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Abstract

1 Introduction

These lecture notes give a brief overview of the geometric properties of interest
rate models and their finite dimensional realizations. We consider interest rate
models of the Heath–Jarrow–Morton (HJM) type, where the forward rates are
driven by a finite dimensional Wiener process. We will see that such models can
be realized as stochastic equations in an infinite dimensional Hilbert space H of
forward curves. Within this framework it is possible to find necessary and suf-
ficient conditions for the existence of finite dimensional realizations. With this
we mean models which produce forward curves that lie in a given parametrized
curve family with finite dimensional parameter. Such curve families arise in
connection with the estimation of the forward curve and are thus an important
object in practice.

From a geometric point of view, these parametrized curve families can be
considered as finite dimensional submanifolds in the Hilbert space H. Thus we
are led to the problem of characterization and existence of finite dimensional
invariant submanifolds for stochastic equations in infinite dimension.

These notes are structured as follows: Section 2 gives a brief introduction
to the main terminology of interest rate models. This part is by no means
self-comprehensive. Readers without prior knowledge of the mathematics of
financial markets are advised to consult a textbook such as [1] or [12].

In Section 3 we sketch the stochastic forward rate modelling methodology
introduced by Heath, Jarrow and Morton [14]. The main result here is the
particular form of the drift of the forward rate dynamics. We then discuss how
forward curves are estimated in the market and how this requires a certain
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consistency with the stochastic HJM model. We give an interpretation of the
HJM forward rate dynamics as a curve-valued process.

This requires some theory of stochastc integrals and equations in a Hilbert
space, which is briefly reviewed in Section 4. Here we follow the lines of [6],
where all proofs can be found in detail. Due to the infinite dimensionality of
H, there are several concepts of a solution to a stochastic equation: mild, weak
and strong. We review them and sketch an existence and uniqueness result for
weak solutions.

In Section 5 we apply these results and see how the HJM equation can be
interpreted in the context of stochastic equations in Hilbert spaces in a mild
sense. As a consequence, we can restate the consistency problem for HJM
models as a stochastic invariance problem.

In Section 6 we recall the definition and basic properties of submanifolds in
a Banach space.

In Section 7 we provide the main characterization of invariant manifolds in
our context.

In Section 8 we apply the general stochastic invariance results and solve
the consistency problem for HJM models stated in Section 5. The obtained
consistency conditions are explicitely checked for the Nelson–Siegel, Svensson
and affine families.

In Section 9 we outline the theory that is used to prove existence of finite
dimensional invariant manifolds. This part uses techniques involving differential
calculus and the Frobenius theorem on Frécht spaces, which is beyond the scope
of these notes. We sketch the main ideas and results.

2 Bond Markets

In this section, we find a brief introduction to the financial terminology for
interest rate models.

One euro today is worth more than one euro tomorrow. The time t value of
1 euro at time T ≥ t is expressed by the zero-coupon bond with maturity
T , P (t, T ), for briefty also T -bond. This is a contract which guarantees the
holder 1 euro to be paid at the maturity date T , see Figure 1.

Figure 1: Cashflow of a T -bond

As a consequence, future cashflows can be discounted, such as coupon-
bearing bonds

C1P (t, t1) + · · ·+ Cn−1P (t, tn−1) + (1 + Cn)P (t, T ). (1)
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In theory we will assume that

• there exists a frictionless market for T -bonds for every T > 0.

• P (T, T ) = 1 for all T .

• P (t, T ) is continuously differentiable in T .

In reality these assumptions are not always satisfied: zero-coupon bonds
are not traded for all maturities, and P (T, T ) might be less than one if the
issuer of the T -bond defaults. Yet, this is a good starting point for doing the
mathematics.

The third condition is purely technical and implies that the term structure
of zero-coupon bond prices T 7→ P (t, T ) is a smooth curve, see Figure 2 for an
example.

Figure 2: Term Structure T 7→ P (t, T )

Note that t 7→ P (t, T ) is a stochastic process since bond prices P (t, T ) are
not known with certainty before t, see Figure 3.

A reasonable assumption would also be that T 7→ P (t, T ) ≤ 1 is a decreasing
curve (which is equivalent to positivity of interest rates). However, already
classical interest rate models imply zero-coupon bond prices greater than 1.
Therefore we leave away this requirement.

2.1 Interest Rates

A prototypical so-called forward rate agreement for t < T < S is given by the
following contractual terms:

• At t: sell one T -bond and buy P (t,T )
P (t,S) S-bonds = zero net investment.

• At T : pay 1 euro.

• At S: obtain P (t,T )
P (t,S) euros.
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Figure 3: T -bond price process t 7→ P (t, T )

The net effect is a forward investment of 1 euro at time T yielding P (t,T )
P (t,S) euros

at S. The corresponding continuously compounded forward rate for [T, S]
prevailing at t is defined as

eR(t;T,S)(S−T ) :=
P (t, T )
P (t, S)

⇔ R(t;T, S) = − logP (t, S)− logP (t, T )
S − T

.

As we let S tend to T , we arrive at the (instantaneous) forward rate with
maturity T prevailing at time t, which is defined as

f(t, T ) := lim
S↓T

R(t;T, S) = −∂ logP (t, T )
∂T

⇔ P (t, T ) = exp

(
−
∫ T

t

f(t, u) du

)
.

The function x 7→ f(t, t + x) is called the forward curve at time t. We call
f(t, t) the (instantaneous) short rate at time t.

The bank account B(t) is the asset which grows at time t instantaneously
at short rate f(t, t). That is,

dB(t) = f(t, t)B(t)dt.

With B(0) = 1 we obtain

B(t) = exp
(∫ t

0

f(s, s) ds
)
.

B is important for relating amounts of currencies available at different times:
in order to have 1 euro in the bank account at time T we need to have

B(t)
B(T )

= exp

(
−
∫ T

t

f(s, s) ds

)
euros in the bank account at time t ≤ T . Note that this discount factor is
stochastic.
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3 HJM Methodology

In this section, we sketch the stochastic forward rate modelling methodology
provided by Heath–Jarrow–Morton (HJM) in [14].

Throughout these notes, we fix a stochastic basis (Ω,F , (Ft),P), satisfying
the usual conditions, carrying a d-dimensional Brownian motion W .

For every T > 0, we let the forward rate

f(t, T ) = f(0, T ) +
∫ t

0

αf (s, T ) ds+
∫ t

0

σf (s, T ) dW (s), t ∈ [0, T ] (2)

follow an Itô process.
Heath, Jarrow and Morton [14] respond to the following question: what are

sufficient conditions on the dynamics (2) such that the implied bond market

P (t, T ) = exp

(
−
∫ T

t

f(t, s) ds

)
is arbitrage-free? With arbitrage we mean any self-financing strategy, that is,
a predictable process

(φ1, . . . , φn),

yielding a profit without risk, that is,

V (T ) := B(T )
∑
i

∫ Ti

0

φi(t) d
(
P (t, Ti)
B(t)

)
≥ 0 and P[V (T ) > 0] > 0,

for some n ∈ N and 0 < T1 < · · · < Tn ≤ T . For more background on the
stochastics of arbitrage-free financial markets, we refer to [1].

For illustration of what arbitrage and its absence means, we consider a de-
terministic world. That is, all bond prices P (t, T ) are known (deterministic).
In this case, absence of arbitrage holds if and only if

P (t, S) = P (t, T )P (T, S), ∀t ≤ T ≤ S. (3)

This is equivalent to

f(t, T ) = f(0, T ), ∀t ∈ [0, T ]. (4)

Indeed, suppose that P (t, S) > P (t, T )P (T, S). Then selling 1 S-bond and
buying P (T, S) T -bonds at t results in a strict positive net gain by time S
without any risk of loss. This is an arbitrage strategy, which is exluded by
assumption. By changing signs, one shows that also P (t, S) < P (t, T )P (T, S)
is impossible, whence (3).

The Fundamental Theorem of Asset Pricing (proved in full generality
in [7], see e.g. [1, 12]) states that there is no arbitrage if and only if there exists
an equivalent probability measure Q ∼ P such that(

P (t, T )
B(t)

)
t∈[0,T ]

is a Q-local martingale, for all T > 0. (5)
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As a consequence, under some additional technical conditions

P (t, T ) = EQ

[
1

B(T )
| Ft

]
is the fair price of 1 euro at T .

Heath, Jarrow and Morton show in [14] that – under some technical condi-
tions – (5) is equivalent to the HJM Drift Condition

αf (t, T ) = σf (t, T ) ·
∫ T

t

σf (t, u) du, ∀t ≤ T, (6)

under Q and for the respective Girsanov transform of W in (2). For pricing
purposes, one therefore usually assumes that Q = P already satsifes (5).

3.1 From HJM to Stochastic Equations

The forward curve x 7→ f(t, t + x) cannot be directly observed on the market.
The forward curve has to be estimated, on a day-by-day basis, from coupon-
bearing bond prices (1) and other related data. Formally, the forward curve
is estimated by a parametrized family of curves x 7→ G(x; z), for some deter-
ministic smooth function G : R+ ×Z → R and a finite-dimensional state space
Z ⊂ Rm. Most prominent examples are the Nelson–Siegel family ([17])

GNS(x; z) = z1 + z2e
−z4x + z3xe

−z4x

and Svensson family ([18])

GS(x; z) = z1 + (z2 + z3x) e−z5x + z4xe
−z6x.

That way, a time series for z ∈ Z is observed which can be used to calibrate
a stochastic model Z(t). This in turn implies an accurate factor model for the
forward curve, f(t, t + x) = G(x;Z(t)). An important question arises: can
this factor modelling be made consistent with the HJM methodology outlined
above? In other words, what are the conditions on G(x; z) and the dynamics of
Z(t) such that the resulting forward curve model f(t, T ) is arbitrage-free, i.e.
satisfies the HJM drift condition (6)?

As a first step, we have to understand the HJM dynamics of t 7→ f(t, t+ ·)
as a curve-valued process. We therefore let {S(t) | t ≥ 0} denote the semigroup
of right shifts, S(t)g(x) := g(x+ t), and rewrite (2)

f(t, x+t) = S(t)f(0, x)+
∫ t

0

S(t−s)αf (s, x+s) ds+
∫ t

0

S(t−s)σf (s, x+s) dW (s).

Hence the function valued process r(t) = r(t, ·) : R+ → R defined by

r(t, x) := f(t, t+ x) (7)
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satisfies

r(t) = S(t)r(0) +
∫ t

0

S(t− s)α(s) ds+
∫ t

0

S(t− s)σ(s) dW (s)

where
α(s, x) := αf (s, s+ x), σ(s, x) := σf (s, s+ x). (8)

As we will see in Section 4 below, it follows that r(t) can be interpreted as mild
solution of the stochastic equation

dr(t) =
(
d

dx
r(t) + α(t)

)
dt+ σ(t) dW (t).

The parametrization (7) and the interpretation of r as solution of a stochastic
PDE was first suggested by Musiela [16]. An infinite dimensional stochastic
analysis perspective on HJM models is also given in the recent book by Carmona
and Tehranchi [4].

4 Stochastic Equations in Infinite Dimensions

In this intermediary section, we provide a short introduction to stochastic equa-
tions in infinite dimensions. A thorough treatment can be found in [6]. Through-
out, we let H be a separable Hilbert space, and {S(t) | t ≥ 0} denotes a strongly
continuous semigroup on H, that is,

S(t) : H → H bounded linear, S(t+ s) = S(t)S(s), S(0) = Id,

t 7→ S(t)h continuous for all h ∈ H,

with infinitesimal generator A : D(A)→ H, defined as

Ah = lim
t→0+

S(t)h− h
t

, D(A) := {h ∈ H | Ah exists in H} .

It is well known that D(A) is dense in H. In fact, for any h ∈ H we have∫ t
0
S(u)h du ∈ D(A) with limt→0+

1
t

∫ t
0
S(u)h du = h. We denote by A∗ :

D(A∗)→ H the adjoint of A, defined as follows:

D(A∗) := {h ∈ H | g 7→ 〈Ag, h〉 is continuous on D(A)}.

By the Hahn–Banach theorem, for every h ∈ D(A∗), there exists then a unique
element A∗h ∈ H with 〈g,A∗h〉 = 〈Ag, h〉 for all g ∈ D(A). By reflexivity of H,
we have A∗∗ = A and D(A∗) is dense in H.

We let F : H → H and B : H → Hd be continuous mappings. A stochastic
equation in H is

dX(t) = (AX(t) + F (X(t))) dt+B(X(t)) dW (t)
X(0) = h0.

(9)
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The stochastic integral in H can be defined for all Y ∈ L where

L :=

{
Y Hd-valued predictable |

∫ T

0

‖Y (t)‖2Hddt <∞ a.s. for all T <∞

}
.

Indeed, the construction is just as in Rd. We remark that it is also possible to
define an infinite dimensional Brownian motion and its stochastic integrals, see
[6]. This, however, requires additional effort and is beyond the scope of these
notes.

Write

L2
T :=

{
Y ∈ L | E

[∫ T

0

‖Y (t)‖2Hd dt

]
<∞

}
.

We now quote four technical lemmas. For a proof see [6].

Lemma 4.1. For Y ∈ L2
T we have

E

∥∥∥∥∥
∫ T

0

Y (t) dW (t)

∥∥∥∥∥
2

H

 = E

[∫ T

0

‖Y (t)‖2Hd dt

]
.

Lemma 4.2 (Stochastic Fubini Theorem). Let (E, E , µ) be a probability space
and let

Y : ([0, T ]× Ω× E,P ⊗ E)→ (Hd,B(Hd)), (t, ω, x) 7→ Y (t, ω, x)

be a measurable mapping with∫ T

0

∫
E

‖Y (t, ω, x)‖2Hd µ(dx) dt <∞ a.s.

Then there exists an FT⊗E-measurable version of the stochastic integral
∫ T
0
Y (t, x) dW (t)

which is µ-integrable a.s. and∫
E

∫ T

0

Y (t, x) dW (t)µ(dx) =
∫ T

0

∫
E

Y (t, x)µ(dx) dW (t) a.s.

Lemma 4.3. Let Y ∈ L, then

Z(t) =
∫ t

0

S(t− s)Y (s) dW (s)

has a predictable version.

Lemma 4.4. Let Y be an H-valued predictable process. Then the random set
{Y ∈ D(A)} and

Z(t, ω) :=

{
AY (t, ω), if Y (t, ω) ∈ D(A)
0, else

are predictable.
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4.1 Solution Concepts

Due to the infinite dimensionality of H and the unboundedness of A, there are
several concepts of a solution to (9). Indeed, let X be an H-valued predictable
process and τ > 0 a stopping time with∫ t∧τ

0

(
‖X(s)‖H + ‖F (X(s))‖H + ‖B(X(s))‖2Hd

)
ds <∞ a.s. ∀t <∞.

We call X a

(i) local mild solution of (9) if

X(t) = S(t)h0+
∫ t

0

S(t−s)F (X(s)) ds+
∫ t

0

S(t−s)B(X(s)) dW (s) ∀t ≤ τ

(ii) local weak solution of (9) if, for all ζ ∈ D(A∗),

〈ζ,X(t)〉 = 〈ζ, h0〉+
∫ t

0

(〈A∗ζ,X(s)〉+ 〈ζ, F (X(s))〉) ds

+
∫ t

0

〈ζ,B(X(s))〉dW (s) ∀t ≤ τ

(iii) local strong solution of (9) if X ∈ D(A) dt⊗dP-a.s.,
∫ t∧τ
0
‖AX(s)‖ ds <

∞ a.s. and

X(t) = h0 +
∫ t

0

(AX(s) + F (X(s))) ds+
∫ t

0

B(X(s)) dW (s) ∀t ≤ τ.

The stopping time τ is called the life time of X. If τ =∞ then we skip the
word “local” in the above definitions.

Remark 4.5. In view of Lemma 4.3 we understand that the implicitly t-dependent
stochastic integral in (i) is predictable. Moreover, the integrand AX in (iii) is
to be interpreted in the sense of Lemma 4.4.

The next lemmas state how these concepts of a solution are related.

Lemma 4.6. strong ⇒ weak.

Proof. Follows from U
∫
Y dW =

∫
UY dW if U ∈ L(H;E), Y ∈ L.

Lemma 4.7. weak ⇒ mild.

Proof. Let ζ ∈ D(A∗), φ ∈ C1([0, T ]; R). Then

d〈ζφ(t), X(t)〉 = d (〈ζ,X(t)〉φ(t))
= (〈ζφ′(t) +A∗ζφ(t), X(t)〉+ 〈ζφ(t), F (X(t))〉) dt+ 〈ζφ(t), B(X(t))〉dW (t)
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Since the elements ζ(t) = ζφ(t) lie dense in C1([0, T ];D(A∗)) we have

〈ζ(t), X(t)〉 =
∫ t

0

(〈ζ ′(s) +A∗ζ(s), X(s)〉+ 〈ζ(s), F (X(s))〉) ds

+
∫ t

0

〈ζ(s), B(X(s))〉dW (s)

for all ζ ∈ C1([0, T ];D(A∗)). In particular, for ζ(s) := S∗(t − s)ζ with ζ ∈
D(A∗), we have

ζ ′(s) = −A∗ζ(s)

and hence

〈ζ,X(t)〉 =
∫ t

0

〈ζ, S(t− s)F (X(s))〉ds+
∫ t

0

〈ζ, S(t− s)B(X(s))〉dW (s).

Since D(A∗) is dense in H, the claim follows.

Lemma 4.8. If B(X) ∈ L2
T , then mild ⇒ weak.

Proof. For simplicity we assume F = 0. Write

Y (t) :=
∫ t

0

S(t− s)B(X(s)) dW (s).

By assumption the stochastic Fubini theorem 4.2 applies:∫ t

0

〈A∗ζ, Y (s)〉 ds =
∫ t

0

∫ s

0

〈A∗ζ, S(s− u)B(X(u))〉 dW (u)ds

=
∫ t

0

〈
A∗ζ,

∫ t

u

S(s− u)B(X(u)) ds
〉
dW (u)

=
∫ t

0

〈
ζ,A

∫ t−u

0

S(s)B(X(u)) ds
〉
dW (u)

=
∫ t

0

〈ζ, S(t− u)B(X(u))−B(X(u))〉 dW (u)

= 〈ζ, Y (t)〉 −
∫ t

0

〈ζ,B(X(u))〉 dW (u),

for all ζ ∈ D(A∗).

In view of Lemmas 4.6–4.8 it is obvious that the above solution concepts
coincide if A is bounded, which is in particular the case if H is finite-dimensional.
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4.2 Existence and Uniqueness

For proving existence of a solution to (9) we will use a fix point argument.

Definition 4.9. G : H → E is (locally) Lipschitz continuous if (for all
n ∈ N)

‖G(x)−G(y)‖E ≤ C‖x− y‖H
for all x, y ∈ H (with ‖x‖ ≤ n, ‖y‖ ≤ n) and a constant C (C = C(n)).

The following result is from Theorem 7.4 in [6]. We will sketch the proof
below.

Theorem 4.10. Suppose F and B are Lipschitz continuous. Then, for all h0 ∈
H, there exists a unique continuous weak solution X = Xh0 of (9). Moreover,
for every p ≥ 2 and T <∞, there exists a constant K = K(p, T ) with

E

[
sup
t∈[0,T ]

‖X(t)‖pH

]
≤ K (1 + ‖h0‖pH) . (10)

This existence result can be localized.

Corollary 4.11. Suppose F and B are locally Lipschitz continuous. Then, for
all h0 ∈ H, there exists a unique continuous local weak solution X = Xh0 of (9).

Proof of Corollary 4.11. Let h0 ∈ H. Set R := 2‖h0‖H and define

F̃ (h) := F ((R/‖h‖H ∧ 1)h), B̃(h) := B((R/‖h‖H ∧ 1)h).

Then F̃ and B̃ are Lipschitz continuous. Hence there exists a unique continuous
weak solution X̃ of

dX =
(
AX + F̃ (X)

)
dt+ B̃(X) dW, X(0) = h0.

Define the stopping time τ := inf{t ≥ 0 | ‖X̃(t)‖H ≥ R}. Then τ > 0 and
X(t) := X̃(t ∧ τ) is a continuous local weak solution of (9) with lifetime τ .

If X is a continuous local weak solution of (9) then, by the above arguments,
it is unique on [0, τn] for n ≥ 2 where τn := inf{t ≥ 0 | ‖X(t)‖H ≥ n‖h0‖}. Now
use that τn ↑ ∞.

Sketch of Proof of Theorem 4.10. Uniqueness: let X1, X2 be two mild solutions
of (9). Fix R > 0 and define the stopping time

τ := inf
{
t ≤ T |

∫ t

0

‖F (Xi(s))‖H ds ≥ R or∫ t

0

‖B(Xi(s))‖2Hd ds ≥ R for i = 1 or i = 2
}
.
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Then Xτ
i (t) := Xi(t ∧ τ) satisfy

Xτ
1 (t)−Xτ

2 (t) =
∫ t∧τ

0

S(t ∧ τ − s) (F (Xτ
1 (s))− F (Xτ

2 (s))) ds

+
∫ t∧τ

0

S(t ∧ τ − s) (B(Xτ
1 (s))−B(Xτ

2 (s))) dW (s)

and hence

E
[
‖Xτ

1 (t)−Xτ
2 (t)‖2H

]
≤ CE

[(∫ t∧τ

0

‖F (Xτ
1 (s))− F (Xτ

2 (s))‖H ds
)2
]

+ CE
[∫ t∧τ

0

‖B(Xτ
1 (s))−B(Xτ

2 (s))‖2Hd ds
]

≤ C
∫ t

0

E
[
‖Xτ

1 (s)−Xτ
2 (s)‖2H

]
ds.

Gronwall’s Lemma (0 ≤ f(t) ≤ ε + M
∫ t
0
f(s) ds ⇒ f(t) ≤ εeMt) implies

E
[
‖Xτ

1 (t)−Xτ
2 (t)‖2H

]
= 0. This is true for all R > 0, hence X1(t) = X2(t)

a.s. for all t.
Existence: Let p ≥ 2 and define the Banach space of H-valued predictable

processes Hp with norm

‖Y ‖pp := sup
t∈[0,T ]

E [‖Yt‖pH ] .

One can show that

K(Y )(t) := S(t)h0 +
∫ t

0

S(t− s)F (Y (s)) ds+
∫ t

0

S(t− s)B(Y (s)) dW (s)

maps Hp into Hp and ‖K(Y1)−K(Y2)‖p ≤ C(T )‖Y1 − Y2‖p.
The constant C(T ) is independent of the initial condition h0 and can be made

< 1 for T small enough. Then K has a unique fix point X in Hp. One then
proceeds for [0, T ], [T, 2T ],. . . (with random initial condition) to derive global
existence.

Notice that E [‖X(t)‖p] ≤ C(T, p)
(
‖h0‖p +

∫ t
0

E [‖X(s)‖p] ds
)

, ∀t ≤ T .
Hence Gronwall’s Lemma implies (10). From Lemma 4.8 we deduce that X
is a weak solution.

Finally, from Lemma 4.12 below we obtain a continuous modification of X,
whence the theorem is proved.

Lemma 4.12. Let Y ∈ L2
T with E

[∫ T
0
‖Y (t)‖p

Hd
dt
]
<∞, and write

Z(t) :=
∫ t

0

S(t− s)Y (s) dW (s), Zn(t) := eAnt
∫ t

0

e−AnsY (s) dW (s)
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where the bounded linear operators An := nA
∫
e−ntS(t) dt = nA(n− A)−1 are

the Yosida approximations (limnAnx = Ax if x ∈ D(A)). Then

lim
n

E

[
sup
t∈[0,T ]

‖Z(t)− Zn(t)‖p
]

= 0.

Hence Z has a continuous modification.

Sketch of Proof of Lemma 4.12. Let α ∈ (1/p, 1/2), and write (stochastic Fu-
bini)

Z(t) =
sin(πα)

π

∫ t

0

∫ t

u

(t− s)α−1(s− u)−α ds︸ ︷︷ ︸
= π

sin(πα)

S(t− u)︸ ︷︷ ︸
=S(t−s)S(s−u)

Y (u) dW (u)

=
sin(πα)

π

∫ t

0

(t− s)α−1S(t− s)
∫ s

0

(s− u)−αS(s− u)Y (u) dW (u)︸ ︷︷ ︸
=:U(s)

ds

Using Hölder’s inequality (α > 1/p⇒ (α− 1)p/(p− 1) > −1), we deduce

sup
t∈[0,T ]

‖Z(t)‖p ≤ C sup
t∈[0,T ]

(∫ t

0

(t− s)
(α−1)p
p−1 ds

)p−1 ∫ T

0

‖U(s)‖pH ds.

Moreover, from [6, Lemma 7.2] and Young’s convolution inequality,∫ T

0

E [‖U(s)‖pH ds] ≤ CE

[∫ T

0

‖Y (u)‖p
Hd

du

]
.

Define Un(s) for Zn as above, and decompose

Z(t)− Zn(t) =
sin(πα)

π

∫ t

0

(
S(t− s)− e(t−s)An

)
(t− s)α−1U(s) ds

+
sin(πα)

π

∫ t

0

e(t−s)An(t− s)α−1 (U(s)− Un(s)) ds =: In(t) + Jn(t).

Eventually, one can show that

E

[
sup
t∈[0,T ]

‖In(t)‖pH

]
→ 0 and E

[
sup
t∈[0,T ]

‖Jn(t)‖pH

]
→ 0.

5 Forward Curve Space

In order to carry over the HJM methodology to the above stochastic equation
framework, we need to define a reasonable Hilbert space. Since in practice
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the forward curve is obtained by smoothing data points using smooth fitting
methods it is reasonable to assume∫

R+

| d
dx
r(t, x)|2 dx <∞.

Moreover, the curve flattens for large time to maturity x. There is no reason to
believe that the forward rate for an instantaneous loan that begins in 10 years
differs much from one which begins one day later. We take this into account
by penalizing irregularities of rt(x) for large x by some increasing weighting
function w(x) ≥ 1, that is,∫

R+

| d
dx
r(t, x)|2 w(x)dx <∞.

However, this does not define a norm yet since constant functions are not dis-
tinguished. So we add the square of the short rate |r(t, 0)|2.

Let us recall a few facts from real analysis. Let h ∈ L1
loc(R+). The weak

derivative h′ ∈ L1
loc(R+) of h, if it exists, is uniquely specified by the property∫

R+

h(x)ϕ′(x) dx = −
∫

R+

h′(x)ϕ(x) dx, ∀ϕ ∈ C1
c ((0,∞)).

If h has a weak derivative h′ then there exists an absolutely continuous repre-
sentative of h, still denoted by h, such that

h(x)− h(y) =
∫ x

y

h′(u) du, ∀x, y ∈ R+. (11)

Accordingly, the following definition makes sense.

Definition 5.1. Let w ∈ C1(R+; [1,∞)) be increasing such that

w−
1
3 ∈ L1(R+). (12)

We write
‖h‖2w := |h(0)|2 +

∫
R+

|h′(x)|2 w(x)dx

and define

Hw :=
{
h ∈ L1

loc(R+) | ∃h′ ∈ L1
loc(R+) and ‖h‖w <∞

}
.

The choice of Hw is established by the next theorem.

Theorem 5.2. Hw equipped with ‖ · ‖w is a separable Hilbert space satisfying

(H1) Hw ⊂ C(R+; R) and Jx(h) := h(x) is continuous

(H2) S(t)f(x) := f(x + t), t ≥ 0, is a strongly continuous semigroup with
infinitesimal generator d/dx and D(d/dx) = {h ∈ Hw | h′ ∈ Hw}

14



(H3) ‖Sh‖w ≤ K‖h‖2w ∀h ∈ Hw,0 for some constant K where

Hw,0 := {h ∈ Hw | h(∞) = 0}, Sf(x) := f(x)
∫ x

0

f(y) dy. (13)

Moreover, S : Hw,0 → Hw,0 is locally Lipschitz continuous.

Remark 5.3. The definition (13) of S becomes clear in view of the HJM drift
condition (6) and (8). Indeed, (6) simply translates to

α =
d∑
j=1

Sσj . (14)

Examples of admissible weighting functions w which satisfy condition (12):

Example 1 w(x) = eαx, for α > 0.

Example 2 w(x) = (1 + x)α, for α > 3.

5.1 HJM Revisited

Now let σ : Hw → Hd
w,0 be locally Lipschitz continuous. From Theorem 5.2 we

conclude that
α :=

∑
j

Sσj : Hw → Hw

is locally Lipschitz continuous. Hence σ fully determines a HJM model.

Theorem 5.4. The continuous weak solution r (if it exists globally) of

dr(t) =
(
d

dx
r(t) + α(r(t))

)
dt+ σ(r(t)) dW (t)

r(0) = r0

(15)

induces an arbitrage-free bond market

P (t, T ) = exp

(
−
∫ T−t

0

r(t, x) dx

)

with initial term structure P (0, T ) = exp
(
−
∫ T
0
r0(x) dx

)
.

Idea of Proof. Show that f(t, T ) = r(t, T − t) and P (t, T ), 0 ≤ t ≤ T , are Itô
processes, and apply the HJM drift condition (14). See [8, Section 4].

Remark 5.5. Recall the deterministic case (σ = 0) in (4): d
dtr(t, x) = d

dxr(t, x).
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5.2 Back to the Consistency Problem

We can now restate the consistency problem of Section 3.1: is there a HJM
model σ which is consistent with the Nelson–Siegel family G = GNS? In other
words, can we find an R4-valued diffusion process Z and a volatility map σ such
that

r(t, x) = G(x;Z(t))

solves the corresponding HJM equation (15)? Björk et al. [2, 3] translate this

Figure 4: Geometric View of the Consistency Problem

in a geometric problem: consider G := G(Z) as submanifold in Hw and check
whether G is invariant under the stochastic dynamic equation (15), see Figure 4.
This is a stochastic invariance problem.

6 Submanifolds in Banach Spaces

For the convenience of the reader, we give a brief introduction to submanifolds.
We follow [8, Section 6.1]. All proofs can be found there.

Let E denote a reflexive Banach space, E′ its dual space, 〈e′, e〉 the duality
pairing. For a direct sum decomposition E = E1 ⊕ E2 we denote by Π(E2,E1)

the induced projection onto E1.

Definition 6.1. A subset M ⊂ E is an m-dimensional (regular) Ck sub-
manifold with boundary of E, if for all h ∈M there is a neighborhood U in
E, an open set V ⊂ Rm≥0 := {ym ≥ 0} and a Ck map φ : V → E such that

(i) φ : V → U ∩M is a homeomorphism, and φ(V ∩ {ym = 0}) = U ∩ ∂M
(hence ∂M is a submanifold)
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(ii) Dφ(y) is one to one for all y ∈ V .

The map φ is called a parametrization in h.
M is a linear submanifold if for all h ∈M there exists a linear parametriza-

tion of the form φ(y) = h+
∑m
i=1 yiei in h.

In what follows,M denotes an m-dimensional Ck submanifold with bound-
ary of E (k ≥ 2). Using the inverse mapping theorem, one can show that M
shares the characterizing property of a Ck manifold:

Lemma 6.2. Let φi : Vi → Ui ∩M, i = 1, 2, be two parametrizations such that
W := U1 ∩ U2 ∩M 6= ∅. Then the change of parameters

φ−1
1 ◦ φ2 : φ−1

2 (W )→ φ−1
1 (W )

is a Ck diffeomorphism.

Definition 6.3. For h ∈M the tangent space to M at h is the subspace

ThM := Dφ(y)Rm, y = φ−1(h),

where φ : V ⊂ Rm →M is a parametrization in h. Moreover,

Th∂M = Dφ(y){zm = 0}, ThM≥0 := Dφ(y)Rm≥0, h ∈ ∂M.

By Lemma 6.2, the definition of ThM is independent of the choice of the
parametrization.

A vector field X :M3 h 7→ X(h) ∈ ThM can be represented locally as

X(h) = Dφ(y)α(y), y = φ−1(h), ∀h ∈ U ∩M, (16)

where φ : V → U ∩M is a parametrization and α is an Rm-valued vector field
on V (uniquely determined by φ).

Definition 6.4. The vector field X is of class Cr, 0 ≤ r < k, if for any
parametrization φ the corresponding Rm-valued vector field α in (16) is of class
Cr.

Again by Lemma 6.2 this is a well defined concept.

Remark 6.5. The above definitions and properties of submanifolds carry over to
Fréchet spaces E, which we will consider in Section 9 below. We note, however,
that differential calclulus is more difficult on such general spaces.

For further use, we may and will assume that any parametrization φ : V →
U ∩M extends to φ ∈ Ckb (Rm;E): let h ∈ U ∩M and y = φ−1(h). There exists
ε > 0 such that the open ball B2ε(y) = {v ∈ Rm | |y − v| < 2ε} is contained
in V . On B2ε(y) one can define a function ψ ∈ C∞(Rm; [0, 1]) satisfying ψ ≡ 1
on Bε(y) and supp(ψ) ⊂ B2ε(y). Since φ is a homeomorphism there exists an
open neighborhood U ′ of h in E with φ(Bε(y)) = U ′ ∩M. Set φ̃ := ψφ. Then
φ̃ ∈ Ckb (Rm;E) and φ̃|Bε(y) = φ|Bε(y) : Bε(y)→ U ′ ∩M is a parametrization in
h.

The following result is crucial for our discussion of weak solutions to stochas-
tic equations viable in M.
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Proposition 6.6. Let D ⊂ E′ be a dense subset. Then for any h ∈ M there
exist linearly independent elements e′1, . . . , e

′
m in D and a parametrization φ :

V → U ∩M in h such that

φ(〈e′1, z〉, . . . , 〈e′m, z〉) = z, ∀z ∈ U ∩M.

Moreover,
E = ThM⊕ E2, ∀h ∈ U ∩M,

where E2 :=
⋂m
i=1 ker(e′i), and the induced projections are given by

Π(E2,ThM) = Dφ(y)(〈e′1, ·〉, . . . , 〈e′m, ·〉), y = φ−1(h), ∀h ∈ U ∩M. (17)

Idea of Proof. The idea is to find a decomposition E = E1 ⊕ E2, dimE1 = m,
such that E1 is “not too far” from ThM and such that

Π(E2,E1) = 〈e′1, ·〉e1 + · · ·+ 〈e′m, ·〉em

with e′1 . . . , e
′
m ∈ D. Thereby the expression “not too far” means that Π(E2,E1)|ThM :

ThM→ E1 is an isomorphism.

Let B ∈ C1(E;E) be such that B(h) ∈ ThM; that is, B|M is a C1 vector
field on M. Let h ∈M and y = φ−1(h). Then

c(t) := φ(y + tDφ(y)−1B(h))

satisfies
d

dt
B(c(t))|t=0 = DB(h)B(h). (18)

On the other hand, in view of (17) we have

d

dt
B(c(t))|t=0 =

d

dt
Dφ(〈e′, c(t)〉)〈e′, B(c(t))〉|t=0

= D2φ(y)(〈e′, B(h)〉, 〈e′, B(h)〉) +Dφ(y)〈e′, DB(h)B(h)〉. (19)

We have thus proved:

Lemma 6.7.

DB(h)B(h) = Dφ(y)〈e′, DB(h)B(h)〉+D2φ(y)(〈e′, B(h)〉, 〈e′, B(h)〉)

is the decomposition according to E = ThM⊕ E2, for all h ∈ U ∩M.

7 Invariant Manifolds

In this section we provide the main characterization of invariant manifolds in our
context. In what follows, we let M denote an m-dimensional C2 submanifold
of H. We follow [8, Section 6.2]. All proofs can be found there.
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Since H is separable, there exists a countable open covering (Uk)k∈N of M
and for each k a parametrization φk : Vk ⊂ Rm → Uk ∩ M, where φk ∈
C2
b (Rm;H).

Moreover, since D(A∗) is dense in H, by Proposition 6.6 we can assume that
for each k there exists a linearly independent set {ζk,1, . . . , ζk,m} in D(A∗) such
that

φk(〈ζk,1, h〉, . . . , 〈ζk,m, h〉) = h, ∀h ∈ Uk ∩M. (20)

Notation: we write 〈ζk, h〉 instead of (〈ζk,1, h〉, . . . , 〈ζk,m, h〉).
Now consider the stochastic equation in H

dX(t) = (AX(t) + F (X(t))) dt+B(X(t)) dW (t)
X(0) = h0.

(21)

Assumption: B ∈ C1(H;Hd) and F locally Lipschitz continuous.
In view of Corollary 4.11 there exists a unique continuous local weak solution

X of (21) with life time τ > 0.
We know that in finite-dimensional spaces, weak solutions are strong so-

lutions. This fact carries over to the non-linear case of a finite-dimensional
manifold.

Theorem 7.1 (Regularity). Suppose

X(t) ∈M ∀t ≤ τ.

Then X is a local strong solution of (21).

Conversely, it turns out that an invariant manifold has to lie in D(A). We
first give a rigorous definition of stochastic invariance.

Definition 7.2. M is called locally invariant for (21) if, for all h0 ∈ M,
there exists a stopping time τ = τ(h0) > 0 with Xh0(t) ∈M for all t ≤ τ .

We now obtain the familiar tangent conditions for stochastic invariance as
in the finite-dimensional case.

Theorem 7.3 (Main Characterization). The following are equivalent:

(i) M is locally invariant for (21)

(ii) M⊂ D(A) and

Ah+ F (h)− 1
2

∑
j

DBj(h)Bj(h) ∈ ThM (ThM≥0) (22)

Bj(h) ∈ ThM (Th∂M) (23)

for all h ∈M (h ∈ ∂M).

If, in addition, M is closed then X(t) ∈M for all t ≥ 0.
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A key step in proving Theorem 7.3 is the following lemma, wich is based on
Lemma 6.7.

Lemma 7.4. Suppose U∩M ⊂ D(A), and let φ : V → U∩M be a parametriza-
tion satisfying (20). Then (22) and (23) hold for all h ∈ U ∩M if and only
if

Ah+ F (h) = Dφ(h) (〈A∗ζ, h〉+ 〈ζ, F (h)〉)

+
1
2

∑
j

D2φ(y) (〈ζ,Bj(h)〉〈ζ,Bj(h)〉) (24)

Bj(h) = Dφ(y)〈ζ,Bj(h)〉, (25)

where y = 〈ζ, h〉, for all h ∈ U ∩M.

7.1 Consistency Conditions in Local Coordinates

For applications it is convenient to express the consistency conditions (22) and
(23) in local coordinates.

Assume M is locally invariant for (21). Let φ : V → U ∩ M be any
parametrization, and define

Dφ(y)β(y) := Aφ(y) + F (φ(y))− 1
2

∑
j

DBj(φ(y))Bj(φ(y)),

Dφ(y)ρj(y) := Bj(φ(y))

(26)

(β(y) ∈ Rm≥0 and ρj(y) ∈ {zm = 0} if ym = 0). As shown above

DBj(φ(y))Bj(φ(y)) =
d

dt
Bj (φ(y + tρj(y))) |t=0

=
d

dt
(Dφ(y + tρj(y))ρj(y + tρj(y))) |t=0

= D2φ(y) (ρj(y), ρj(y)) +Dφ(y) (Dρj(y)ρj(y))

Plugging this in (26), we obtain

Theorem 7.5. Consistency conditions (22)–(23) hold for all h ∈ U ∩M if and
only if

Aφ(y) + F (φ(y))− 1
2

∑
j

D2φ(y) (ρj(y), ρj(y)) = Dφ(y)b(y) (27)

Bj(φ(y)) = Dφ(y)ρj(y) (28)

for all y ∈ V , where b(y) := β(y) + 1
2

∑
j Dρj(y)ρj(y).

Moreover, X is a continuous local strong solution of (21) in U ∩M if and
only if X = φ(Y ) where

dY (t) = b(Y (t)) dt+ ρ(y(t)) dW (t), Y (0) = φ−1(X(0)). (29)
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8 Consistent Forward Curve Families

We now apply the above general results on stochastic invariance and solve the
consistency problem for HJM models stated in Section 5.2.

Let G ∈ C2(Rm;Hw) be a parametrized forward curve family, and suppose
that G : V ⊂ Rm → G(V ) is a parametrization.

Assume σ ∈ C1(Hw;Hd
w,0), and remember the HJM equation, with α =∑

j S(σj):

dr(t) =
(
d

dx
r(t) + α(r(t))

)
dt+ σ(r(t)) dW (t)

r(0) = r0.

(30)

We say that G is consistent with the HJM model σ if G(V ) is locally invariant
for (30). From Theorem 7.5 we can deduce the following explicit consistency
condition.

Theorem 8.1. G is consistent with the HJM model σ if and only if there exist
b : V → Rm and ρ : V → Rm×d continuous such that

∂xG(x, z) = b(z) · ∇zG(x, z)

+
∑
k,l

akl(z)
(

1
2
∂zk∂zlG(x, z)− ∂zkG(x, z)

∫ x

0

∂zlG(y, z) dy
)

(31)

for all (x, z) ∈ R+ × V , where a := ρT · ρ is the diffusion matrix.

The consistency condition (31) can be explicitely checked, and we will do
this below for the Nelson–Siegel, Svensson and affine families.

8.1 Nelson–Siegel Family

Recall the form of the Nelson–Siegel curves

GNS(x, z) = z1 + (z2 + z3x)e−z4x.

The consistency conditions (31) turn out to be very restrictive in this case.

Proposition 8.2. There is no non-trivial diffusion process Z that is consistent
with the Nelson–Siegel family. In fact, the unique solution to (31) is

a(z) = 0, b1(z) = b4(z) = 0, b2(z) = z3 − z2z4, b3(z) = −z3z4.

The corresponding state process is

Z1(t) ≡ z1,
Z2(t) = (z2 + z3t) e−z4t,

Z3(t) = z3e
−z4t,

Z4(t) ≡ z4,

where Z(0) = (z1, . . . , z4) denotes the initial point.

Proof. Left to the reader.
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8.2 Svensson Family

Here the forward curve is

GS(x, z) = z1 + (z2 + z3x)e−z5x + z4xe
−z6x.

GS has more degrees of freedom than GNS . It turns out that there exists a
non-trivial consistent HJM model.

Proposition 8.3. The only non-trivial HJM model that is consistent with the
Svensson family is the Hull–White extended Vasicek short rate model

dr(t, 0) =
(
z1z5 + z3e

−z5t + z4z
−2z5t − z5r(t, 0)

)
dt+

√
z4z5e

−z5t dW ∗(t),

where (z1, . . . , z5) are given by the initial forward curve

f(0, x) = z1 + (z2 + z3x)e−z5x + z4xe
−2z5x

and W ∗ is some Brownian motion. The form of the corresponding state process
Z is given in the proof below.

Proof. See [8, Section 3.7.2] or [9].

8.3 Affine Term Structures

We now look at the simplest, namely the affine case:

G(x, z) = g0(x) + g1(x)z1 + · · · gm(x)zm.

Here the second order z-derivatives vanish, and (31) reduces to

∂xg0(x)+
m∑
i=1

zi∂xgi(x) =
m∑
i=1

bi(z)gi(x)− 1
2
∂x

 m∑
i,j=1

aij(z)Gi(x)Gj(x)

 , (32)

where
Gi(x) :=

∫ x

0

gi(u) du.

Integrating (32) yields

g0(x)− g0(0) +
m∑
i=1

zi(gi(x)− gi(0)) =
m∑
i=1

bi(z)Gi(x)− 1
2

m∑
i,j=1

aij(z)Gi(x)Gj(x).

(33)
If G1, . . . , Gm, G1G1, G1G2, . . . , GmGm are linearly independent functions, we
can invert and solve the linear equation (33) for b and a.

Since the left hand side is affine is z, we obtain that also b and a are affine

bi(z) = bi +
m∑
j=1

βijzj

aij(z) = aij +
m∑
k=1

αk;ijzk,
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for some constant vectors and matrices b, β, a and αk. Plugging this back into
(33) and matching constant terms and terms containing zks we obtain a system
of Riccati equations

∂xG0(x) = g0(0) +
m∑
i=1

biGi(x)− 1
2

m∑
i,j=1

aijGi(x)Gj(x) (34)

∂xGk(x) = gk(0) +
m∑
i=1

βkiGi(x)− 1
2

m∑
i,j=1

αk;ijGi(x)Gj(x), (35)

with initial conditions G0(0) = · · · = Gm(0) = 0.
Notice that we have the freedom to choose g0(0), . . . , gm(0), which are related

to the short rates by

r(t, 0) = f(t, t) = g0(0) + g1(0)Z1(t) + · · ·+ gm(0)Zm(t).

A typical choice is g1(0) = 1 and all the other gi(0) = 0, whence Z1(t) is the
(non-Markovian) short rate process.

9 Towards Existence of Invariant Manifolds

So far we have characterized the consistent HJM models for a given forward
curve family. What can we say about the existence of consistent forward curve
families for a given HJM model? In more general terms: given a stochastic
equation (21) in H, can we find a finite-dimensional submanifold M satisfying
the consistency conditions (22) and (23)?

The existence problem of consistent forward curve families was initiated and
first solved by Björk and Svensson [3] using the Frobenius Theorem. They work
on a particular Hilbert space H on which A = d/dx is bounded, so that they
can avoid weak solutions. It turns out that the space H consists solely of entire
analytic functions, and therefore does not contain some important forward curve
families, such as the Cox–Ingersoll–Ross [5] forward curves, see [10].

In [10] we thus considered the larger Fréchet spaces D(A∞) := ∩k≥0D(Ak)
with seminorms

pn(h) :=
n∑
k=0

‖Akh‖H .

These seminorms turn D(A∞) into a complete metric space, and A is bounded
and continuous on D(A∞). For the example A = d/dx on Hw we have

D((
d

dx
)∞) = {h ∈ C∞ ∩Hw |

dkh

dxk
∈ Hw for all k ≥ 0},

with metric
d(f, g) =

∑
k≥0

2−k
(
‖dkh/dxk‖w ∧ 1

)
.
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But A (and any smooth function on D(A∞)) is not a contraction in general.
Hence there is no fixed point theorem, and hence no existence for differential
equations on D(A∞), in general. A only generates a smooth semiflow.

There are more difficulties with calculus on Fréchet spaces. Indeed, L(E,F )
and C∞(E;F ) are no Fréchet spaces if E,F are so, in general. Kriegl and
Michor [15] developped the so-called “convenient calculus” on a “convenient
space” E which is by definition a locally convex vector space such that

c ∈ C∞(R;E) ⇔ ` ◦ c ∈ C∞(R) ∀` : E → R linear bounded .

A thorough treatment of this calculus is beyond the scope of these notes. In
any case, Fréchet spaces are convenient, and the following useful facts hold true
for convenient spaces E,F,G:

• L(E,F ) and C∞(E;F ) are convenient

• C∞(E × F ;G)=̃C∞(E;C∞(F ;G))

• Taylor’s formula holds on E

• the evaluation C∞(E;F )× E → F, (P, f) 7→ P (f) is smooth

• the composition C∞(E;F ) × C∞(F ;G) → C∞(E;G), (R,Q) 7→ Q ◦ R
is smooth.

9.1 (Semi)Flows

We provide sufficient conditions for the existence of integral curves of vector
fields, such as (22) and (23) in D(A∞). Let E be a Fréchet space.

Definition 9.1. P : U ⊂ E → E is a Banach map if P = Q ◦ R, for some
R : U → B and Q : V ⊂ B → E smooth, for a Banach space B.

Theorem 9.2 (Hamilton [13], Banach Map Principle). Let P : U ⊂ E → E be
a Banach map. Then, for all g ∈ U , there exists V = V (g) ⊂ U open and a
unique smooth local flow Fl : (−ε, ε)× V → E with

Fl(0, g) = g,
d

dt
F l(t, g) = P (Fl(t, g)), F l(t, F l(s, g)) = Fl(s+ t, g)

where defined.

The following extension is proved in [10]:

Theorem 9.3. Let P : U ⊂ E → E be a Banach map, A be the generator of a
smooth semigroup. Then, for all g ∈ U , there exists V = V (g) ⊂ U open and a
unique smooth local semiflow Fl : [0, ε)× V → E with

Fl(0, g) = g,
d

dt
F l(t, g) = AFl(t, g)+P (Fl(t, g)), F l(t, F l(s, g)) = Fl(s+t, g)

where defined.
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9.2 Frobenius Theorem

For stating the Frobenius theorem we need some terminology from differential
geometry, which we briefly recall here. Let E be a Fréchet space, U ⊂ E open.
Let X,Y ∈ C∞(U ;E) be smooth vector fields on U and suppose X admits a
local flow FlX . Then the Lie bracket of X and Y is

[X,Y ] = DX · Y −DY ·X =
d

dt
(FlX−t)

∗Y |t=0.

Recall the definition of the pull back (F ∗Y )(h) := DF (f)−1(Y (F (h))) and the
push forward F∗ = (F ∗)−1 of a diffeomorphism F : U → F (U) ⊂ E.

Definition 9.4. A n-dimensional distribution on U is a collection of linear
subspaces D = {Dh}h∈U such that

Dh = span{X1(h), . . . , Xn(h)} ∀h ∈ U,

for some linearly independent smooth vector fields X1, . . . , Xn.
D is involutive if [X,Y ] ∈ D for all X,Y ∈ D.

Definition 9.5. A n-dimensional weak foliation on U is a collection of n-
dimensional C∞ submanifolds with boundary Φ = {Mh}h∈U such that

(i) r ∈Mr for all r ∈ U

(ii) the tangent distribution D(Φ)(h) := span{ThMr | r ∈ U with h ∈Mr}
has dimension n

Note that a weak foliation Φ can have “gaps” and its leafs can touch.
We now can state the Frobenius theorem in our context. For a full proof we

refer to [10].

Theorem 9.6. Consider n-dimensional distribution D = span{X1, . . . , Xn}
where X1, . . . , Xn−1 admit local flows and Xn admits local semiflow on U . Then
the following are equivalent

(i) D is involutive

(ii) there exists a n-dimensional weak foliation with D(Φ) = D.

Idea of Proof. (i)⇒(ii): the map

α : W ⊂ Rn≥0 × V ⊂ D((d/dx)∞)→ D((d/dx)∞),

α(u, r) = FlX1
u1
◦ · · · ◦ FlXnun (r)

is a parametrization of a weak foliation Φ with

∂

∂ui
α(u, r) = ((FlX1

u1
)∗ · · · (FlXi−1

ui−1
)∗Xi)(α(u, r)) ∈ Dα(u,r).

Hence D = D(Φ).
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(ii)⇒(i): we have FlXi(t, r) ∈Mr for t ∈ (−ε, ε) ([0, ε) if i = n). Hence, for
all Y ∈ D, one can show that

[Xi, Y ](h) =
d

dt
(FlXi−t)

∗Y (f)|t=0 =
d

dt
DFlXit (FlXi−t(h)) · Y (FlXi−t(h))︸ ︷︷ ︸

∈Dh

∈ Dh,

for all h in the interior Mr \ ∂Mr. If r itself is a boundary point, r ∈ ∂Mr,
one has to approximate r by a sequence of interior points rn ∈Mr \∂Mr. This
way, we conclude that D is involutive.

9.3 Application to HJM

In this last section, we apply the Frobenius theorem to the HJM equation (30)
in Hw with A = d/dx and volatility map σ = (σ1, . . . , σd). We assume

(A1) σj = φj ◦ `, where ` ∈ L(Hw; Rp) and φj ∈ C∞(Rp;D((d/dx)∞0 )) are
linearly independent

(A2) for all q ≥ 0, the map (`, `◦d/dx, . . . , `◦(d/dx)q) : D((d/dx)∞)→ Rp(q+1)

is open

(A3) d/dx is unbounded.

As consequence of these assumptions one can show, see [10, Section 4]:

(i) α =
∑
j S(σj) is a Banach map on D((d/dx)∞)

(ii) d/dx is not a Banach map on D((d/dx)∞)

(iii) µ := d
dx +α− 1

2Dσ ·σ is not a Banach map on D((d/dx)∞), but generates
a smooth local semiflow Flµ by Theorem 9.3

(iv) If X is a Banach map then [ ddx , X] is a Banach map. Hence the singular
set

N := {h | µ(h) ∈ span{σi(h)}}
is closed and nowhere dense in D((d/dx)∞), and the Lie algebra DLA
generated by µ, σ1, . . . , σd has dimension dimDLA ≥ d+1 onD((d/dx)∞)\
N .

Hence fix a number N ≥ d and some open set U ⊂ D((d/dx)∞) \ N . By
the Frobenius theorem 9.6 there exists a (N + 1)-dimensional weak foliation
Φ = {Mr}r∈U of locally invariant submanifolds Mr for the HJM model (30) if
and only if

dimDLA ≡ N + 1 on U . (36)

Remark 9.7. The weak foliation Φ consists of submanifoldsMr in D((d/dx)∞),
albeit our starting point were forward curves in the larger space Hw. Is this a
severe restriction? The answer is no. Indeed, we show in [11] that if M is lo-
cally invariant for (30) then necessarily M⊂ D((d/dx)∞). Moreover, if N = d
then M is even a C∞ submanifold of D((d/dx)∞).
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It turns out that the Frobenius condition (36) has some remarkable conse-
quences on the form of σ:

Theorem 9.8 (Characterization of invariant submanifolds for HJM). Suppose
(36) holds. Then there exist linearly independent λ1, . . . , λN ∈ D((d/dx)∞) such
that

DLA = span{µ, λ1, . . . , λN} and σj ∈ span{λ1, . . . , λN} on U .

Proof. See [10].

As a consequence, the maximal possible choice for U ⊂ D((d/dx)∞) \ N is
U = D((d/dx)∞) \ Σ, where Σ := {h | µ(h) ∈ span{λ1, . . . , λN}}. In this case,
we can even say more about the structure of the HJM model:

Theorem 9.9 (Full classification of finite dimensional HJM models). Suppose
(36) holds on U = D((d/dx)∞) \ Σ. Then, for all r0 ∈ U ,

r(t) = Flµ(t, r0) +
N∑
i=1

Yi(t)λi

is the unique continuous local solution of (30), for some time-inhomogeneous
RN -valued diffusion process Y = Y r0 with Y (0) = 0.

Moreover, for all r0 ∈ Σ,

r(t) = r0 +
N∑
i=1

Yi(t)λi

for some time-homogeneous RN -valued diffusion process Y = Y r0 with Y (0) = 0.
In particular, Σ is locally invariant for (30).

Proof. See [10].

As an important and striking corollary of the above theorem we can state
that all generically finite dimensional HJM models are affine models!
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