different than for convex functions as in [16, 30]). For a set M ⊆ L∞, we define the
restriction of f to M as

fM (ξ) :=

{
f(ξ), ξ ∈M
−∞, else.

The conjugate function of f is defined by

f∗(µ) := inf
ξ∈L∞

(〈µ, ξ〉 − f(ξ)), µ ∈ (L∞)∗,

and the set of super-gradients is denoted by

∂f(ξ) = {µ ∈ (L∞)∗ | f(η) ≤ f(ξ) + 〈µ, η − ξ〉 for every η ∈ L∞} , ξ ∈ L∞.

The following characterization is fundamental (see e.g. [16, Proposition 5.1])

µ ∈ ∂f(ξ) ⇔ f(ξ) + f∗(µ) = 〈µ, ξ〉. (2.2)

The conjugate function f∗ : (L∞)∗ → R is concave and σ((L∞)∗, L∞)-upper semi-
continuous. Moreover, if f is proper, concave and σ(L∞, (L∞)∗)-upper semi-continuous
then Fenchel’s Theorem states that

f∗∗(ξ) := inf
µ∈(L∞)∗

(〈µ, ξ〉 − f∗(µ)) = f(ξ),

see e.g. [16, Proposition 4.1, Chapter I].

Definition 2.1 A proper function U : L∞ → R is called monetary utility function if it is

(i) monotone: U(X) ≥ U(Y ) if X ≥ Y ,

(ii) concave: U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y ) for all λ ∈ [0, 1],

(iii) cash invariant: U(X +m) = U(X) +m for all m ∈ R.

Remark 2.2 For a monetary utility function U we thus have ∂U(ξ) ⊂ P for all ξ ∈ L∞.
Indeed, for every µ ∈ ∂U(ξ) we have 〈µ, η〉 ≥ U(ξ+η)−U(ξ) for all η ∈ L∞. For η ≡ c ∈ R
we obtain c〈µ, 1〉 ≥ c, which implies 〈µ, 1〉 = 1. Moreover, 0 ≤ U(ξ + η) − U(ξ) ≤ 〈µ, η〉
for all η ≥ 0 implies µ ∈ (L∞)∗+.

It also follows from the monotonicity and cash invariance that U is R-valued and
Lipschitz continuous with respect to the L∞-norm, and hence σ(L∞, (L∞)∗)-upper semi-
continuous.
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Remark 2.3 U is a monetary utility function if and only if ρ = −U is a convex risk
measure on L∞. For a detailed discussion of convex risk measures we refer to [21] and
references therein. Convex risk measures are a generalization of coherent risk measures,
which were introduced to the mathematical finance literature in [3, 12].

Definition 2.4 A non-empty set M ⊆ L∞ is called cash invariant if X ∈ M implies
X +m ∈M for all m ∈ R.

The following proposition summarizes the crucial properties of the restriction UM of
U to a cash-invariant set M . The robust representation (2.4) below is well known in the
mathematical finance literature when UM is a genuine monetary utility function, see e.g.
[20, 22] and Theorem 4.15 in [21]. However, in view of Remark 2.2, UM is monotone if and
only if M = L∞. We thus give a full proof in Section A. We remark that monotonicity of
risk measures is discussed in some detail in [18].

Proposition 2.5 Let U be a monetary utility function and M ⊆ L∞ be a convex closed
cash invariant set. Then UM is proper, concave, cash invariant, and σ(L∞, (L∞)∗)-upper
semi-continuous. The set of super-gradients satisfies

∂UM (ξ)

{
⊃ ∂U(ξ) ∩ P 6= ∅, ξ ∈M
= ∅, ξ /∈M.

(2.3)

Hence UM can be represented by

UM (ξ) = min
µ∈P

(〈µ, ξ〉 − UM∗(µ)) ∀ξ ∈M. (2.4)

Moreover,
sup

〈µ,η〉≤〈µ,ξ〉
UM (η) = 〈µ, ξ〉 − UM∗(µ) ∀µ ∈ P, ∀ξ ∈M. (2.5)

Property (2.5) distinguishes monetary utility functions and is key for what follows
below. Indeed, it is easy to find non-monetary examples (e.g. Ω = {ω}, L∞ ≡ R, P = {1}
and UM (ξ) = ξ/2) where (2.5) does not hold.

Remark 2.6 The pricing rules µ ∈ P are, by definition, finitely additive. From an
applied point of view, σ-additive pricing rules µ would be desirable, since these are in fact
expectations with respect to absolutely continuous probability measures Q� P . In what
follows, we identify Q � P with its density dQ/dP ∈ Pσ :=

{
Z ∈ L1

+ |E[Z] = 1
}

. With
the usual embedding L1 ⊂ (L1)∗∗ = (L∞)∗ one then has Pσ ⊂ P.

We can then improve the robust representation (2.4) as follows: suppose U is contin-
uous from below , that is, for every increasing sequence (ξn)n∈N ⊂ L∞ which converges to
0 almost surely, it follows U(ξn)→ U(0). Then for any ξ ∈M there exists a Z ∈ Pσ with

UM (ξ) = E[Zξ]− UM∗(Z).

Moreover, ∂UM (ξ) ⊃ ∂U(ξ) ∩ Pσ 6= ∅. For a proof see Section C.
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3 Equilibria and Pareto optimal allocations under constraints

We consider a pure exchange economy with n agents. Denote I = {1, . . . , n}. Agent i
is described by a convex closed cash invariant consumption set Mi ⊆ L∞ and an initial
endowment Xi ∈ Mi. The preferences of agent i are represented by a monetary utility
function Ui. We write

X := X1 + · · ·+Xn

for the aggregate endowment (market portfolio), and define M := M1×· · ·×Mn ⊆ (L∞)n.

Definition 3.1 An allocation (ξ1, . . . , ξn) is called attainable if (ξ1, . . . , ξn) ∈ M and the
clearing condition

∑n
i=1 ξi ≤ X holds.

Attainable allocations are the possible sharings of the aggregate endowment X among the
n agents. Notice that P [ξ1 + · · · + ξn < X] > 0 is allowed, which amounts to say that
markets clear up to a non-negative residual. In economic terms this is usually referred to
as “free disposal”. We provide an interpretation in the context of optimal capital and risk
sharing in [17]. See also Remark 5.2 below for a more formal interpretation.

Definition 3.2 An attainable allocation (ξ1, . . . , ξn) together with a pricing rule µ ∈ P is
called an equilibrium if

Ui(ξi) = sup
〈µ,η〉≤〈µ,Xi〉, η∈Mi

Ui(η) and 〈µ, ξi〉 ≤ 〈µ,Xi〉 i = 1, . . . , n. (3.6)

Hence each agent i optimizes his utility subject to his consumption (ξi ∈Mi) and budget
(〈µ, ξi〉 ≤ 〈µ,Xi〉) constraints.

We now introduce the concept of a pricing rule which supports a uniformly asymptotic
equilibrium.

Definition 3.3 We call µ ∈ P an equilibrium pricing rule if, for every ε > 0, there exists
an ε-equilibrium, that is, an attainable allocation (ξ1, . . . , ξn) such that

〈µ,Xi〉 − ε ≤ 〈µ, ξi〉 ≤ 〈µ,Xi〉 and (3.7)
sup

〈µ,η〉≤〈µ,Xi〉, η∈Mi

Ui(η) ≤ Ui(ξi) + ε ∀i = 1, . . . , n. (3.8)

Note that ε-optimality (3.8) is obtained uniformly across all agents, while the budget
constraints (3.7) apply. Moreover, (ξ1, . . . , ξn, µ) is an equilibrium only if µ is an equilib-
rium pricing rule. Hence, in order that an equilibrium allocation ever be found, the agents
have to trade with respect to an equilibrium pricing rule. It is therefore vital to have a
characterization and existence result for the set of equilibrium pricing rules.

Definition 3.4 The M-constrained convolution of U1, . . . , Un is defined by

�M
i∈IUi(ξ) := sup∑

i ξi≤ξ, ξi∈Mi

n∑
i=1

Ui(ξi), ξ ∈ L∞. (3.9)

The unconstrained convolution of U1, . . . , Un (that is, (3.9) for Mi = L∞) is simply denoted
by �i∈IUi.
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Here is our main existence result.

Theorem 3.5 The set of equilibrium pricing rules equals ∂�M
i∈IUi(X) ⊂ P. Moreover,

there exists an equilibrium pricing rule µ ∈ ∂�M
i∈IUi(X) if and only if one of the following

equivalent conditions holds:

n⋂
i=1

dom
(
UMi∗
i

)
6= ∅, or (3.10)

�M
i∈IUi(X) <∞. (3.11)

In this case, we can interpret �M
i∈IUi as utility function of the representative agent:

�M
i∈IUi(X) = sup

〈µ,Y 〉≤〈µ,X〉
�M
i∈IUi(Y ), (3.12)

and the individual maximum utility values are given by

sup
〈µ,η〉≤〈µ,Xi〉, η∈Mi

Ui(η) = 〈µ,Xi〉 − UMi∗
i (µ). (3.13)

Proof. This follows from (2.2), (2.3), (2.5) and Lemmas 4.2–4.4 below. �

Equation (3.12) states that µ is an equilibrium pricing rule if and only if it makes the
representative agent not wanting to trade away from its endowment X.

Note that the right hand side of (3.13) gives an a priori value for the individual
maximum utility agent i is eligible for in an equilibrium.

Remark 3.6 It is shown in [19] that an equilibrium allocation exists if (Ω,F , P ) is atom-

less and UMi
i is law-invariant (that is, UMi

i (ξ) = UMi
i (η) for all ξ

(d)
= η), for all i = 1, . . . , n.

However, there are situations where an equilibrium pricing rule exists, but an equilibrium
allocation is not attained, see [27, 14] for examples.

The following corollaries give sufficient conditions for the existence of an equilibrium
pricing rule in terms of the unconstrained utility functions Ui.

Corollary 3.7 Any of the following two equivalent conditions implies existence of an
equilibrium pricing rule:

n⋂
i=1

dom (U∗i ) 6= ∅, or (3.14)

�i∈IUi(X) <∞. (3.15)

Proof. Equivalence of (3.14) and (3.15) follows from Theorem 3.5 for Mi = L∞.
Moreover, U∗i ≤ U

Mi∗
i <∞ and therefore dom(U∗i ) ⊆ dom(UMi∗

i ). Hence the corollary
follows from (3.10). �

7



Corollary 3.8 Suppose (Ω,F , P ) is atomless and Ui is law-invariant for all i = 1, . . . , n.
Then there exists an equilibrium pricing rule.

Proof. It is shown in [27] that under the stated assumptions, 1 ∈ dom(U∗i ) for all i. Hence
the claim follows from Corollary 3.7. �

Here is a simple example where an equilibrium pricing rule does not exist.

Example 3.9 Let n = 2 and fix two random variables D1 6= D2 with Di ≥ 0 and
E[Di] = 1. Define the monetary utility functions Ui(ξ) := E[Diξ] and let Mi = L∞. Then
dom(U∗i ) = {Di}, so that (3.10) is not satisfied.

Remark 3.10 In view of Section C we can improve the results of Theorem 3.5 and the
subsequent corollaries as follows. If �M

i∈IUi is continuous from below (see Remark 2.6)
then there exists an equilibrium pricing rule µ ∈ ∂�M

i∈IUi(X)∩Pσ if and only if (3.10) or
(3.11) holds.

A sufficient condition for the continuity from below of �M
i∈IUi is that U1 is continuous

from below and M1 = L∞. Indeed, let (ξn)n∈N ⊂ L∞ be an increasing sequence which
converges to 0 almost surely. In view of (3.9) and the monotonicity of U1 we deduce
(c.f. [4])

sup
k∈N

�M
i∈IUi(ξk) = sup

k∈N
sup
η∈L∞

{
U1(ξk − η) + �i≥2U

Mi
i (η)

}
= sup

η∈L∞
sup
k∈N

{
U1(ξk − η) + �i≥2U

Mi
i (η)

}
= sup

η∈L∞

{
U1(−η) + �i≥2U

Mi
i (η)

}
= �M

i∈IUi(0).

On the other hand, if we drop M1 = L∞ then �M
i∈IUi is not continuous from below in

general (even if U1 is continuous from below). As an example, consider the one-dimensional
linear subspaces M1 = M2 = R ⊂ L∞. Then, for any monetary utility functions U1, U2

and X ∈ L∞, we have

�M
i∈IUi(X) = sup

ξ1+ξ2≤X, ξi∈R
(U1(ξ1) + U2(ξ2)) = sup

ξ1+ξ2≤ess inf X, ξi∈R
(ξ1 + ξ2) = ess inf X,

which is not continuous from below if (Ω,F , P ) is atomless.

The above setup is very general. For the sake of illustration we should have the
following example with a financial market in mind.

Example 3.11 Assume there exists a financial market consisting of m+ 1 securities with
discounted payoffs S0, S1, . . . , Sm ∈ L∞, where S0 ≡ 1 is the numeraire asset. We let

D :=


m∑
j=0

βjSj | βj ∈ R


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denote the space of attainable payoffs by trading. The consumption set of agent i is then
defined as

Mi = Xi +D, (3.16)

that is, any attainable allocation is now of the form ξi = Xi +
∑m

j=0 βi,jSj .
Now suppose that (3.14) holds. Then Corollary 3.7 asserts the existence of equilibrium

prices
sj := 〈µ, Sj〉 j = 0, . . . ,m

of the securities in the financial market, for some equilibrium pricing rule µ ∈ ∂�M
i∈IUi(X).

The budget constraint for agent i in (3.6) boils down to

m∑
j=0

βi,jsj ≤ 0, i = 1, . . . , n,

and by individual utility maximization (3.6), the economy will eventually come to an
equilibrium.

This framework can be extended to include individual convex trading (such as short-
selling) constraints by replacing D in (3.16) by

Di :=


m∑
j=0

βjSj | β0 ∈ R, (β1, . . . , βm) ∈Wi

 ,

for some closed convex setWi ⊆ Rm (note thatXi may already contain shares of S0, . . . , Sm).
Alternatively, we may define the above consumption sets as

Mi = {ξ ∈ Xi +Di | E [(ξ − E [ξ])−] ≤ κi}

for some risk bound κi ≥ 0 such that E [(Xi − E [Xi])−] ≤ κi. The interpretation is clear:
every agent faces individual trading constraints in terms of size (Di) and riskiness (κi) of
its portfolio.

This example can be further extended by replacing E [(ξ − E [ξ])−] by a so called gen-
eralized deviation measure Di : L∞ → R+, recently introduced in [31] (see also [18] for
more examples), such that ξ 7→ ρi(ξ) := E [−ξ] +Di(ξ) becomes a coherent risk measure.
In any case, our results assert the existence of equilibrium prices.

3.1 Pareto optimality

Strongly linked to equilibrium is another optimality concept:

Definition 3.12 An attainable allocation (ξ1, . . . , ξn) is called Pareto optimal if for all
attainable (η1, . . . , ηn) we have

Ui(ηi) ≥ Ui(ξi) ∀i = 1, . . . , n only if Ui(ηi) = Ui(ξi) ∀i = 1, . . . , n.
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It is a classical result from the economic theory (Welfare Theorem) that an equilibrium
is Pareto optimal. Conversely, a Pareto optimal allocation is an equilibrium up to transfer
payments (see Dana and Jeanblanc [10] for the finite dimensional case, and Becker [5] for
a survey of Welfare Theorems in infinite dimensions). Because of the cash-invariance of
Ui and Mi we have in fact equivalence, as stated by the following theorem, the proof of
which is given in Section B.

Theorem 3.13 (ξ1, . . . , ξn, µ) is an equilibrium if and only if

(i) (ξ1, . . . , ξn) is Pareto optimal and

(ii) µ ∈ ∂�M
i∈IUi(X) and

(iii) 〈µ, ξi〉 = 〈µ,Xi〉 for all i = 1, . . . , n.

Conversely, for every Pareto optimal allocation (ξ1, . . . , ξn) and µ ∈ ∂�M
i∈IUi(X) we

have that

(ξ1 + 〈µ,X1 − ξ1〉, . . . , ξn + 〈µ,Xn − ξn〉, µ) is an equilibrium. (3.17)

It is shown in Theorem 5.1 below, see (5.29), that the existence of a Pareto optimal
allocation implies the existence of an equilibrium pricing rule µ ∈ ∂�M

i∈IUi(X) and thus
of an equilibrium.

3.2 Game theoretic view

In this section, we show that no subset (coalition) of agents can overturn the aggregate
market utility of the entire economy. Indeed, we obtain a “fair allocation” of the aggregate
market utility across the agents. Coherent utility function based allocation methods are
further discussed in [13].

An allocation (k1, . . . , kn) ∈ Rn is said to be in the core of the game with characteristic
function

{1, . . . , n} ⊇ S 7→ �M
i∈SUi

(∑
i∈S

Xi

)
:= sup∑

i∈S ηi≤
∑
i∈S Xi, ηi∈Mi

∑
i∈S

Ui(ηi) (3.18)

if
n∑
i=1

ki = �M
i∈IUi(X) and (3.19)

∑
i∈S

ki ≥ �M
i∈SUi

(∑
i∈S

Xi

)
for all S ⊆ {1, . . . , n}. (3.20)

Property (3.19) is simply the Pareto optimality, as we shall see in Theorem 5.1, Prop-
erty (ii), below. We now obtain a stronger version:
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Corollary 3.14 Let (ξ1, . . . , ξn, µ) be an equilibrium. Then

(U1(ξ1), . . . , Un(ξn)) = (〈µ,X1〉 − UM1∗
1 (µ), . . . , 〈µ,Xn〉 − UMn∗

n (µ)) (3.21)

lies in the core of the game (3.18).

Proof. Property (3.19) and (3.21) follow from Theorem 3.13 and (2.5). For (3.20) we
simply calculate∑

i∈S
(〈µ,Xi〉 − UMi∗

i (µ)) = sup∑
i∈S ηi≤

∑
i∈S Xi , ηi∈Mi

∑
i∈S

(〈µ, ηi〉 − UMi∗
i (µ))

≥ sup∑
i∈S ηi≤

∑
i∈S Xi , ηi∈Mi

∑
i∈S

Ui(ηi) = �M
i∈SUi

(∑
i∈S

Xi

)
.

�

For bounded below consumption sets, this “core equivalence” of equilibria is proved in
Gabszewicz [23].

4 On the M-constrained convolution

The unconstrained convolution, �i∈IUi, of U1, . . . , Un (see Definition 3.4) has been studied
in e.g. [4]. By monotonicity of Ui one easily sees that

�i∈IUi(ξ) = sup∑
i ξi≤ξ

n∑
i=1

Ui(ξi) = sup∑
i ξi=ξ

n∑
i=1

Ui(ξi). (4.22)

However, Example 4.1 below shows that

�M
i∈IUi(ξ) > sup∑

i ξi=ξ, ξi∈Mi

n∑
i=1

Ui(ξi) (4.23)

is possible, even if ξ ∈
∑

iMi. Hence a naive extension of (4.22) to the constrained case is
not possible. On the other hand, it follows by inspection that we have equality in (4.23)
if all Mi ≡M coincide and are linear, which is the assumption made in [7].

Example 4.1 Let Ω = {ω1, ω2, ω3}, L∞ ∼= R3, and n = 2. Consider the linear indepen-
dent random variables X0 = (1, 1, 1), X1 = (1, 0, 0), X2 = (−1, 0, 1), and the convex closed
cash invariant sets

M1 = span {X0, X1} , M2 = span {X0, X2} .

The aggregate endowment is X = (0, 0, 1) = X1 + X2. Note that this decomposition is
unique. Let Ui be the worst case utility function, i.e. Ui(ξ) = min {ξ(ω1), ξ(ω2), ξ(ω3)}.
We then calculate

sup
ξ1+ξ2=X , ξi∈Mi

(U1(ξ1) + U2(ξ2)) = U(X1) + U(X2) = 0− 1 = −1.

11



On the other hand, since 0 ≤ X we get

sup
ξ1+ξ2≤X , ξi∈Mi

(U1(ξ1) + U2(ξ2)) ≥ U1(0) + U2(0) = 0.

This proves (4.23).

The following key lemmas provide a characterization and the necessary and sufficient
conditions under which the M-constrained convolution is well-behaved. This is an exten-
sion of [27, Lemma 2.1].

Lemma 4.2 The M-constrained convolution �M
i∈IUi : L∞ → R is monotone, concave and

cash-invariant, and its conjugate function is

(�M
i∈IUi)

∗(µ) =

{∑n
i=1 U

Mi∗
i (µ), if µ ∈ (L∞)∗+

−∞, else.
(4.24)

Proof. Monotonicity and concavity of �M
i∈IUi is obvious (e.g. the proof of [30, Theorem

5.4] carries over to our setup). Cash invariance follows from cash invariance of UMi
i .

Let µ ∈ (L∞)∗, then we have

(�M
i∈IUi)

∗(µ) = inf
ξ∈L∞

(
〈µ, ξ〉 −�M

i∈IUi(ξ)
)

= inf
ξ∈L∞

(
〈µ, ξ〉 − sup∑n

i=1 ξi≤ξ , ξi∈Mi

n∑
i=1

Ui(ξi)

)

≤ inf
ξ∈
∑n
i=1Mi

(
inf∑n

i=1 ξi=ξ ξi∈Mi

n∑
i=1

(〈µ, ξi〉 − Ui(ξi))

)

=
n∑
i=1

inf
ξi∈Mi

(〈µ, ξi〉 − Ui(ξi)) =
n∑
i=1

UMi∗
i (µ).

On the other hand, for µ ∈ (L∞)∗+, we have

(�M
i∈IUi)

∗(µ) = inf
ξ∈L∞

(
〈µ, ξ〉 −�M

i∈IUi(ξ)
)

≥ inf
ξ∈L∞

(
inf∑n

i=1 ξi≤ξ , ξi∈Mi

n∑
i=1

(〈µ, ξi〉 − Ui(ξi))

)

=
n∑
i=1

inf
ξi∈Mi

(〈µ, ξi〉 − Ui(ξi)) =
n∑
i=1

UMi∗
i (µ).

If µ /∈ (L∞)∗+, then there exists ξ ∈ L∞+ with 〈µ, ξ〉 < 0. But �M
i∈IUi(nξ) ≥ 0, for all n ≥ 1,

and hence
(�M

i∈IUi)
∗(µ) ≤ 〈µ, nξ〉 −�M

i∈IUi(nξ) ≤ n〈µ, ξ〉 ∀n ≥ 1.

This proves (4.24). �
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Lemma 4.3 The set of equilibrium pricing rules equals ∂�M
i∈IUi(X) ⊂ P.

Proof. That ∂�M
i∈IUi(X) ⊂ P follows from the monotonicity and cash invariance as in

Remark 2.2.
Now let µ ∈ P be an equilibrium pricing rule, and let ε > 0. By definition, there exists

an attainable allocation (ξ1, . . . , ξn) satisfying (3.7) and (3.8). In view of (2.5) and (4.24),
we thus have

�M
i∈IUi(X) ≥

n∑
i=1

UMi
i (ξi) ≥

n∑
i=1

(
〈µ,Xi〉 − UMi∗

i (µ)− ε
)

≥ 〈µ,X〉 − (�M
i∈IUi)

∗(µ)− nε ≥ �M
i∈IUi(X)− nε.

Since ε > 0 was arbitrary, we conclude that �M
i Ui(X) = 〈µ,X〉− (�M

i∈IUi)
∗(µ), and hence

µ ∈ ∂�M
i∈IUi(X), see (2.2).

Conversely, let µ ∈ ∂�M
i∈IUi(X) ⊂ P and ε > 0. Then, in view of (2.2), �M

i Ui(X) =
〈µ,X〉 − (�M

i∈IUi)
∗(µ) and there exists an attainable allocation (ξ′1, . . . , ξ

′
n) such that

n∑
i=1

Ui(ξ′i) + ε ≥ �M
i Ui(X) = 〈µ,X〉 − (�M

i∈IUi)
∗(µ) ≥

n∑
i=1

(
〈µ,Xi〉 − UMi∗

i (µ)
)
, (4.25)

where we have used (4.24). By rebalancing the cash, see (5.28) below, we can find an
attainable allocation (ξ′′1 , . . . , ξ

′′
n) which satisfies (4.25) instead of (ξ′1, . . . , ξ

′
n) and

〈µ,Xi〉 − UMi∗
i (µ) ≤ Ui(ξ′′i ) +

ε

n
≤ 〈µ, ξ′′i 〉 − U

Mi∗
i (µ) +

ε

n
∀i = 1, . . . , n. (4.26)

Hence 〈µ,Xi〉 ≤ 〈µ, ξ′′i 〉+ ε
n . From

∑
iXi ≥

∑
i ξ
′′
i we conclude that

〈µ,Xi〉 −
ε

n
≤ 〈µ, ξ′′i 〉 ≤ 〈µ,Xi〉+

(n− 1)ε
n

∀i = 1, . . . , n. (4.27)

It is then clear from (4.26),(4.27) and (2.5) that ξi = ξ′′i −
(n−1)ε
n satisfy (3.7) and (3.8).

Thus µ is an equilibrium pricing rule. �

Lemma 4.4 �M
i∈IUi is proper – and thus a monetary utility function – if and only if

(3.10) or (3.11) holds.

Proof. It follows from the monotonicity and cash-invariance (Lemma 4.2) that �M
i∈IUi is

proper if and only if (3.11) holds. Equivalence of (3.10) and (3.11) follows from (4.24)
and the fact that

−∞ < ess inf(ξ −X) +
n∑
i=1

UMi
i (Xi) ≤ �M

i∈IUi(ξ) ≤ 〈µ, ξ〉 − (�M
i∈IUi)

∗(µ), ∀ξ ∈ L∞.

�
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5 Characterization of Pareto optimality

We consider the setup of Section 3 and provide some preliminary results of independent
interest on Pareto optimality, which will be used for the proof of Theorem 3.13. We also
resolve the sub-clearing of markets by introducing a maximally risk averse dummy agent.

First, notice that Pareto optimal allocations are not unique in our setup. Indeed,
for every attainable allocation (ξ1, . . . , ξn) we can arbitrarily rebalance the cash without
changing the aggregate utility

∑n
i=1 Ui(ξi). That is, for every constant vector of cash

transitions (c1, . . . , cn) ∈ Rn with
∑n

i=1 ci = 0 we have that (ξ1 + c1, . . . , ξn + cn) is
attainable and by the cash invariance of Ui

n∑
i=1

Ui(ξi + ci) =
n∑
i=1

Ui(ξi). (5.28)

The following characterization result for Pareto optimality is an extension of [27, 7, 25].

Theorem 5.1 Let (ξ1, . . . , ξn) be an attainable allocation and set ξ0 := X −
∑n

i=1 ξi ≥ 0.
Then the following properties are equivalent:

(i) (ξ1, . . . , ξn) is Pareto optimal,

(ii) �M
i∈IUi(X) =

∑n
i=1 Ui(ξi),

(iii) 〈µ, ξ0〉 = 0 and Ui(ξi) = 〈µ, ξi〉 − UMi∗
i (µ), ∀i = 1, . . . , n, for some µ ∈ P,

(iv) 〈µ, ξ0〉 = 0 and µ ∈ ∂UM1
1 (ξ1) ∩ · · · ∩ ∂UMn

n (ξn) for some µ ∈ P,

(v) U0(ξ0) = 0 and µ ∈ ∂U0(ξ0) ∩ ∂UM1
1 (ξ1) ∩ · · · ∩ ∂UMn

n (ξn) for some µ ∈ P, where
U0(ξ) := ess inf ξ is the worst case utility function.

(vi) µ ∈ ∂V0(ξ0) ∩ ∂UM1
1 (ξ1) ∩ · · · ∩ ∂UMn

n (ξn) for some µ ∈ P, where

V0(ξ) :=

{
0, ξ ∈ L∞+
−∞, else

is the concave indicator function of L∞+ .

Moreover, any of the above properties implies

∂�M
i∈IUi(X) = ∂U0(ξ0) ∩ ∂UM1

1 (ξ1) ∩ · · · ∩ ∂UMn
n (ξn)

= ∂V0(ξ0) ∩ ∂UM1
1 (ξ1) ∩ · · · ∩ ∂UMn

n (ξn) 6= ∅.
(5.29)

Proof. (i)⇒(ii): Suppose that
∑n

i=1 Ui(ξi) < �M
i∈IUi(X). Then there exists an attainable

allocation (η1, . . . , ηn) with
∑n

i=1 Ui(ξi) <
∑n

i=1 Ui(ηi). By rebalancing the cash we can
find an attainable allocation (η′1, . . . , η

′
n) such that U1(ξ1) < U1(η′1) and Ui(ξi) ≤ Ui(η′i)

for all i = 2, . . . , n. But then (ξ1, . . . , ξn) is not Pareto optimal.
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(ii)⇒(i) follows from the definition of Pareto optimality.
(iii)⇒(ii): follows from

�M
i∈IUi(X) ≥

n∑
i=1

Ui(ξi) = 〈µ, ξ0〉+
n∑
i=1

(〈µ, ξi〉 − UMi∗
i (µ))

= 〈µ,X〉 − (�M
i∈IUi)

∗(µ) ≥ �M
i∈IUi(X). (5.30)

(ii)⇒(iii): property (ii) implies (3.11) and thus there exists a µ ∈ ∂�M
i∈IUi(X), by

Lemma 4.4 and (2.3). Then µ ∈ P by Lemma 4.3, and (2.2) yields

�M
i∈IUi(X) = 〈µ,X〉 − (�M

i∈IUi)
∗(µ) ≥

n∑
i=1

(〈µ, ξi〉 − UMi∗
i (µ)) ≥

n∑
i=1

Ui(ξi) = �M
i∈IUi(X).

(5.31)
Hence Ui(ξi) = 〈µ, ξi〉 − UMi∗

i (µ) for all i = 1, . . . , n and 〈µ, ξ0〉 = 0.
(iii)⇔(iv) follows from (2.2).
(iv)⇔(v): it is readily checked that, for µ ∈ P,

〈µ, ξ0〉 = 0 ⇔ µ ∈ ∂U0(ξ0) = {ν ∈ P | 〈ν, ξ0〉 = U0(ξ0)} and U0(ξ0) = 0.

(iv)⇔(vi): follows from the fact that ∂V0(ξ0) = {ν ∈ (L∞)∗+ | 〈ν, ξ0〉 = 0} (note that
∂V0(ξ) = ∅ for ξ /∈ L∞+ ).

Moreover, (5.30) and (5.31) together with (2.2) and the above arguments imply (5.29).�

Remark 5.2 Property (vi) ((v)) says that markets clear in a Pareto optimal allocation by
introducing a dummy agent with utility function V0 (U0). In fact, V0 (U0) is the most risk
averse concave (monetary) utility function, in the sense that every concave (monetary)
utility function W with W (0) = 0 satisfies W ≥ V0 (W ≥ U0), see [18] for a proof.

A Proof of Proposition 2.5

It follows by inspection that UM is proper, concave and cash invariant. Since UM is also
monotone on M , we have that∣∣UM (X)− UM (Y )

∣∣ ≤ ||X − Y ||∞ for all X,Y ∈M.

Hence, for all c ∈ R, the set
{
X ∈ L∞ | UM (X) ≥ c

}
is L∞-closed and, since convex,

therefore σ(L∞, (L∞)∗)-closed (see [32, Theorem 3.12]). Hence UM is σ(L∞, (L∞)∗)-upper
semi-continuous.

From the monotonicity and cash invariance of U it follows that

U(ξ) = U∗∗(ξ) = inf
µ∈P

(〈µ, ξ〉 − U∗(µ)), ξ ∈ L∞, (A.32)

see e.g. [21]. To see that the inf is actually attained, let ξ ∈ L∞, and write g(µ) := 〈µ, ξ〉−
U∗(µ). Since | 〈µ, η〉 | ≤ 〈µ, 1〉 ‖η‖∞ = ‖η‖∞ for all η ∈ L∞, the Alaoglu Compactness
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Theorem ([2, Theorem 5.93]) implies that P is σ((L∞)∗, L∞)-compact. On the other
hand, g is σ((L∞)∗, L∞)-lower semi-continuous. Hence, by a generalization of Weierstrass’
Theorem ([2, Theorem 2.40]), g attains a minimum on P. In view of (2.2), we also have
∂U(ξ) ∩ P 6= ∅.

On the other hand, for every µ ∈ (L∞)∗ we have

U∗(µ) = inf
ξ∈L∞

(〈µ, ξ〉 − U(ξ)) ≤ inf
ξ∈L∞

(〈µ, ξ〉 − UM (ξ)) = UM∗(µ).

From this we obtain, for ξ ∈M and µ ∈ ∂U(ξ),

UM (ξ) = U(ξ) = 〈µ, ξ〉 − U∗(µ) ≥ 〈µ, ξ〉 − UM∗(µ) ≥ UM (ξ),

showing that UM (ξ) = 〈µ, ξ〉 − UM∗(µ). Hence, by (2.2) again, ∂U(ξ) ⊂ ∂UM (ξ). This
proves (2.3) and (2.4).

Let µ ∈ P. Then 〈µ, η + 〈µ, ξ − η〉〉 = 〈µ, ξ〉. Hence

sup
〈µ,η〉≤〈µ,ξ〉

UM (η) = sup
η∈L∞

UM (η + 〈µ, ξ − η〉)

= 〈µ, ξ〉 − inf
η∈L∞

(〈µ, η〉 − UM (η)) = 〈µ, ξ〉 − UM∗(µ),

which is (2.5).

B Proof of Theorem 3.13

Let (ξ1, . . . , ξn, µ) be an equilibrium. Then µ is an equilibrium pricing rule and Prop-
erty (ii) follows from Lemma 4.3. Moreover, UMi

i (ξi) = Ui(ξi) = sup〈µ,ζ〉≤〈µ,ξi〉 U
Mi
i (ζ) and

〈µ, ξi〉 = 〈µ,Xi〉, for all i = 1, . . . , n. Indeed, otherwise by cash invariance ξi+〈µ,Xi−ξi〉 ∈
Mi would yield a strictly bigger utility than ξi. Hence 〈µ, ξ0〉 = 0, for ξ0 as in Theorem 5.1,
and (2.2) implies that µ ∈

⋂n
i=1 ∂U

Mi
i (ξi). Now Theorem 5.1 yields Pareto optimality of

(ξ1, . . . , ξn).
Conversely, let (ξ1, . . . , ξn) be Pareto optimal and µ ∈ ∂�M

i∈IUi(X). Then ηi := ξi +
〈µ,Xi − ξi〉 ∈Mi and ξ0 := X −

∑n
i=1 ξi satisfy, by Theorem 5.1,

n∑
i=1

ηi =
n∑
i=1

ξi + 〈µ, ξ0〉 =
n∑
i=1

ξi ≤ X

and Ui(ηi) = Ui(ξi)+〈µ,Xi−ξi〉 = 〈µ,Xi〉−UMi∗
i (µ) for all i = 1, . . . , n. Hence (η1, . . . , ηn)

is attainable and

Ui(ζi) ≤ 〈µ, ζi〉 − UMi∗
i (µ) ≤ 〈µ,Xi〉 − UMi∗

i (µ) = Ui(ηi)

for all ζi ∈ Mi with 〈µ, ζi〉 ≤ 〈µ,Xi〉. Therefore (η1 . . . , ηn, µ) is an equilibrium, which
proves (3.17).

That (i)–(iii) imply the equilibrium property is a simple consequence of (3.17).
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C σ-additive pricing rules

The proof of Proposition 2.5 in Section A uses that P is σ((L∞)∗, L∞)-compact and the
conjugate function U∗ is σ((L∞)∗, L∞)-upper semi-continuous. Hence if we can provide
sufficient conditions such that the level sets

QKσ = {Q ∈ Pσ |U∗(Q) ≥ −K} , K ∈ N,

are σ(L1, L∞)-compact and U is σ(L∞, L1)-upper semi-continuous, then for any ξ ∈ L∞
we have ∂U(ξ) ∩ Pσ 6= ∅. It turns out that continuity from below of U is enough. This is
the content of our next theorem, which is a generalization of Theorem 3.6 in [12] to the
non-coherent case.

Theorem C.1 For a monetary utility function U with conjugate function U∗ the following
properties are equivalent:

(i) U is continuous from below (see Remark 2.6);

(ii) U is σ(L∞, L1)-upper semi-continuous and QKσ is σ(L1, L∞)-compact for all K ∈ N.

Proof. (i)⇒(ii): Monotonicity and concavity of U implies U(ξ) ≤ U(ξ + η) ≤ 2U(ξ) −
U(ξ − η) for all η ≥ 0. Hence U is continuous from above and thus σ(L∞, L1)-upper
semi-continuous (see [21, Theorem 4.31]).

Now suppose that QKσ is not σ(L1, L∞)-compact for some K ∈ N. Then, by the
Dunford–Pettis Theorem (see e.g. Theorem A.67 in [21]), QKσ is not uniformly integrable.
Hence there exists a decreasing sequence An of elements in F which converges to ∅, such
that

lim sup
n→∞

inf
Z∈QKσ

E[−Z1An ] < 0 .

We thus can find a constant C ∈ N such that lim supn→∞ infZ∈QKσ E[−CZ1An ] ≤ −K−1.
In view of (2.4), we infer

U(−C1An) ≤ inf
Z∈QKσ

{E[−CZ1An ]− U∗(Z)}

≤ −1.

But the sequence −C1An increases to 0, which contradicts (i).
(ii)⇒(i): since U is σ(L∞, L1)-upper semi-continuous, we conclude that that dom(U∗)∩

Pσ is σ((L∞)∗, L∞)-dense in dom(U∗). Hence the σ((L∞)∗, L∞)-closure of QKσ satisfies
QKσ = {µ ∈ P |U∗(µ) ≥ −K}.

Now fix an increasing sequence (ξn)n∈N ⊂ L∞ which converges to 0 almost surely.
Let ε > 0. For An = {ω ∈ Ω | ξn(ω) < −ε} it follows that P [An] → 0. Since (ξn)n∈N is
L∞-bounded, there exists K ∈ N such that

U(ξn)− U(0) = inf
Z∈QKσ

{E[Zξn]− U∗(Z)} − U(0)

≥ inf
Z∈QKσ

E[Z(ξn1An + ξn1Acn)]

≥ −||ξ0||∞ inf
Z∈QKσ

E[Z1An ]− ε .
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The first inequality follows, because U∗ takes only values in [−∞,−U(0)]. By the Dunford–
Pettis Theorem, infZ∈QKσ E[Z1An ] tends to zero. The monotonicity of U implies U(ξn)→
U(0). �
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