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Abstract

A general and efficient method for valuing credit derivatives based on
multiple entities is developed in an affine framework. This includes inter-
dependence of market and credit risk, joint credit migration and counter-
party default risk of multiple firms. As an application we provide closed
form expressions for the joint distribution of default times, default corre-
lations, and default swap spreads in the presence of counterparty default
risk. An extension of this framework towards modeling default correla-
tions of a large credit portfolio is also discussed.

Key words: affine intensity based models, counterparty risk, credit
derivatives, default dependence

1 Introduction

The rapid growth of the credit derivatives market generates an upsurge for
valuation models of various credit derivatives, including credit default swaps
(CDSs). This requires analytically tractable models which incorporate an ap-
propriate dependence structure between market and credit risk, credit migration
and default risk of multiple firms. These aspects are inevitable for accurately
pricing credit derivatives and efficient model calibration.

In this paper we present a general method to valuate default-sensitive se-
curities based on multiple entities in an affine intensity-based framework. We
model risk-free rates and the credit states of multiple firms jointly as an affine
state process. Due to a simple mathematical trick, which allows to replace in-
dicator variables by exponential-affine functions of the state process, we obtain
closed form expressions for the conditional expectations of a variety of joint
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credit events. This allows us to derive closed form expressions for joint distribu-
tions of default times, default correlations, and CDS spreads in the presence of
counterparty default risk. Using an affine approximation technique, which goes
back to Singleton and Umantsev [22], one can also obtain analytically tractable
expressions for swaption prices.

The state of a firm is expressed by a tuple consisting of a credit index and
credit indicator. The credit index, as mentioned in [15], is regarded as the
firm’s credit score, which can be related to its asset value or its credit rating.
For example, it can in principle be obtained by a monotone transformation of
the actual credit rating given by Moody’s or S&P; i.e., R+ is decomposed into
finitely many non-overlapping intervals IAaa, IAa, . . . with the credit index in
IR meaning that the firm is R-rated, R ∈ {Aaa, Aa, . . . }. Or it can also be
determined by the distance to default variable estimated from the firm’s asset
information as shown in [7]. In [4], the authors propose a way to determine
this credit index variable using the corresponding corporate bond spread. It
is further assumed that the higher the credit index value, the worse a firm’s
financial situation and zero-value of the corresponding credit index implies the
perfect financial health of a firm.

The indicator variable is defined to follow a simple point process starting
at zero with a constant jump size one and intensity given by the credit index
process. The first jump of this process indicates the default of the correspond-
ing firm. This method is originally proposed in [1] and specified to a doubly
stochastic setup in [18]. To model risk-free rates, for simplicity, here we only
employ a one-factor affine model and define the factor as the short rate. It is
straightforward to include an affine multi-factor interest rate model. Additional,
e.g. industry specific, factors can easily be built in, as long as they comply with
the affine structure. Although, for simplicity, we consider affine diffusion and
simple point processes when it comes to computations, the following carries
over to more general affine jump-diffusion state processes. We sketch alterna-
tive affine regimes including jumps, which contribute to more weight in the tail
distribution of the credit index process.

We do not condition on different filtrations, as this is usually done for the
construction of a doubly stochastic intensity based credit risk model, see [9] for
an overview. Instead, we model the entire affine state process with respect to
one comprehensive filtration in one step. Then we use analytic methods, in-
volving Laplace transforms and ODEs, to obtain the joint distribution of the
future default events conditional on the current state of the world. As a result,
we provide a general and efficient intensity based valuation method for credit
derivatives in an affine framework. We also point out that we allow for simul-
taneous default of several firms. A very rare, but realistic event, which is often
ignored by other models.

In [4], the authors proposed a hybrid of a structural (barrier) and reduced
form (intensity based) model. It is worth mentioning that the present setup
can in fact be considered as a limit case of the hybrid model in [4]: the credit
index process “jumps to infinity” at default, thereby hitting the “barrier at
infinity”. However, since in [4] the lifetime of the state process itself is finite
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(the process explodes), it is difficult to use that approach for a multiple firm
situation. From this limiting point of view, the present intensity based approach
keeps a structural flavor, in that one can still identify the firm’s default intensity
as its credit index variable.

As for the recovery issue of a credit derivative, we adopt the convention
of recovery at default and assume that the recovery rate is a random variable
depending on both risk-free rates and the credit index of the default firm, which
is more reasonable than assuming recovery at maturity as in [17] or that the
recovery rate is stochastically independent of default probability and risk-free
rates as in [14].

The literature on credit risk modeling is huge and fastly growing. We do not
intend to provide a comprehensive reference list. Instead, we refer to the recent
books [13, 9, 20, 19, 2] for an overview. Here, we mention in particular Jarrow
and Yildirim [16], who introduce correlation between market and credit risk
by using an intensity based model where risk-free rates and default intensities
depend on some common macroeconomic factors. Meanwhile, motivated by the
catenated downfalls of firms during the financial crises in East Asia, Jarrow
and Yu [17], and further developed by Yu [23], propose to consider the credit
risk induced by the interdependence structure between firms by generalizing
the intensity based models to allow a firm exposed to some firm-specific default
risk, as well as to common risk factors. However, due to the complexity of
the analysis, they confine their discussion to the situation where the default
intensity follows a simple point process and only price the “idealized” default
swaps with the simplified assumption that the recovery payment is made at the
maturity of the CDS. The copula method is used in [21] to introduce default
dependency in an intensity based model.

The remainder of the paper is organized as follows. Section 2 introduces the
basic three-firm model, based on affine diffusion and simple point processes. We
then discuss and illustrate the joint distribution of default times, the density
function and default correlation. In Section 3 we derive closed form expressions
for the valuation of a CDS in the presence of counterparty risk. In Section 4
we sketch how to price a swaption by affine approximation. Extensions towards
modeling large credit portfolios and alternative dynamics including jumps are
discussed in Section 5. Section 6 contains brief concluding remarks. For the
sake of readability we have postponed some technical parts to the appendix.

2 The Basic Three-Firm Model

In this section we describe the basic model incorporating three firms and a one-
factor short rate model. The extension to an m-factor interest rate and n-firm
model along the following lines is straightforward, see also Section 5.2 below.

For background and theory of affine processes we refer the reader to [10].
With ei we denote the i-th standard basis vector in R7, i = 0, 1, . . . , 6. Moreover,
we shall frequently use the multi-index notation

p = (p4, p5, p6), q = (q4, q5, q6) ∈ I := {0, 1}3.
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The scalar product of two vectors x and y is denoted by 〈x, y〉.
We now consider the affine jump-diffusion process X = (X0, . . . , X6) in R7

+

with generator

Af(x) =
3∑

i=0

αixi∂
2
xi

f(x) +
3∑

i=0

(bi + 〈βi, x〉) ∂xi
f(x)

+
∑

p∈I

(f(x + p4e4 + p5e5 + p6e6)− f(x)) (`p + 〈λp, x〉) ,

(2.1)

where

αi, bi ≥ 0, βi = (βi0, ..., βi6) ∈ R7 with βij ≥ 0, ∀ j 6= i, `p ≥ 0, λp ∈ R7
+.

We let X be realized on some filtered probability space (Ω,F , (Ft)t≥0,P) sat-
isfying the usual conditions (e.g. the “canonical” space of càdlàg paths in R7

+).
Depending on the context, P stands either for the real-world or risk-neutral mea-
sure. In the latter case, prices are computed as P-(conditional) expectations.
Equivalent measure changes which preserve the respective affine structures exist
and are feasible. For a discussion we refer to [5] and [6].

X0 denotes the short rate process. The pair (Xi, X3+i) represents the credit
state of firm i, where Xi denotes the credit index and Xi+3 represents the default
indicator of firm i, and we further assume that X3+i

0 = 0 for i = 1, 2, 3. Then
the first jump time

τi := inf{t | X3+i
t > 0}

of X3+i models the default time of firm i. We see from (2.1) that the firms can
default simultaneously in all possible combinations, since we sum up over all
jumps in the directions of p4e4 + p5e5 + p6e6, for p ∈ I (to exclude one of these
combinations, simply set the corresponding intensity coefficients (`p and λp) to
be zero). This is a rare but realistic event. Xi plays the role of measuring the
financial health for firm i. As mentioned before, the larger Xi the more likely
is a default of firm i (this effect can be achieved by an appropriate choice of the
model parameters λp,i).

The generator (2.1) implies a rich interdependence structure between the
components Xi:

• The interest rates, X0, influence all credit risk related variables, X1, . . . ,
X6, by βi0 (mean-reversion level of Xi) and the respective λp,0 (jump
intensity of X3+i).

• The credit index of firm i, Xi, i = 1, 2, 3, drives the intensities for (joint)
defaults of firms 1, 2 and 3 by the respective λp,i. This type of correlation
has already been used by [11].

Xi also influences the mean reversion level for Xj by βji, j = 0, . . . , 3
(however, typically we let the short rates evolve autonomously, that is, we
set β0i = 0).
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• The counter process for firm i, X3+i, i = 1, 2, 3, influences the intensities
for (joint) defaults of firms 1,2 and 3 by the respective λp,3+i. Note that
this introduces “infectious defaults” or a “loop dependent default risk
structure” as proposed in [8] and [17], respectively: the default of either
firm increases the default intensity of the other firm. See also Example 2
below.

X3+i also influences the mean reversion level for Xj by βj,3+i, j = 0, . . . , 3,
another form of default contagion.

Remark 2.1. Prior to the default of firm i ∈ {1, 2, 3}, Xi and Xi+3 repre-
sent the credit index and default indicator of the firm. Once firm i defaults,
these two state variables become latent factors that drive the credit index and
default dynamics of the remaining firms. One could mitigate the impact of Xi+3

on the remaining firms after default of firm i by adding a zero-mean reverting
drift term, say −βi+3xi+3∂xi+3 for some βi+3 > 0, to the generator (2.1). For
simplicity of exposure we omit this here.

Remark 2.2. The present framework may be modified to include multiple de-
faults with constant fractional recovery r ∈ (0, 1) of the nominal value. Sim-
ply let Xi+3

t be the counter of the number of defaults of firm i by time t.
At each default the payoff of the firm’s bond is reduced to r times its previ-
ous value. The terminal payoff, at time T say, is then reduced by the factor
rXi+3

T = exp(Xi+3
T log r), which is an affine function of XT and hence analyti-

cally tractable. See [20, Section 6.1.3] for a more detailed discussion.

Remark 2.3. With regard to the parameters in (2.1), it is worth mentioning
how the model calibration, say under the risk neutral measure, works. First as
shown in [4], the parameters {αi, bi, βi}0≤i≤3, the short rate X0 and individual
credit index values {Xi}1≤i≤3 can be estimated using market observations of
treasury and corporate bond yields. The remaining parameters that are used to
characterize the joint credit migration correlations between different firms can
then be calibrated using, e.g., credit default swap (CDS) data in combination
with the explicit formula for CDS spreads in Section 3 below.

Since market price of risk specifications which preserve the affine structure
(2.1) exist ([5, 6]), it is also possible to calibrate the model to real-world default
correlations, from which risk premiums can be inferred.

Fix δ ≥ 0. The basic affine property of this process reads (see [10])

E
[
e−δ

∫ T
t

X0
s dse〈v,Xt〉 | Ft

]
= eφ(T−t,v;δ)+〈ψ(T−t,v;δ),Xt〉 (2.2)

for all v ∈ R7
−, where the R−-valued functions φ = φ(t, v; δ) and ψi = ψi(t, v; δ)
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solve the following generalized Riccati equations (GREs)

∂tφ =
3∑

k=0

bkψk +
∑

p∈I

`p
(
ep4ψ4+p5ψ5+p6ψ6 − 1

)
,

φ(0, v; δ) = 0,

∂tψi = αiψ
2
i +

3∑

k=0

βkiψk +
∑

p∈I

λp,i

(
ep4ψ4+p5ψ5+p6ψ6 − 1

)− δ1{i=0}

ψi(0, v; δ) = vi,

∂tψj =
3∑

k=0

βkjψk +
∑

p∈I

λp,j

(
ep4ψ4+p5ψ5+p6ψ6 − 1

)
,

ψj(0, v; δ) = vj

(2.3)
for i = 0, 1, 2, 3 and j = 4, 5, 6.

2.1 Basic Trick

The following basic trick allows to express a variety of possible joint credit events
as (limits) of exponential functions of X: let i, j ∈ {1, 2, 3}, then

1{t<τi} = lim
k→∞

e−kX3+i
t ,

1{s<τi≤t} = 1{s<τi} − 1{t<τi} = lim
k→∞

(
e−kX3+i

s − e−kX3+i
t

)
, s < t,

1{s<τi, t<τj} = 1{s<τi}1{t<τj} = lim
k→∞

e−k(X3+i
s +X3+j

t ),

etc.

(2.4)

This asks for the following general result, the proof of which is postponed to
Section A.

Proposition 2.4. For t ≤ T , v ∈ R7
−, δ ≥ 0 and p ∈ I we have

E
[
e−δ

∫ T
t

X0
s dse〈v,XT 〉 lim

k→∞
e−k(p4X4

T +p5X5
T +p6X6

T ) | Ft

]

= eΦ(T−t,v;δ;p)+
∑

i∈{0,...,3}∪J0(p) Ψi(T−t,v;δ;p)Xi
t

∏

j∈J1(p)

1{Xj
t =0}, (2.5)

where J0(p) := {4 ≤ j ≤ 6 | pj = 0}, J1(p) := {4 ≤ j ≤ 6 | pj = 1} and the
R−-valued functions

Φ = Φ(t, v; δ;p) and Ψi = Ψi(t, v; δ;p)
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satisfy

∂tΦ =
3∑

k=0

bkΨk +
∑

q∈I0(p)

`q
(
eq4Ψ4+q5Ψ5+q6Ψ6 − 1

)−
∑

q∈I1(p)

`q,

Φ(0, v; δ;p) = 0,

∂tΨi = αiΨ2
i +

3∑

k=0

βkiΨk +
∑

q∈I0(p)

λq,i

(
eq4Ψ4+q5Ψ5+q6Ψ6 − 1

)

−
∑

q∈I1(p)

λq,i − δ1{i=0},

Ψi(0, v; δ;p) = vi,

∂tΨj =
3∑

k=0

βkjΨk +
∑

q∈I0(p)

λq,j

(
eq4Ψ4+q5Ψ5+q6Ψ6 − 1

)−
∑

q∈I1(p)

λq,j ,

Ψj(0, v; δ;p) = vj

(2.6)
for i = 0, 1, 2, 3 and j ∈ J0(p), where I0(p) := {q ∈ I | qj = 0 ∀j ∈ J1(p)} and
I1(p) := I \ I0(p) = {q ∈ I | qj = 1 for some j ∈ J1(p)}.
Remark 2.5. Notice that Φ(t, v; δ;p) and Ψi(t, v; δ;p) in Proposition 2.4 do in
fact not depend on vj for j ∈ J1(p), as becomes clear from the GREs (2.6) and
the definition of I0(p).

Example 1 Let t ≤ T . The Ft-conditional Laplace transform of XT with
respect to the T -forward measure conditional on {T < τ1 ∧ τ2} is

E
[
e−

∫ T
t

X0
s dse〈v,XT 〉1{T<τ1∧τ2} | Ft

]

E
[
e−

∫ T
t

X0
s ds1{T<τ1∧τ2} | Ft

] , v ∈ R7
−,

where

E
[
e−

∫ T
t

X0
s dse〈v,XT 〉1{T<τ1∧τ2} | Ft

]

= E
[
e−

∫ T
t

X0
s dse〈v,XT 〉 lim

k→∞
e−k(X4

T +X5
T ) | Ft

]

= eΦ(T−t,v;1;1,1,0)+
∑

i∈{0,...,3,6} Ψi(T−t,v;1;1,1,0)Xi
t 1{X4

t =X5
t =0}.

2.2 Joint Distribution of Default Times

With the aid of (2.4) and Proposition 2.4 we now discuss the dependence struc-
ture of the default times τ1 and τ2.

Fix s ≥ 0. For the Fs-conditional joint distribution of (τ1, τ2) we have

F (t, T ) = P[τ1 ≤ t, τ2 ≤ T | Fs]
= 1− E[1{t<τ1} | Fs]− E[1{T<τ2} | Fs] + E[1{t<τ1}1{T<τ2} | Fs],

(2.7)
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for t, T ≥ s. The terms involved are

E[1{t<τ1} | Fs] = E
[

lim
k→∞

e−kX4
t | Fs

]

= eΦ(t−s,0;0;1,0,0)+
∑

i∈{0,...,3,5,6} Ψi(t−s,0;0;1,0,0)Xi
s1{X4

s =0},

E[1{T<τ2} | Fs] = E
[

lim
k→∞

e−kX5
T | Fs

]

= eΦ(T−s,0;0;0,1,0)+
∑

i∈{0,...,3,4,6} Ψi(T−s,0;0;0,1,0)Xi
s1{X5

s=0},

and, for t ≤ T ,

E[1{t<τ1}1{T<τ2} | Fs]

= E
[

lim
k→∞

e−kX4
t E

[
lim
l→∞

e−lX5
T | Ft

]
| Fs

]

= eΦ(T−t,0;0;0,1,0)E
[

lim
k→∞

e−k(X4
t +X5

t )e
∑

i∈{0,...,3,4,6} Ψi(T−t,0;0;0,1,0)Xi
t | Fs

]

= eΦ(T−t,0;0;0,1,0)+Φ(t−s,
∑

i∈{0,...,3,6} Ψi(T−t,0;0;0,1,0)ei;0;1,1,0)

× e
∑

j∈{0,...,3,6} Ψj(t−s,
∑

i∈{0,...,3,6} Ψi(T−t,0;0;0,1,0)ei;0;1,1,0)Xj
s 1{X4

s =X5
s=0},

(2.8)
and similarly for t ≥ T ,

E[1{t<τ1}1{T<τ2} | Fs]

= eΦ(t−T,0;0;1,0,0)+Φ(T−s,
∑

i∈{0,...,3,6} Ψi(t−T,0;0;1,0,0)ei;0;1,1,0)

× e
∑

j∈{0,...,3,6} Ψj(T−s,
∑

i∈{0,...,3,6} Ψi(t−T,0;0;1,0,0)ei;0;1,1,0)Xj
s 1{X4

s=X5
s =0}.

(2.9)

Remark 2.6. For simplicity, we will set s = 0 in what follows and use the con-
vention Xj

0 = 0 for j = 4, 5, 6. All results carry over after a slight modification
to the general case s ≥ 0.

2.2.1 Joint Density

Notice that the joint distribution function (2.7) is twice continuously differen-
tiable in (t, T ) for t 6= T , but not on the diagonal ∆ := {(t, t) | t ≥ 0} in general.
Below we illustrate the three cases where i) a jointly continuous density function
f with

F (t, T ) =
∫ t

0

∫ T

0

f(u, v) dudv, ∀(t, T ) ∈ R2
+, (2.10)

exists (Example 4), ii) f exists but is only piecewise continuous (Example 2),
iii) the entire mass of the distribution is concentrated on ∆ and hence a density
does not exist (Example 3).
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Example 2 Let ` := `(1,0,0) > 0 and λ := λ(0,1,0),4 > 0 and all the other
parameters be zero. Then the generator (2.1) is of the form

Af(x) = (f(x + e4)− f(x)) ` + (f(x + e5)− f(x))λx4.

That is, firm 1 defaults with a constant intensity ` and the default intensity of
firm 2 is zero first, jumps to λ at the default time of firm 1 (“infectious default”)
and increases by the amount of λ at any further jump time of X4. Accordingly,
we have

∂tΦ(t, v; 0; 1, 0, 0) = ∂tΦ(t, v; 0; 1, 1, 0) = −`

∂tΦ(t, v; 0; 0, 1, 0) = `
(
ev4−λt − 1

)

∂tΨ4(t, v; 0; 1, 0, 0) = λ (ev5 − 1)
∂tΨ4(t, v; 0; 0, 1, 0) = ∂tΨ4(t, v; 0; 1, 1, 0) = −λ

and ∂tΨi(t, v; 0;p) ≡ 0 for all i 6= 4. So that

Φ(t, v; 0; 1, 0, 0) = Φ(t, v; 0; 1, 1, 0) = −`t

Φ(t, v; 0; 0, 1, 0) = `

(
ev4

λ

(
1− e−λt

)− t

)

Ψ4(t, v; 0; 1, 0, 0) = v4 + λ (ev5 − 1) t

Ψ4(t, v; 0; 0, 1, 0) = Ψ4(t, v; 0; 1, 1, 0) = v4 − λt

and Ψi(t, v; 0;p) ≡ vi for all i 6= 4. In view of (2.8) and (2.9) we obtain for
G(t, T ) = E[1{t<τ1}1{T<τ2}],

G(t, T ) =

{
e

`
λ (1−e−λ(T−t))−`T , t ≤ T,

e−`t, t ≥ T.

It is easy to see that ∂tG(t, T ) and ∂T G(t, T ) are jointly continuous in (t, T )
and absolutely continuous in T and t, respectively. Hence (2.10) holds. But f
is not continuous at ∆ since

∂t∂T G(t, T ) =

{(
`λe−λ(T−t) + `e−λ(T−t)

(
1− e−λ(T−t)

))
G(t, T ), t < T,

0, t > T,

and we see that ∂t∂T G(t−,t)
G(t,t) = `λ 6= 0.

Example 3 It is rather obvious that the distribution (2.7) is singular if de-
faults of different firms can occur simultaneously. For illustration consider the
generator

Af(x) = f(x + e4 + e5)− f(x),

that is, we set `(1,1,0) = 1 and all other parameters are zero. A straightforward
calculation shows that

F (t, T ) = 1− e−t∧T .

This distribution carries the entire mass on the diagonal ∆, and therefore has
no density.
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Example 4 As we have seen above, the joint distribution function (2.7) for
infectious defaults (Example 2) and simultaneous defaults (Example 3) does
not admit a (continuous) density. We now consider an example where τ1 and τ2

are conditionally independent given the information G = σ(X0
t , . . . , X3

t | t ≥ 0)
generated by X0, . . . , X3. In other words, the default times τ1 and τ2 are doubly
stochastic driven by the factors (X0, . . . , X3), see e.g. [9]. We let the generator
(2.1) be of the form

Af(x) = α0x0∂
2
x0

f(x) + (b0 + β00x0)∂x0f(x)

+
2∑

i=1

αixi∂
2
xi

f(x) +
2∑

i=1

(bi + βi0x0 + βiixi) ∂xi
f(x)

+ (f(x + e4)− f(x))
(
λ(1,0,0),0x0 + λ(1,0,0),1x1 + λ(1,0,0),2x2

)

+ (f(x + e5)− f(x))
(
λ(0,1,0),0x0 + λ(0,1,0),1x1 + λ(0,1,0),2x2

)
,

(2.11)

with the symmetric structure

α1 = α2, b1 = b2, β10 = β20, β11 = β22,

λ(1,0,0),0 = λ(0,1,0),0, λ(1,0,0),1 = λ(0,1,0),2, λ(1,0,0),2 = λ(0,1,0),1.
(2.12)

Since here we have

P[τ1 ≤ t, τ2 ≤ T | G] = P[τ1 ≤ t | G] · P[τ2 ≤ T | G]

and both of the G-conditional distribution functions on the right hand side
have a G-measurable continuous density, it is rather obvious that F (t, T ) =
E [P[τ1 ≤ t, τ2 ≤ T | G]] admits a continuous density.

We write short Φ(v;p) = Φ(t, v; 0;p) and Ψi(v,p) = Ψi(t, v; 0;p). The
relevant ODEs (2.6) are

∂tΦ(0;p) = b0Ψ0(0;p) + b1 (Ψ1(0;p) + Ψ2(0;p)) ,

∂tΨ0(0;p) = α0Ψ2
0(0;p) + β00Ψ0(0;p) + β10 (Ψ1(0;p) + Ψ2(0;p))− λp,0,

∂tΨi(0;p) = α1Ψ2
i (0;p) + β11Ψi(0;p)− λp,i, i = 1, 2,

for p = (1, 0, 0), (0, 1, 0), and

∂tΦ(v; 1, 1, 0) = b0Ψ0(v; 1, 1, 0) + 2b1Ψ1(v; 1, 1, 0),

∂tΨ0(v; 1, 1, 0) = α0Ψ2
0(v; 1, 1, 0) + β00Ψ0(v; 1, 1, 0) + 2β10Ψ1(v; 1, 1, 0)− 2λp,0,

∂tΨ1(v; 1, 1, 0) = α1Ψ2
1(v; 1, 1, 0) + β11Ψ1(v; 1, 1, 0)− λ(1,0,0),1 − λ(0,1,0),1,

with Ψ2(v; 1, 1, 0) = Ψ1(v; 1, 1, 0), by symmetry.
Note that Ψ1 and Ψ2 above solve autonomous Riccati equations. The fol-

lowing solution formula is well know:

Lemma 2.7. The function

G = G(t, r0) = −2C (eρt − 1)− (ρ (eρt + 1) + B (eρt − 1)) r0

ρ (eρt + 1)−B (eρt − 1)− 2A (eρt − 1) r0
(2.13)
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with ρ :=
√

B2 + 4AC is the unique solution of the Riccati equations

∂tG = AG2 + BG− C, G(0, r0) = r0,

for A,C ≥ 0, B ∈ R and r0 ≤ 0.

With formula (2.13) at hand it is possible—but cumbersome (we used Math-
ematica for the formal calculations)—to show that (2.7) is smooth enough to
allow for a continuous density. Figures 1–3 show this density function for

α0 = 1.736× 10−5, α1 = 3.2648,

b0 = 0.01167, b1 = 1.6328× 10−5,

β00 = −0.15492, β10 = 0.23006, β11 = −1.472,

λ(1,0,0),0 = 0.26365, λ(1,0,0),1 = 0.10613,

X0
0 = 0.0105, X1

0 = X2
0 = 0.07, X3

0 = 0,

(2.14)

and different values for λ(1,0,0),2, the impact of the second firm’s credit rating,
X2

t , on the default intensity of firm 1, and vice versa. The larger λ(1,0,0),2, the
stronger the dependence of the default times, which is best seen on the diagonal
of the domain in Figures 2 and 3.

Remark 2.8. The above parameters were obtained by the single name model
calibration in [4] and the symmetry assumption (2.12). X1

0 = 0.07 corresponds
to Moody’s rating class Aaa. For further calibration details we refer to [4].

2.2.2 Default Correlation

The joint distribution function (2.7) contains all the information about the
dependence of the default times τ1 and τ2. A first (but not sufficient) indicator
for this dependence is the correlation of the events {τ1 ≤ T} and {τ2 ≤ T},

corr(T ) =
Cov12(T )√

Cov11(T )Cov22(T )
(2.15)

with

Covij(T ) := E[1{τi≤T}1{τj≤T}]− E[1{τi≤T}]E[1{τj≤T}]

=

{
E[1{τi≤T}]−

(
E[1{τi≤T}]

)2
, i = j,

F (T, T )− E[1{τi≤T}]E[1{τj≤T}], i 6= j,

for varying T ≥ 0. The terms involved are

E[1{τi≤T}] = 1− E
[

lim
k→∞

e−kX3+i
T

]
= 1− eΦ(T,0;0;p(i))+

∑3
j=0 Ψj(T,0;0;p(i))Xj

0 ,

where p(1) := (1, 0, 0) and p(2) := (0, 1, 0).
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As documented in [21], the default correlations introduced by correlated
default rating processes are typically too low to match the empirical correlations
observed from markets. However, since in our model the default intensity of one
firm depends explicitly, by factor λ(1,0,0),2, on the rating process of the other
firm, the resulting default correlation can reach the level of market observations
(see [23]). Figure 4 shows the term structure of default correlations (2.15) for
the model (2.11), (2.12), and (2.14) with different values for λ(1,0,0),2. This
illustrates once more the flexibility of our approach to account for dependence
of default.

3 Valuing Credit Default Swaps

We now consider the valuation of a plain vanilla credit default swap (CDS) with
notional principal $1. The seller (firm 3) of a CDS contract provides the buyer
(firm 2) insurance against the risk of default of a third party called the reference
entity (firm 1). In return, the buyer makes periodic payments to the seller. We
denote by T0 the start date of the CDS and the payment dates by T1, . . . , Tn.
We assume that Tk − Tk−1 ≡ ∆ for all k = 1, . . . , n. We consider a Bermudan
setup. That is, cashflows take place at dates Tk only, given the events that
happened in the preceding periods (Tj−1, Tj ], j = 1, . . . , k.

At time Tk:

• if no default has occurred yet (Tk < τ1 ∧ τ2 ∧ τ3) then the buyer pays to
the seller a fixed rate c;

• if the reference entity has defaulted in period (Tk−1, Tk] (Tk−1 < τ1 ≤ Tk)
and the seller has not defaulted yet (Tk < τ3) and the buyer has not
defaulted by Tk−1 (Tk−1 < τ2) then the seller pays 1 − G(XTk

) and the
contract terminates, where

G(x) = er+〈ρ,x〉 ≤ 1

denotes the recovery rate for the bond issued by the reference entity, for
some r ∈ R− and ρ ∈ R7

−;

• in all other cases there is no payment and the contract terminates.

The value at time t ≤ T0 of the buyer’s payments accordingly is cBt, where

Bt = E

[
n∑

k=1

e−
∫ Tk

t X0
s ds∆1{Tk<τ1∧τ2∧τ3} | Ft

]

= ∆
n∑

k=1

E
[
e−

∫ Tk
t X0

s ds lim
l→∞

e−l(X4
Tk

+X5
Tk

+X6
Tk

) | Ft

]

= ∆
n∑

k=1

eΦ(Tk−t,0;1;1,1,1)+
∑3

i=0 Ψi(Tk−t,0;1;1,1,1)Xi
t 1{X4

t =X5
t =X6

t =0}.

(3.1)

12



The value at time t ≤ T0 of the seller’s payment is

St = E

[
n∑

k=1

e−
∫ Tk

t X0
s ds(1−G(XTk

))1{Tk−1<τ1≤Tk}1{Tk−1<τ2}1{Tk<τ3} | Ft

]

=
n∑

k=1

E
[
e−

∫ Tk
t X0

s ds(1−G(XTk
))

× lim
l,m→∞

(
e
−lX4

Tk−1 − e−mX4
Tk

)
e
−lX5

Tk−1
−mX6

Tk | Ft

]

=
n∑

k=1

S1k
t − S2k

t − S3k
t + S4k

t ,

(3.2)
for some exponential affine terms S1k

t , . . . , S4k
t . For sake of readability, the

detailed expressions are given in Section B below.
The forward CDS spread C(t) at time t ≤ T0 is the fixed rate at which we

have C(t)Bt = St. From the above, we obtain

Lemma 3.1. The forward CDS spread is given by

C(t) =
St

Bt
=

∑n
k=1 S1k

t − S2k
t − S3k

t + S4k
t

∆
∑n

k=1 eΦ(Tk−t,0;1;1,1,1)+
∑3

i=0 Ψi(Tk−t,0;1;1,1,1)Xi
t

, (3.3)

where the terms Bt and Sik
t are given by (3.1) and (B.1)–(B.4), respectively.

Figure 5 shows the CDS spread C(T0) for different CDS lengths, Tn − T0,
for the case of single-party risk (only the reference entity can default, that is,
X2 = X3 = 0) with different rating classes: X1

T0
= 0.07 (Moody’s Aaa), 0.13102

(Aa), 0.465 (A), 0.80907 (Baa) and X4
T0

= 0 (no default by T0). The recovery
rate is one, that is, r = 0 and ρ = 0. The remaining parameters are according
to (2.14).

4 Swaption Pricing by Affine Approximation

In this section we sketch a method for approximating swaption prices as pro-
posed by Singleton and Umantsev [22]. Consider a call option (swaption) on
the above CDS with strike rate K and expiry date T0. Its payoff at T0 is

(ST0 −KBT0)
+ = ST01{C(T0)>K} −KBT01{C(T0)>K}

and the price at time t < T0, accordingly,

Pswpt(t) = E
[
e−

∫ T0
t X0

s dsST01{C(T0)>K} | Ft

]

−KE
[
e−

∫ T0
t X0

s dsBT01{C(T0)>K} | Ft

]
.
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Note that ST0 and BT0 are sums of exponential-affine functions in XT0 . Define
the CDS spread function

c(x) := C(T0, XT0 = x),

see (3.3). The idea is to approximate the exercise boundary ∂D(K) := {c = K}
by a hyperplane in R7, hence to linearize c. That is, for a fixed average strike
rate K∗, we write

c(x) ≈ K∗ + 〈∇c(x∗), x− x∗〉 (4.1)
for some x∗ ∈ ∂D(K∗). The exercise domain D(K) := {c > K} is accordingly
replaced by the half-space

{x | 〈∇c(x∗), x〉 > K −K∗ + 〈∇c(x∗), x∗〉}.
The computation of Pswap(t) then boils down to the Fourier-inversion methods
for conditional distributions with Laplace transforms of the form (2.2) with
δ = 1 and T = T0, as discussed in [12].

To illustrate the effectiveness of this approach, we show in Figure 6 the
level sets for different levels, K, on the two-dimensional cross-sectional surface
(x0, x1) 7→ c(x0, x1, 0, . . . , 0). The cross-sections of the corresponding exercise
boundaries, ∂D(K), are visible in the (x0, x1)-plane. The model parameters are
as at the end of Section 3. Figure 6 suggests that the linear approximation (4.1)
will yield accurate swaption prices. A more detailed empirical study is left for
future research.

5 Extensions

5.1 Large Credit Portfolios

In this section, we briefly discuss some issues regarding the extension of the
original three firm model to characterize default correlations for a large portfolio
(e.g., n=100).

As already mentioned at the beginning of Section 2, it is straightforward
to extend the preceding (1 + 6)-dimensional factor process, X = (X0, . . . , X7)
(1-factor interest rates and 3 firms) to the (1 + m + 2n)-dimensional analog,

X = (X0, . . . , Xm, Xm+1, . . . , Xm+n, Xm+n+1, . . . , Xm+2n)

(1+m common macroeconomic factors including the short rate and n firms) with
(Xm+i, Xm+n+i) describing the credit state of firm i = 1, . . . , n. Additional,
e.g. industry specific, factors can easily be built in.

A special case is m = 1 with generator of the process X = (X0, . . . , X1+2n)
given by

Af(x) =
1+n∑

i=0

αixi∂
2
xi

f(x) +
1+n∑

i=0

(bi + 〈βi, x〉) ∂xif(x)

+
1+2n∑

i=2+n

(f(x + ei)− f(x)) (λi,1x1 + λi,2xi−n) .

(5.1)
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The model (5.1) accommodates the setup proposed in [11] for modeling collat-
eralized debt obligations (CDOs), where X1 serves as a common default factor
that influences all the firms in the market.

Extending the analysis of Section 2.2 one can derive explicit formulas for
the joint distribution of n firms’ default times in terms of a system of Riccati
equations. In particular, it is straightforward to derive prices of first-to-default
products. Experience shows that numerically solving a system of 100 generalized
Riccati equations is quite efficient and takes about a minute.

5.2 Alternative Dynamics

We now sketch a possible change of the characteristics of the factor process
X, replacing or extending the continuous diffusion parts by jumps. For the
mathematical justification of what follows we refer, again, to [10]. The basic
observation is that, for θ ∈ (1, 2),

µθ(dξ) :=
θ(θ − 1)
Γ(2− θ)

dξ

ξ1+θ

satisfies
∫
R++

(
ξ ∧ ξ2

)
µθ(dξ) < ∞ and

∫

R++

(
evξ − 1− vξ

)
µθ(dξ) = (−v)θ, v ∈ R−. (5.2)

The diffusion part
αixi∂

2
xi

f(x)

in (2.1) can now selectively for i ∈ {0, . . . , 3} be replaced (or extended) by

αixi

∫

R++

(f(x + ξei)− f(x)− ∂xif(x)ξ) µθi(dξ) (5.3)

for θi ∈ (1, 2). The equation for ψi in (2.3) accordingly changes to

∂tψi = αi(−ψi)θi +
3∑

k=0

βkiψk +
∑

p∈I

λp,i

(
ep4ψ4+p5ψ5+p6ψ6 − 1

)− δ1{i=0}.

(5.4)
Replacing the diffusion part of Xi by jumps (5.3) leads to a heavier tail distribu-
tion of Xi

t in general. Indeed, since the right hand side of (5.4) is monotonic in-
creasing in θi for −ψi = |ψi| large enough, a comparison argument for ODEs (see
e.g. [3]) yields that −ψi(t, v) is monotonic decreasing in θi for −v large enough.
That is, the smaller θi ∈ (1, 2), the smaller E[e−sXi

t ] = eφ(t,−sei)+〈ψ(t,−sei),X0〉,
for s > 0 large enough, indicating that there is more weight in the tail of Xi

t .
Finally, note that the limit case θ → 2 corresponds to the diffusion setup

(2.1).
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6 Conclusion

This paper provides some basic and efficient techniques for valuating credit
derivatives in an affine intensity based framework. In particular, the usual
doubly stochastic methods (see e.g. [9]) are replaced by Laplace transformations
and ODEs. This results in an analytically tractable framework which is flexible
enough to capture counterparty credit risk and dependence structures of large
credit portfolios.

The state of a firm is characterized by its credit index and default indicator
process. The joint evolution of risk-free rates and multiple firm’s state processes
can incorporate complex dependence structures. Due to a simple mathematical
trick, which allows to replace indicator variables by exponential-affine functions
of the state process, we obtain closed form expressions for the conditional ex-
pectations of a variety of joint credit events.

We demonstrate the efficiency of this approach by explicitly calculating the
joint distribution and density (provided it exists) of default times, default cor-
relations, and CDS spreads in the presence of counter-party default risk. Also
we sketch the pricing of swaptions by using an affine approximation technique,
as proposed by Singleton and Umantsev [22].

Our results, for simplicity of exposure, are based on affine diffusion and sim-
ple point processes for a three-firm model. An extension towards large credit
portfolios and more general affine jump-diffusion processes, including multi-
factor interest rate models and additional industry specific factors, is straight-
forward and an alternative affine regime is sketched in this paper. It remains
future research to compare their empirical performances.

Acknowledgements
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A Proof of Proposition 2.4

By dominated convergence, the left hand side of (2.5) equals

lim
k→∞

E
[
e−δ

∫ T
t

X0
s dse〈v,XT 〉e−k(p4X4

T +p5X5
T +p6X6

T ) | Ft

]

= lim
k→∞

eφ(T−t,v−k(p4e4+p5e5+p6e6);δ)+〈ψ(T−t,v−k(p4e4+p5e5+p6e6);δ),Xt〉.

Let j ∈ {4, 5, 6}. Since ∂tψj ≤ 0, we have that

ψj(t, v − k(p4e4 + p5e5 + p6e6); δ)
≤ ψj(0, v − k(p4e4 + p5e5 + p6e6); δ) = vj − k1{pj=1}, ∀t ≥ 0.

By classical results on inhomogeneous ODEs (see e.g. [3]), we conclude that the
right hand sides of the GREs (2.3) which correspond to φ, i = 0, . . . , 3 and
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j ∈ J0(p) converge uniformly on compacts in t, φ, ψi, i = 0, . . . , 3, and ψj ,
j ∈ J0(p), to the respective right hand sides of (2.6), for k → ∞. This proves
the proposition.

B Detailed Expressions for (3.2)

Taking into account Remark 2.5, we derive

S1k
t = E

[
e−

∫ Tk
t X0

s ds lim
l,m→∞

e
−l(X4

Tk−1
+X5

Tk−1
)−mX6

Tk | Ft

]

= E
[
e−

∫ Tk−1
t X0

s ds E
[
e
− ∫ Tk

Tk−1
X0

s ds lim
m→∞

e−mX6
Tk | FTk−1

]

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
) | Ft

]

= eΦ(∆,0;1;0;0,1)E
[
e−

∫ Tk−1
t X0

s dse
∑5

i=0 Ψi(∆,0;1;0;0,1)Xi
Tk−1

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
+X6

Tk−1
) | Ft

]

= eΦ(∆,0;1;0;0,1)+Φ(Tk−1−t,
∑3

i=0 Ψi(∆,0;1;0;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(∆,0;1;0;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

(B.1)

S2k
t = E

[
e−

∫ Tk
t X0

s dser+〈ρ,XTk
〉 lim

l,m→∞
e
−l(X4

Tk−1
+X5

Tk−1
)−mX6

Tk | Ft

]

= erE
[
e−

∫ Tk−1
t X0

s ds E
[
e
− ∫ Tk

Tk−1
X0

s ds
e〈ρ,XTk

〉 lim
m→∞

e−mX6
Tk | FTk−1

]

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
) | Ft

]

= er+Φ(∆,ρ;1;0;0,1)E
[
e−

∫ Tk−1
t X0

s dse
∑5

i=0 Ψi(∆,ρ;1;0;0,1)Xi
Tk−1

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
+X6

Tk−1
) | Ft

]

= er+Φ(∆,ρ;1;0;0,1)+Φ(Tk−1−t,
∑3

i=0 Ψi(∆,ρ;1;0;0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(∆,ρ;1;0;0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

(B.2)
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S3k
t = E

[
e−

∫ Tk
t X0

s ds lim
l,m→∞

e
−lX5

Tk−1
−m(X4

Tk
+X6

Tk
) | Ft

]

= E
[
e−

∫ Tk−1
t X0

s ds E
[
e
− ∫ Tk

Tk−1
X0

s ds lim
m→∞

e−m(X4
Tk

+X6
Tk

) | FTk−1

]

× lim
l→∞

e
−lX5

Tk−1 | Ft

]

= eΦ(∆,0;1;1,0,1)E
[
e−

∫ Tk−1
t X0

s dse
∑

i∈{0,...,3,5} Ψi(∆,0;1;1,0,1)Xi
Tk−1

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
+X6

Tk−1
) | Ft

]

= eΦ(∆,0;1;1,0,1)+Φ(Tk−1−t,
∑3

i=0 Ψi(∆,0;1;1,0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(∆,0;1;1,0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0},

(B.3)

S4k
t = E

[
e−

∫ Tk
t X0

s dser+〈ρ,XTk
〉 lim

l,m→∞
e
−lX5

Tk−1
−m(X4

Tk
+X6

Tk
) | Ft

]

= erE
[
e−

∫ Tk−1
t X0

s ds E
[
e
− ∫ Tk

Tk−1
X0

s ds
e〈ρ,XTk

〉 lim
m→∞

e−m(X4
Tk

+X6
Tk

) | FTk−1

]

× lim
l→∞

e
−lX5

Tk−1 | Ft

]

= er+Φ(∆,ρ;1;1,0,1)E
[
e−

∫ Tk−1
t X0

s dse
∑

i∈{0,...,3,5} Ψi(∆,ρ;1;1,0,1)Xi
Tk−1

× lim
l→∞

e
−l(X4

Tk−1
+X5

Tk−1
+X6

Tk−1
) | Ft

]

= er+Φ(∆,ρ;1;1,0,1)+Φ(Tk−1−t,
∑3

i=0 Ψi(∆,ρ;1;1,0,1)ei;1;1,1,1)

× e
∑3

j=0 Ψj(Tk−1−t,
∑3

i=0 Ψi(∆,ρ;1;1,0,1)ei;1;1,1,1)Xj
t 1{X4

t =X5
t =X6

t =0}.
(B.4)
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Figure 1: Density function of (τ1, τ2) for λ(1,0,0),2 = 0.
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Figure 2: Density function of (τ1, τ2) for λ(1,0,0),2 = 0.01.

Figure 3: Density function of (τ1, τ2) for λ(1,0,0),2 = 0.01 (zoomed).
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Figure 4: Term structure T 7→ corr(T ) of default correlations (2.15) between
two ’Aaa’ rated firms for the model (2.11), (2.12) and (2.14) and different values
for λ(1,0,0),2.
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Figure 5: CDS spreads with single-party risk (reference entity)

Figure 6: Exercising boundaries (dotted lines in the (X0, X1)-plane) of a default
swaption with maturity 5 years.
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