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Abstract. Lévy driven term structure models have become an important

subject in the mathematical finance literature. This paper provides a compre-
hensive analysis of the Lévy driven Heath–Jarrow–Morton type term structure

equation. This includes a full proof of existence and uniqueness in particular,

which seems to have been lacking in the finance literature so far.
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1. Introduction

A zero coupon bond with maturity T is a financial asset which pays the holder
one unit of cash at T . Its price at t ≤ T can be written as

P (t, T ) = exp

(
−
∫ T

t

f(t, u) du

)
where f(t, T ) is the forward rate for date T . The classical continuous framework
for the evolution of the forward rates goes back to Heath, Jarrow and Morton
(HJM) [32]. They assume that, under the risk-neutral measure, for every date T ,
the forward rates f(t, T ) follow an Itô process of the form

df(t, T ) =
( n∑

i=1

σi(t, T )
∫ T

t

σi(t, s) ds

)
dt +

n∑
i=1

σi(t, T )dW i
t , t ∈ [0, T ],(1.1)

where W = (W 1, . . . ,Wn) is a standard Brownian motion in Rn. The dynamics
(1.1) guarantee that the discounted zero coupon bond price processes

e−
R t
0 f(s,s) dsP (t, T ), t ∈ [0, T ],

are local martingales for all maturities T . This is the well known condition for the
absence of arbitrage in the bond market model.

Empirical studies have revealed that models based on Brownian motion only
provide a poor fit to observed market data. We refer to [51, Chap. 5], where it is
argued that empirically observed log returns of zero coupon bonds are not normally
distributed, a fact, which has long before been known for the distributions of stock
returns. Björk et al. [5, 6], Eberlein et al. [22, 21, 16, 19, 20, 18] and others ([55,
37, 33]) thus proposed to replace the classical Brownian motion W in (1.1) by a
more general process X = (X1, . . . , Xn), also taking into account the occurrence
of jumps. If X is a Lévy process, this leads to

df(t, T ) = αHJM(t, T )dt +
n∑

i=1

σi(t, T )dXi
t , t ∈ [0, T ].(1.2)
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The HJM drift in (1.1) accordingly is replaced by some appropriate αHJM(t, T ),
which is determined by σ(t, T ) and the cumulant generating function of X, see
(2.4) below.

Equation (1.2) constitutes a generic description of the forward rate process
f(t, T, ω) in terms of a stochastic volatility process σ(t, T, ω). From a financial mod-
elling point of view one would rather consider σ(t, T, ω), and thus αHJM(t, T, ω), to
be a function of the prevailing forward curve T 7→ f(t−, T, ω) = lims↑t f(s, T, ω),
that is

σ(t, T, ω) = σ(t, T, f(t−, ·, ω)), αHJM(t, T, ω) = αHJM(t, T, f(t, ·, ω)).

This makes f(t, T ) being a solution of the stochastic equation

{
df(t, T ) = αHJM(t, T, f(t, ·))dt +

∑n
i=1 σi(t, T, f(t−, ·))dXi

t , t ∈ [0, T ],

f(0, T ) = h0(T )

(1.3)

for some given initial forward curve h0(T ).
Term structure models of the type (1.3) are frequently considered in the liter-

ature. The typical assumption is that drift αHJM and volatility σ depend on the
current state of the short rate, σ(t, T, ω) = σ(t, T, f(t−, t, ω)), as in [38], [52], [4],
[34] and [33] (the latter studies models driven by jump-diffusions). A model, where
the volatility σ is allowed to depend on a finite number of benchmark forward rates,
is considered in [11] and [12]. We emphasize that these papers, whose setups are
special cases of our present framework, assume that the forward rates f(t, T ) evolve
according to an equation of the kind (1.3). To our knowledge, there has not been
yet an explicit proof for the existence of a solution to (1.3) in the mathematical
finance literature. We thus provide such a proof in our paper (Theorem 4.6 and
Corollary 4.7).

Note that (1.3) is an infinite-dimensional and therefore non-trivial problem. In
fact, (1.3) is not simply a system of infinitely many univariate stochastic equations
for f(t, T ), t ∈ [0, T ], indexed by T . Indeed, these equations are coupled as αHJM

and σ depend on the entire forward curve f(t−, ·), say e.g. on the short rate f(t−, t),
which is a functional of f(t−, ·). To express this functional dependence, one switches
best to the alternative parametrization

rt(x) = f(t, t + x), x ≥ 0,

which is due to Musiela [46]. We then write Stf(x) := f(x+t) for the shift operator
St. Equation (1.3) becomes in integrated form
(1.4)

rt(x) = Sth0(x) +
∫ t

0

St−sαHJM(s, s + x, rs) ds +
n∑

i=1

∫ t

0

St−sσi(s, s + x, rs−) dXi
s,

where St−s operates on the functions x 7→ αHJM(s, s + x, rs) and x 7→ σi(s, s +
x, rs−). Hence, in the spirit of Da Prato and Zabczyk [13], the process rt is a so
called mild solution of the stochastic differential equation{

drt =
(

d
dxrt + αHJM(t, rt)

)
dt +

∑n
i=1 σi(t, rt−) dXi

t ,

r0 = h0

(1.5)

in some appropriate Hilbert space H of forward curves, where d
dx becomes the

generator of the strongly continuous semigroup of shifts St. Note the slight abuse
of notation αHJM(t, t+ ·, r) αHJM(t, r) and σi(t, t+ ·, r) σi(t, r). In the sequel,
we are therefore concerned with the Lévy HJMM (Heath–Jarrow–Morton–Musiela)
equation (1.5) in various choices of the state space H.
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Several authors have dealt with the existence issue for (1.5) for the Brownian
motion case X = W . Björk and Svensson [7] chose the state space Hβ,γ small
enough such that d

dx : Hβ,γ → Hβ,γ becomes a bounded linear operator. In this
case, the methods from finite dimension essentially carry over to (1.5). It turns out,
however, that the Björk–Svensson space Hβ,γ is too small and does not contain
some important classical term structure models (see [25]). In [24], we thus analyzed
and solved (1.5) for X = W on a larger space Hw, where d

dx becomes unbounded.
In this paper we provide the existence proof for (1.5) for the Lévy case. We

proceed as follows. Using an existence result for general Hilbert space valued sto-
chastic differential equations from the appendix, we first show existence for (1.5)
in the Björk–Svensson space Hβ,γ . However, often it turns out that Hβ,γ is too
small to assert that αHJM lies in Hβ,γ , even for the very simple case where σ is con-
stant and the driver X is a compound Poisson process (Example 3.4). Afterwards,
we thus consider (1.5) in the larger state space Hw from [24] where d

dx becomes
unbounded.

Term structure models based on infinite dimensional driving processes X are
discussed e.g. in [36] and [47] for the Lévy case. Again, in these papers it is typically
assumed that the forward curve evolution satisfies a stochastic differential equation,
but the authors do not treat existence and uniqueness of solutions.

The remainder of the paper is organized as follows. In Section 2 we introduce
some notation and specify the HJM drift αHJM, which ensures that the bond market
is free of arbitrage. In Section 3 we treat the existence of strong solutions to (1.5) on
the Björk–Svensson space Hβ,γ . Afterwards, Section 4 is devoted to the existence
of mild and weak solutions to (1.5) on the larger space Hw where d

dx becomes
unbounded. Section 5 concludes.

For our results of Section 3 and Section 4 we apply an existence result for gen-
eral Hilbert space valued stochastic differential equations, which is derived in the
appendix. The ground for this result, Theorem C.1, is prepared by two works of
van Gaans [26, 27]. In addition to his result [27, Thm. 4.1] we prove that the mild
solution to (1.5) has a càdlàg modification, and that there exists a unique weak
solution.

The càdlàg property of the solution is an important feature for financial applica-
tions. Indeed, general arbitrage theory [15] requires that the basic financial instru-
ments, here the implied zero coupon bond prices P (t, T ) = exp(−

∫ T−t

0
rt(x) dx),

are real semimartingales and therefore have càdlàg paths. This essentially requires
càdlàg paths of the weak solution (rt), which is satisfied in our framework.

As it turns out, the stochastic integral of van Gaans [27] is not consistent with the
usual Itô-integral, which is used for financial modelling. Therefore, after giving an
overview and the required notation in Appendix A, we show in Appendix B that the
stochastic integral of van Gaans always has a càdlàg modification and analyze when
it coincides with the Itô-integral. Then, in Appendix C, we prove Theorem C.1, the
existence and uniqueness result for Hilbert space valued stochastic equations. At
the end of Appendix C we give an overview of related literature.

2. The HJM drift condition

Throughout this text, X1, . . . , Xn denote independent real-valued Lévy processes
on a filtered probability space (Ω,F, (Ft)t≥0, P) satisfying the usual conditions.

Let H be a separable Hilbert space representing the space of forward curves and
let σ1, . . . , σn : R+ ×H → H be the volatilities. Recall that a Lévy term structure
model of the form (1.5) is free of arbitrage if the probability measure P is a local
martingale measure, that is all discounted bond prices are local martingales.
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In order to provide a condition which ensures that P is a local martingale mea-
sure, we assume that there are compact intervals [a1, b1], . . . , [an, bn] having zero as
an inner point such that the Lévy measures F1, . . . , Fn of X1, . . . , Xn, respectively,
satisfy for i = 1, . . . , n ∫

|x|>1

ezxFi(dx) < ∞, z ∈ [ai, bi].(2.1)

Condition (2.1) ensures that the cumulant generating functions

Ψi(z) := ln E[exp(zXi
1)], i = 1, . . . , n(2.2)

exist on [ai, bi] and that they are of class C∞ (see [54, Lemma 26.4]). Moreover,
the Lévy processes Xi possess moments of arbitrary order. Let [ci, di] ⊂ (ai, bi) be
further compact intervals having zero as an inner point.

For any continuous function h : R+ → R we define Th : R+ → R as

Th(x) :=
∫ x

0

h(η)dη.(2.3)

For i = 1, . . . , n denote

AΨi

H := {h ∈ H : −Th(R+) ⊂ [ci, di]}.

Provided σi(R+ ×H) ⊂ AΨi

H for i = 1, . . . , n, the HJM drift

(2.4)

αHJM(t, r)(x) =
n∑

i=1

d

dx
Ψi

(
−
∫ x

0

σi(t, r)(η)dη

)

= −
n∑

i=1

σi(t, r)(x)Ψ′
i

(
−
∫ x

0

σi(t, r)(η)dη

)
is well defined pointwise for all x. The HJM drift condition (2.4) implies that P is
a local martingale measure. It is derived in [21, Sec. 2.1] for the present Lévy case,
using the results of the more general setup in [5]. For an analogous drift condition
in the infinite dimensional Lévy setting, see [36].

The HJM drift specification (2.4) causes some problems for an immediate ap-
plication of Theorem C.1. First of all, we have to ensure that αHJM(t, r) ∈ H for
all (t, r) ∈ R+ ×H. Furthermore, we have to establish for an application of Theo-
rem C.1 that for Lipschitz functions σ1, . . . , σn the drift αHJM is again a Lipschitz
function.

These demandings emphasize that we have to be careful about the choice of the
space H of forward curves. Another desirable feature of H is that for every x ∈ R+

the point evaluation h 7→ h(x) : H → R is a continuous linear functional. Because
then the variation of constants formula (1.4) is satisfied for all x ∈ R+, whenever
(rt) is a mild solution of (1.5).

In the upcoming Section 3 we deal with the existence of strong solutions to (1.5),
and Section 4 is devoted to the existence of mild and weak solutions to (1.5).

3. Forward curve evolutions as strong solutions of infinite
dimensional stochastic differential equations

In this section, where we deal with the existence of strong solutions to (1.5), we
consider the spaces Hβ,γ of forward curves, which have been used by Björk and
Svensson in [7].
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We fix real numbers β > 1 and γ > 0. Let Hβ,γ be the linear space of all
h ∈ C∞(R+; R) satisfying

∞∑
n=0

(
1
β

)n ∫ ∞

0

(
dnh(x)

dxn

)2

e−γxdx < ∞,

We define the inner product

〈g, h〉β,γ :=
∞∑

n=0

(
1
β

)n ∫ ∞

0

(
dng(x)
dxn

)(
dnh(x)

dxn

)
e−γxdx

and denote the corresponding norm by ‖ · ‖β,γ .

3.1. Proposition. The space (Hβ,γ , 〈·, ·〉β,γ) is a separable Hilbert space and for
each x ∈ R+, the point evaluation h 7→ h(x) : Hβ,γ → R is a continuous linear
functional.

Proof. This is a consequence of [7, Prop. 4.2]. �

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (rt) solving (1.5) satisfy the variation of constants formula (1.4).

3.2. Proposition. We have d
dx ∈ L(Hβ,γ), i.e. d

dx is a bounded linear operator on
Hβ,γ .

Proof. The assertion is a consequence of [7, Prop. 4.2]. �

3.3. Theorem. Let σi : R+ ×Hβ,γ → Hβ,γ be continuous and satisfying σi(R+ ×
Hβ,γ) ⊂ AΨi

Hβ,γ
for i = 1, . . . , n. Assume that αHJM(t, r) ∈ Hβ,γ for all (t, r) ∈

R+×Hβ,γ . Furthermore, assume that αHJM(t, r) : R+×Hβ,γ → Hβ,γ is continuous
and that there is a constant L ≥ 0 such that for all t ∈ R+ and h1, h2 ∈ Hβ,γ we
have

‖αHJM(t, h1)− αHJM(t, h2)‖β,γ ≤ L‖h1 − h2‖β,γ ,

‖σi(t, h1)− σi(t, h2)‖β,γ ≤ L‖h1 − h2‖β,γ , i = 1, . . . , n.

Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted càdlàg solution
(rt)t≥0 to (1.5) with r0 = h0 satisfying

E
[

sup
t∈[0,T ]

‖rt‖2
β,γ

]
< ∞ for all T > 0.(3.1)

Proof. Taking into account Proposition 3.2, the result is a consequence of Corollary
C.2. �

Unfortunately, Theorem 3.3 has some shortcomings, namely it is demanded that
the drift term αHJM according to the HJM drift condition (2.4) maps again into the
space Hβ,γ . The following simple counter example shows that this condition may
be violated.

3.4. Example. Let σ = −1 and X be a compound Poisson process with intensity
λ = 1 and jump size distribution N(0, 1). Notice that the compound Poisson process
satisfies the exponential moments condition (2.1) for all z ∈ R, because its Lévy
measure is given by

F (dx) =
1√
2π

e−
x2
2 dx.
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But we have αHJM /∈ Hβ,γ , because∫ ∞

0

αHJM(x)2e−γxdx =
∫ ∞

0

(
d

dx
Ψ(x)

)2

e−γxdx

=
∫ ∞

0

(
d

dx

(
e

x2
2 − 1

))2

e−γxdx =
∫ ∞

0

x2ex2−γxdx = ∞.

The phenomena that the drift αHJM may be located outside the space of forward
curves Hβ,γ has to do with the fact that the space Hβ,γ is a very small space in a
sense, in particular, every function must necessarily be real-analytic (see [7, Prop.
4.2]).

The small size of this space arises from the requirement that d
dx should be a

bounded operator, because we deal with the existence of strong solutions. When
dealing with mild and weak solutions in the next Section 4, problems of this kind
will not occur.

Nevertheless, for certain types of term structure models, we can apply Theorem
3.3. For this purpose, we proceed with a lemma. For a given real-analytic function
h : R+ → R it is, in general, difficult to decide whether h belongs to Hβ,γ or not.
For the following functions this can be provided.

3.5. Lemma. Every polynomial p belongs to Hβ,γ , and for δ ∈ R satisfying δ2 < β
and δ < γ

2 , the function h(x) = eδx belongs to Hβ,γ .

Proof. The first statement is clear. For h(x) = eδx we obtain
∞∑

n=0

(
1
β

)n ∫ ∞

0

(
dnh(x)

dxn

)2

e−γxdx =
∞∑

n=0

(
1
β

)n ∫ ∞

0

(
δneδx

)2
e−γxdx

=
∞∑

n=0

(
δ2

β

)n ∫ ∞

0

e−(γ−2δ)xdx =
1

1− δ2

β

· 1
γ − 2δ

=
β

(β − δ2)(γ − 2δ)
,

whence h ∈ Hβ,γ . �

Let n = 3, that is we have three independent driving processes. We denote by
X1, X2 two standard Wiener processes, and X3 is a Poisson process with intensity
λ > 0. We specify the volatilities as

σ1(r)(x) = ϕ1(r)p(x), σ2(r)(x) = ϕ2(r)eδx and σ3(r)(x) = −η,

where p is a polynomial, δ, η ∈ R satisfy 4δ2 < β, δ < γ
4 and η2 < β, η < γ

2 , and
where ϕi : Hγ,β → R for i = 1, 2. Note that σi(Hβ,γ) ⊂ Hβ,γ for i = 1, 2, 3 by
Lemma 3.5. The drift according to the HJM drift condition (2.4) is given by

αHJM(r)(x) =
d

dx

[
1
2
ϕ1(r)2q(x)2 +

1
2
ϕ2(r)2

(
eδx − 1

δ

)2

+ λ (eηx − 1)

]
,

where q(x) =
∫ x

0
p(η)dη is again a polynomial. From Lemma 3.5 and Proposition

3.2 we infer αHJM(Hβ,γ) ⊂ Hβ,γ .

3.6. Proposition. Assume there is a constant L ≥ 0 such that for all h1, h2 ∈ Hβ,γ

we have

|ϕi(h1)− ϕi(h2)| ≤ L‖h1 − h1‖β,γ , i = 1, 2

|ϕi(h1)2 − ϕi(h2)2| ≤ L‖h1 − h1‖β,γ , i = 1, 2.

Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted càdlàg solution
(rt)t≥0 to (1.5) with r0 = h0 satisfying (3.1).
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Proof. We have for all h1, h2 ∈ Hβ,γ

‖σ1(h1)− σ1(h2)‖ ≤ L‖p‖β,γ‖h1 − h2‖β,γ ,

‖σ2(h1)− σ2(h2)‖ ≤ L‖eδ•‖β,γ‖h1 − h2‖β,γ .

Using Proposition 3.2, we obtain for all h1, h2 ∈ Hβ,γ

‖αHJM(h1)− αHJM(h2)‖β,γ ≤
L

2
‖A‖L(Hβ,γ)

(
‖q2‖β,γ + ‖ 1

δ2 (eδ• − 1)2‖β,γ

)
‖h1 − h2‖β,γ .

Applying Theorem 3.3 completes the proof. �

In order to generalize Proposition 3.6, by allowing that η may depend on the
present state of the forward curve, we prepare two auxiliary results.

3.7. Lemma. Let γ > 0 and g, h ∈ C1(R+; R). Assume there are c > 0, ε ∈ (−∞, γ)
and x0 ∈ R+ such that

|g(x)h(x)| ≤ ceεx for all x ≥ x0.

Then we have∫ ∞

0

g(x)h(x)e−γxdx

=
1
γ

[
g(0)h(0) +

∫ ∞

0

g′(x)h(x)e−γxdx +
∫ ∞

0

g(x)h′(x)e−γxdx

]
.

Proof. Performing partial integration with three factors, we obtain[
g(x)h(x)e−γx

]∞
0

=
∫ ∞

0

g′(x)h(x)e−γxdx +
∫ ∞

0

g(x)h′(x)e−γxdx

− γ

∫ ∞

0

g(x)h(x)e−γxdx.

By hypothesis, we have limx→∞ g(x)h(x)e−γx = 0, and so the stated formula fol-
lows. �

3.8. Lemma. Let γ > 0 and h ∈ C2(R+; R) be such that h, h′, h′′ ≥ 0. Assume
there are c > 0, ε ∈ (−∞, γ

2 ) and x0 ∈ R+ such that

|h(x)| ≤ ceεx and |h′(x)| ≤ ceεx for all x ≥ x0.

Then we have ∫ ∞

0

h′(x)2e−γxdx ≤ γ2

2

∫ ∞

0

h(x)2e−γxdx.

Proof. Using two times Lemma 3.7, we obtain∫ ∞

0

h(x)2e−γxdx =
2
γ

∫ ∞

0

h(x)h′(x)e−γxdx +
1
γ

h(0)2

=
2
γ2

[∫ ∞

0

h′(x)2e−γxdx +
∫ ∞

0

h(x)h′′(x)e−γxdx

]
+

1
γ

[
h(0)2 +

2
γ

h(0)h′(0)
]

.

Since h, h′, h′′ ≥ 0 by hypothesis, the stated inequality follows. �

Now we generalize Proposition 3.6 by assuming that η : Hβ,γ → R is allowed to
depend on the current state of the forward curve. The rest of our present framework
is exactly as in Proposition 3.6.

3.9. Proposition. Assume that, in addition to the hypothesis of Proposition 3.6,
we have γ ≤

√
2, η(Hβ,γ) ⊂ [0, γ

2 ) ∩ [0,
√

β) and

|η(h1)− η(h2)| ≤ L‖h1 − h2‖β,γ

for all h1, h2 ∈ Hβ,γ . Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted
càdlàg solution (rt)t≥0 to (1.5) with r0 = h0 satisfying (3.1).
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Proof. It suffices to show that Γ : Hβ,γ → Hβ,γ defined as Γ(r)(x) := eη(r)x is
Lipschitz continuous. So let h1, h2 ∈ Hβ,γ be arbitrary. Without loss of generality
we assume that η(h2) ≤ η(h1). Observe that all derivatives of Γ(h1)−Γ(h2) are non-
negative. So we obtain by applying Lemma 3.8 (notice that γ ≤

√
2 by hypothesis),

and the Lipschitz property |ex − ey| ≤ ex|x− y| for y ≤ x that

‖Γ(h1)− Γ(h2)‖2
β,γ =

∞∑
n=0

(
1
β

)n ∫ ∞

0

(
η(h1)neη(h1)x − η(h2)neη(h2)x

)2

e−γxdx

≤ β

β − 1

∫ ∞

0

(
eη(h1)x − eη(h2)x

)2

e−γxdx

≤ β

β − 1

∫ ∞

0

(
eη(h1)x(η(h1)− η(h2))x

)2

e−γxdx

≤ β

β − 1

(∫ ∞

0

(
xeη(h1)x

)2

e−γxdx

)
L2‖h1 − h2‖2

β,γ .

The integral is finite, because we have η(h1) ∈ [0, γ
2 ) by assumption. Applying

Theorem 3.3 finishes the proof. �

4. Forward curve evolutions as mild and weak solutions of infinite
dimensional stochastic differential equations

In this section, where we deal with the existence of mild and weak solutions to
(1.5), we consider the spaces Hw of forward curves, which have been introduced in
[24, Chap. 5].

Let w : R+ → [1,∞) be a non-decreasing C1-function such that w− 1
3 ∈ L1(R+).

4.1. Example. w(x) = eαx, for α > 0.

4.2. Example. w(x) = (1 + x)α, for α > 3.

Let Hw be the linear space of all absolutely continuous functions h : R+ → R
satisfying ∫

R+

|h′(x)|2w(x)dx < ∞,

where h′ denotes the weak derivative of h. We define the inner product

(g, h)w := g(0)h(0) +
∫

R+

g′(x)h′(x)w(x)dx

and denote the corresponding norm by 9 ·9w. Since forward curves flatten for large
time to maturity x, the choice of Hw is reasonable from an economic point of view.

4.3. Proposition. The space (Hw, (·, ·)w) is a separable Hilbert space. Each h ∈ Hw

is continuous, bounded and the limit h(∞) := limx→∞ h(x) exists. Moreover, for
each x ∈ R+, the point evaluation h 7→ h(x) : Hw → R is a continuous linear
functional.

Proof. All of these statements can be found in the proof of [24, Thm. 5.1.1]. �

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (rt) solving (1.5) satisfy the variation of constants formula (1.4).

Defining the constants C1, . . . , C4 > 0 as

C1 := ‖w−1‖
1
2
L1(R+), C2 := 1 + C1, C3 := ‖w− 1

3 ‖2
L1(R+), C4 := ‖w− 1

3 ‖
7
2
L1(R+),
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we have for all h ∈ Hw the estimates

‖h′‖L1(R+) ≤ C1 9 h9w,(4.1)

‖h‖L∞(R+) ≤ C2 9 h9w,(4.2)

‖h− h(∞)‖L1(R+) ≤ C3 9 h9w,(4.3)

‖(h− h(∞))4w‖L1(R+) ≤ C4 9 h94
w,(4.4)

which also follows by inspecting the proof of [24, Thm. 5.1.1].
Since for an application of Theorem C.1 we require that the shift semigroup

(St)t≥0 defined by Sth = h(t + ·) for t ∈ R+ is pseudo-contractive in a closed
subspace of Hw, we perform an idea, which is due to Tehranchi [57], namely we
change to the inner product

〈g, h〉w := g(∞)h(∞) +
∫

R+

g′(x)h′(x)w(x)dx

and denote the corresponding norm by ‖ · ‖w. The estimates (4.1)–(4.4) are also
valid with the norm ‖ ·‖w for all h ∈ Hw, which is proven exactly as for the original
norm 9 · 9w. Therefore we conclude, by using (4.2),

1
(1 + C2

2 )
1
2
‖h‖w ≤ 9h9w ≤ (1 + C2

2 )
1
2 ‖h‖w, h ∈ Hw

showing that ‖ · ‖w and 9 ·9w are equivalent norms on Hw. From now on, we shall
work with the norm ‖ · ‖w.

4.4. Proposition. (St) is a C0-semigroup in Hw with generator d
dx : D( d

dx ) ⊂
Hw → Hw, d

dxh = h′, and domain

D( d
dx ) = {h ∈ Hw |h′ ∈ Hw}.

The subspace H0
w := {h ∈ Hw |h(∞) = 0} is a closed subspace of Hw and (St) is

contractive in H0
w with respect to the norm ‖ · ‖w.

Proof. Except for the last statement, we refer to the proof of [24, Thm. 5.1.1]. By
the monotonicity of w we have

‖Sth‖2
w =

∫
R+

|h′(x + t)|2w(x)dx ≤ ‖h‖2
w

for all t ∈ R+ and h ∈ H0
w, showing that (St) is contractive in H0

w. �

We define for any h = (h1, . . . , hn) ∈ Πn
i=1A

Ψi

H0
w

Σh(x) := −
n∑

i=1

hi(x)Ψ′
i

(
−
∫ x

0

hi(η)dη

)
, x ∈ R+.(4.5)

4.5. Proposition. There is a constant C5 > 0 such that for all g, h ∈ Πn
i=1A

Ψi

H0
w

we have

‖Σg − Σh‖w ≤ C5

n∑
i=1

(
1 + ‖hi‖w + ‖gi‖w + ‖gi‖2

w

)
‖gi − hi‖w.(4.6)

Furthermore, for each h ∈ Πn
i=1A

Ψi

H0
w

we have Σh ∈ H0
w, and the map Σ : Πn

i=1A
Ψi

H0
w
→

H0
w is continuous.

Proof. We define

Ki := sup
x∈[ci,di]

|Ψ′
i(x)|, Li := sup

x∈[ci,di]

|Ψ′′
i (x)| and Mi := sup

x∈[ci,di]

|Ψ′′′
i (x)|
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for i = 1, . . . , n. By the boundedness of the derivatives Ψ′
i on [ci, di], the definition

(4.5) of Σ yields that for each h ∈ Πn
i=1A

Ψi

H0
w

the limit Σh(∞) := limx→∞ Σh(x)
exists and

Σh(∞) = 0, h ∈ Πn
i=1A

Ψi

H0
w
.(4.7)

By using (4.7) and the universal inequality

|x1 + . . . + xk|2 ≤ k
(
|x1|2 + . . . + |xk|2

)
, k ∈ N

we get for arbitrary g, h ∈ Πn
i=1A

Ψi

H0
w

the estimation

‖Σg − Σh‖2
w =

∫
R+

∣∣∣ n∑
i=1

h′i(x)Ψ′
i

(
−
∫ x

0

hi(η)dη

)
−

n∑
i=1

g′i(x)Ψ′
i

(
−
∫ x

0

gi(η)dη

)

+
n∑

i=1

gi(x)2Ψ′′
i

(
−
∫ x

0

gi(η)dη

)
−

n∑
i=1

hi(x)2Ψ′′
i

(
−
∫ x

0

hi(η)dη

) ∣∣∣2w(x)dx

≤ 4n(I1 + I2 + I3 + I4),

where we have put

I1 :=
n∑

i=1

∫
R+

|h′i(x)|2
∣∣∣Ψ′

i

(
−
∫ x

0

hi(η)dη

)
−Ψ′

i

(
−
∫ x

0

gi(η)dη

) ∣∣∣2w(x)dx,

I2 :=
n∑

i=1

∫
R+

Ψ′
i

(
−
∫ x

0

gi(η)dη

)2

|h′i(x)− g′i(x)|2w(x)dx,

I3 :=
n∑

i=1

∫
R+

gi(x)4
[
Ψ′′

i

(
−
∫ x

0

gi(η)dη

)
−Ψ′′

i

(
−
∫ x

0

hi(η)dη

)]2
w(x)dx,

I4 :=
n∑

i=1

∫
R+

Ψ′′
i

(
−
∫ x

0

hi(η)dη

)2

(gi(x)2 − hi(x)2)2w(x)dx.

Using (4.3) yields

I1 ≤
n∑

i=1

L2
i ‖hi‖2

w‖gi − hi‖2
L1(R+) ≤ C2

3

n∑
i=1

L2
i ‖hi‖2

w‖gi − hi‖2
w,

and I2 is estimated as

I2 ≤
n∑

i=1

K2
i ‖gi − hi‖2

w.

Taking into account (4.3) and (4.4), we get

I3 ≤
n∑

i=1

M2
i ‖g4

i w‖L1(R+)‖gi − hi‖2
L1(R+) ≤ C2

3C4

n∑
i=1

M2
i ‖gi‖4

w‖gi − hi‖2
w,

and by using Hölder’s inequality and (4.4), we obtain

I4 ≤
n∑

i=1

L2
i

∫
R+

(gi(x) + hi(x))2w(x)
1
2 (gi(x)− hi(x))2w(x)

1
2 dx

≤
n∑

i=1

L2
i ‖(gi + hi)4w‖

1
2
L1(R+)‖(gi − hi)4w‖

1
2
L1(R+)

≤ 2C4

n∑
i=1

L2
i (‖gi‖2

w + ‖hi‖2
w)‖gi − hi‖2

w,
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which gives us the desired estimation (4.6). For all h ∈ Πn
i=1A

Ψi

H0
w

we have Σh ∈ H0
w

by (4.6) and (4.7), and the map Σ : Πn
i=1A

Ψi

H0
w
→ H0

w is locally Lipschitz continuous
by (4.6). �

By Proposition 4.5 we can, for given volatilities σi : R+ ×Hw → H0
w satisfying

σi(R+ ×Hw) ⊂ AΨi

H0
w

for i = 1, . . . , n, define the drift term αHJM according to the
HJM drift condition (2.4) by

αHJM := Σ ◦ σ : R+ ×Hw → H0
w,(4.8)

where σ = (σ1, . . . , σn).
Now, we are ready to establish the existence of Lévy term structure models on

the space Hw of forward curves.

4.6. Theorem. Let σi : R+×Hw → H0
w be continuous and satisfying σi(R+×Hw) ⊂

AΨi

H0
w

for i = 1, . . . , n. Assume there are M,L ≥ 0 such that for all i = 1, . . . , n and
t ∈ R+ we have

‖σi(t, h)‖w ≤ M, h ∈ Hw

‖σi(t, h1)− σi(t, h2)‖w ≤ L‖h1 − h2‖w, h1, h2 ∈ Hw.

Then, for each h0 ∈ Hw, there exists a unique mild and a unique weak adapted
càdlàg solution (rt)t≥0 to (1.5) with r0 = h0 satisfying

E
[

sup
t∈[0,T ]

‖rt‖2
w

]
< ∞ for all T > 0.(4.9)

Proof. By Proposition 4.5, αHJM maps into H0
w, see (4.8). Since σ = (σ1, . . . , σn) :

R+ × Hw → Πn
i=1A

Ψi

H0
w

is continuous by assumption and Σ : Πn
i=1A

Ψi

H0
w
→ H0

w is
continuous by Proposition 4.5, it follows that αHJM = Σ◦σ is continuous. Moreover,
by estimate (4.6), we obtain for all t ∈ R+ and h1, h2 ∈ Hw the estimation

‖αHJM(t, h1)− αHJM(t, h2)‖w ≤ C5(1 + M)2
n∑

i=1

‖σi(t, h1)− σi(t, h2)‖w

≤ C5(1 + M)2nL‖h1 − h2‖w.

Taking also into account Proposition 4.4, applying Theorem C.1 finishes the proof.
�

As an immediate consequence, we get the existence of Lévy term structure models
with constant direction volatilities.

4.7. Corollary. Let σi : R+ ×Hw → H0
w be defined by σi(t, r) = σi(r) = ϕi(r)λi,

where λi ∈ AΨi

H0
w

and ϕi : Hw → [0, 1] for i = 1, . . . , n. Assume there is L ≥ 0 such
that for all i = 1, . . . , n we have

|ϕi(h1)− ϕi(h2)| ≤ L‖h1 − h2‖w, h1, h2 ∈ Hw.

Then, for each h0 ∈ Hw, there exists a unique mild and a unique weak adapted
càdlàg solution (rt)t≥0 to (1.5) with r0 = h0 satisfying (4.9).

Proof. For all h1, h2 ∈ Hw and all i = 1, . . . , n we get

‖σi(h1)− σi(h2)‖w ≤ L‖λi‖w‖h1 − h2‖w.

Also observing that ‖σi(h)‖w ≤ ‖λi‖w for all h ∈ Hw and i = 1, . . . , n, the proof is
a straightforward consequence of Theorem 4.6. �



12 DAMIR FILIPOVIĆ AND STEFAN TAPPE

The only assumption on the driving Lévy processes X1, . . . , Xn, in order to
apply the previous results, is the exponential moments condition (2.1). It is clearly
satisfied for Brownian motions and Poisson processes.

There are also several purely discontinuous Lévy processes fulfilling (2.1), for
instance generalized hyperbolic processes, which have been introduced by Barndorff-
Nielsen [2], and their subclasses, namely the normal inverse Gaussian and hyperbolic
processes. They have been applied to finance by Eberlein and co-authors in a series
of papers, e.g. in [17].

Other purely discontinuous Lévy processes satisfying (2.1) are the generalized
tempered stable processes, see [10, Sec. 4.5], which include Variance Gamma pro-
cesses [43], CGMY processes [9] and bilateral Gamma processes [42].

Consequently, Theorem 4.6 applies to term structure models driven by any of
the above types of Lévy processes.

5. Conclusion

We have established the existence of Lévy term structure models on two spaces
of forward curves, namely in Section 3 on the Björk–Svensson space Hβ,γ , on which
d
dx is a bounded linear operator, and in Section 4 on the larger space Hw, where d

dx
becomes unbounded.

In Section 3 it turned out that Hβ,γ is too small to assert that αHJM given by the
HJM drift-condition (2.4) lies in Hβ,γ . However, for certain jump-diffusion models
we have established existence and uniqueness on this space, see Proposition 3.6 and
Proposition 3.9.

Our main results of Section 4 (Theorem 4.6 and Corollary 4.7), where we work
on the larger space Hw, are applicable for a large range of driving Lévy processes,
including mixtures of Brownian motion and Poisson processes, and purely discon-
tinuous Lévy processes such as generalized hyperbolic processes and generalized
tempered stable processes as well as several subclasses.

The existence results for Lévy term structure models are based on a general
result for Hilbert space valued stochastic equations, see Theorem C.1 from the
appendix. This result relies on two works of van Gaans [26, 27]. In order to make [27,
Thm. 4.1] applicable for financial applications, where one is in particular interested
in a solution with càdlàg trajectories, we have shown in the appendix that the
stochastic integral constructed in van Gaans [27] has a càdlàg modification and we
have analyzed when it coincides with the usual Itô-integral.

Appendix A. Overview and notation

The goal of Appendix A – Appendix C is to provide an existence result for
solutions of infinite dimensional stochastic differential equations, which is required
in order to establish the existence of Lévy term structure models.

We intend to apply a result of van Gaans [27, Thm. 4.1]. However, as we shall
see in Section B, the stochastic integral (G-)

∫ t

0
ΦsdXs defined in van Gaans [27]

is not consistent with the usual Itô-integral
∫ t

0
ΦsdXs, which is used for financial

modelling. This matters in view of applications to finance, because, as we have
argued at the end of Section 1, we are in particular interested in a solution process
with càdlàg paths.

In order to make [27, Thm. 4.1] applicable, we review the stochastic integral,
which is defined in van Gaans [27], in Appendix B, show that it always possesses
a càdlàg modification and analyze when it coincides with the usual Itô-integral.
In Appendix C, we obtain the desired existence result concerning mild solutions,
Theorem C.1, by applying [27, Thm. 4.1]. Using our findings of Appendix B, we
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additionally show that the solution has a càdlàg modification and that it is also a
weak solution.

Let H denote a separable Hilbert space with inner product 〈·, ·〉H and associated
norm ‖ · ‖H . If there is no ambiguity, we shall simply write 〈·, ·〉 and ‖ · ‖.

Let T > 0 be a finite time horizon. We denote by Cad([0, T ];L2(Ω;H)) the space
of all continuous mappings Φ : [0, T ] → L2(Ω; H) which are also adapted.

For two stochastic processes (Φt)t∈[0,T ] and (Ψ)t∈[0,T ] we say that Ψ is a modi-
fication of Φ if P(Φt = Ψt) = 1 for all t ∈ [0, T ].

An adapted H-valued process (Φt)t∈[0,T ] is called a martingale if
• E [‖Φt‖] < ∞ for all t ∈ [0, T ];
• E[Φt |Fs] = Φs (P – a.s.) for all 0 ≤ s ≤ t ≤ T .

For the notion of conditional expectation of random variables having values in a
separable Banach space, we refer to [13, Sec. 1.3].

An indispensable tool will be Doob’s martingale inequality

E
[

sup
t∈[0,T ]

‖Φt‖2

]
≤ 4 sup

t∈[0,T ]

E
[
‖Φt‖2

]
= 4E

[
‖ΦT ‖2

]
,(A.1)

valid for every H-valued càdlàg martingale Φ, which is a consequence of Thm. 3.8
and Prop. 3.7 in [13].

Appendix B. Stochastic integration

Let M be a real-valued Lévy martingale satisfying E[M2
1 ] < ∞. We recall how

in this case the stochastic integral (G-)
∫ t

0
ΦsdMs, in the sense of van Gaans [27,

Sec. 3], is defined for Φ ∈ Cad([0, T ];L2(Ω; H)).

B.1. Lemma. Let Φ ∈ Cad([0, T ];L2(Ω;H)). For each t ∈ [0, T ], there exists a
unique random variable Yt ∈ L2(Ω;H) such that for every ε > 0 there exists δ > 0
such that

E

[∥∥∥∥Yt −
n−1∑
i=0

(Mti+1 −Mti
)Φti

∥∥∥∥2
]

< ε(B.1)

for every partition 0 = t0 < t1 < . . . < tn = t with supi=0,...,n−1 |ti+1 − ti| < δ.

Proof. The assertion is a consequence of [27, Prop. 3.2.1]. �

B.2. Definition. Let Φ ∈ Cad([0, T ];L2(Ω; H)). Then the stochastic integral Yt =
(G-)

∫ t

0
ΦsdMs, t ∈ [0, T ] is the stochastic process Y = (Yt)t∈[0,T ] where every Yt is

the unique element from L2(Ω;H) such that (B.1) is valid.

We observe that for every t ∈ [0, T ] the stochastic integral (G-)
∫ t

0
ΦsdMs is only

determined up to a P-null set. With regard to our applications to finance it arises
the question if we can find a modification of the stochastic integral with càdlàg
paths, a question which is not treated in [27].

Let Φ ∈ Cad([0, T ];L2(Ω; H)). We define

It(Φ) := (G-)
∫ t

0

ΦsdMs, t ∈ [0, T ](B.2)

and the sequence of càdlàg adapted processes

In(Φ) :=
2n−1∑
i=0

(M tn
i+1 −M tn

i )Φtn
i
, n ∈ N0(B.3)

where we set for n ∈ N0 and i ∈ {0, . . . , 2n}
tni := i2−nT,(B.4)
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that is, we have a sequence of dyadic decompositions of the interval [0, T ]. Note
that each In(Φ) is a martingale and that for each t ∈ [0, T ] we have In

t (Φ) → It(Φ)
in L2(Ω;H) by Lemma B.1.

We let M2 be the linear space of all càdlàg H-valued martingales (Φt)t∈[0,T ],
which are square-integrable, i.e. E

[
‖Φt‖2

]
< ∞ for all t ∈ [0, T ], equipped with the

norm

‖Φ‖2 = E
[

sup
t∈[0,T ]

‖Φt‖2

] 1
2

.

Note that by Doob’s martingale inequality (A.1), ‖Φ‖2 is finite for every Φ ∈ M2,
and therefore ‖·‖2 defines a norm on the linear space M2. For the next result, we can
almost literally follow the proof of [13, Prop. 3.9], which considers the continuous
time case. For convenience of the reader, we provide the proof here.

B.3. Proposition. The normed space (M2, ‖ · ‖2) is a Banach space.

Proof. Let (Φn) be a Cauchy sequence in M2, i.e. for every ε > 0 there is an index
n0 ∈ N such that

E
[

sup
t∈[0,T ]

‖Φn
t − Φm

t ‖2

]
< ε for all n, m ≥ n0.(B.5)

By the Markov inequality, there exists a subsequence (Φnk) such that

P
(

sup
t∈[0,T ]

‖Φnk+1
t − Φnk

t ‖ ≥ 2−k

)
≤ 2−k for all k ∈ N.

The Borel-Cantelli lemma implies that for almost all ω ∈ Ω the sequence (Φnk(ω))
is a Cauchy sequence in the space of càdlàg functions on [0, T ] equipped with
the supremum-norm. Therefore, (Φnk) converges P–a.s. to an adapted process Φ,
uniformly on [0, T ]. Hence, Φ is càdlàg.

For each t ∈ [0, T ], the convergence Φnk
t → Φt is valid in L2(Ω; H), because (Φn

t )
is a Cauchy sequence in L2(Ω;H) by (B.5). For 0 ≤ s ≤ t ≤ T and k ∈ N we have
E[Φnk

t |Fs] = Φnk
s (P–a.s.), implying that E[Φt |Fs] = Φs (P–a.s.). Consequently, Φ

is a martingale, and by Doob’s martingale inequality (A.1), we get

E
[

sup
t∈[0,T ]

‖Φt − Φn
t ‖2

]
≤ 4 sup

t∈[0,T ]

E
[
‖Φt − Φn

t ‖2
]

= 4E
[
‖ΦT − Φn

T ‖2
]
→ 0

by (B.5) and completeness of L2(Ω;H), i.e. Φn → Φ in M2. �

In the following auxiliary result, 〈M,M〉 denotes the predictable quadratic co-
variation of the real-valued square-integrable martingale M , see [35, Thm. I.4.2].

B.4. Lemma. Let 0 = t0 < . . . < tn = T and Zi : Ω → H be Fti
-measurable for

i = 0, . . . , n− 1. Then we have

E

[∥∥∥∥ n−1∑
i=0

(Mti+1 −Mti)Zi

∥∥∥∥2
]

= E

[
n−1∑
i=0

(〈M,M〉ti+1 − 〈M,M〉ti)‖Zi‖2

]
.



EXISTENCE OF LÉVY TERM STRUCTURE MODELS 15

Proof. By using the identity ‖x‖2 = 〈x, x〉H , x ∈ H we obtain that∥∥∥∥ n−1∑
i=0

(M ti+1 −M ti)Zi

∥∥∥∥2

−
n−1∑
i=0

(〈M,M〉ti+1 − 〈M,M〉ti)‖Zi‖2

= 2
n−1∑
i,j=0
i<j

(M ti+1 −M ti)(M tj+1 −M tj )〈Zi, Zj〉H

+
n−1∑
i=0

[
(M ti+1)2 − 〈M,M〉ti+1 − (M ti)2 + 〈M,M〉ti − 2Mti

(M ti+1 −M ti)
]
‖Zi‖2

is a martingale. Since
∑n−1

i=0 (〈M,M〉ti+1 −〈M,M〉ti)‖Zi‖2 is continuous and there-
fore predictable, the uniqueness of the predictable quadratic covariation yields〈∥∥∥∥ n−1∑

i=0

(M ti+1 −M ti)Zi

∥∥∥∥,∥∥∥∥ n−1∑
i=0

(M ti+1 −M ti)Zi

∥∥∥∥〉 =
n−1∑
i=0

(〈M,M〉ti+1 − 〈M,M〉ti)‖Zi‖2,

proving the claimed equation. �

B.5. Theorem. Let Φ ∈ Cad([0, T ];L2(Ω; H)). Then I(Φ) has a modification which
belongs to M2 and, moreover, In(Φ) → I(Φ) in M2.

Proof. Let ε > 0 be arbitrary. Since Φ : [0, T ] → L2(Ω;H) is uniformly continuous
on the compact interval [0, T ], there exists δ > 0 such that

E
[
‖Φt − Φs‖2

]
<

ε

4T
(
c +

∫
R x2F (dx)

)(B.6)

for all s, t ∈ [0, T ] with |t − s| < δ, where c denotes the Gaussian part and F the
Lévy measure of M . Choose n0 ∈ N such that 2−n0T < δ. For all n, m ∈ N0 with
n > m ≥ n0 we obtain

In(Φ)− Im(Φ) =
2n−1∑
i=0

(
M tn

i+1 −M tn
i
)(

Φtn
i
− Φtn

j(i)

)
with j(i) ∈ {0, . . . , i} such that |tni − tnj(i)| < 2−n0T < δ for all i = 0, . . . , 2n − 1.
We obtain by Doob’s martingale inequality (A.1), Lemma B.4 and (B.6) for all
n, m ∈ N0 with n > m ≥ n0

E
[

sup
t∈[0,T ]

‖In
t (Φ)− Im

t (Φ)‖2

]
≤ 4E

[∥∥∥∥ 2n−1∑
i=0

(
Mtn

i+1
−Mtn

i

)(
Φtn

i
− Φtn

j(i)

)∥∥∥∥2
]

= 4
2n−1∑
i=0

E
[(
〈M,M〉tn

i+1
− 〈M,M〉tn

i

)
‖Φtn

i
− Φtn

j(i)
‖2
]

= 4
(

c +
∫

R
x2F (dx)

) 2n−1∑
i=0

(tni+1 − tni )E
[
‖Φtn

i
− Φtn

j(i)
‖2
]

< ε.

The latter identity is valid, because 〈M,M〉 is the compensator of [M,M ] by [35,
Prop. I.4.50.b] and because the relation [M,M ]t = ct+

∑
s≤t ∆M2

s is valid according
to [35, Thm. I.4.52].

Thus, the sequence (In(Φ)) is a Cauchy sequence in M2. Proposition B.3 and
Lemma B.1 complete the proof. �

For Φ ∈ Cad([0, T ];L2(Ω;H)), the integral with respect to dt can, according to
[27, Lemma 3.6], be defined as a Riemann integral. More precisely:
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B.6. Lemma. Let Φ ∈ Cad([0, T ];L2(Ω;H)). For each t ∈ [0, T ], there exists a
unique random variable Yt ∈ L2(Ω;H) such that for every ε > 0 there exists δ > 0
such that

E

[∥∥∥∥Yt −
n−1∑
i=0

(ti+1 − ti)Φti

∥∥∥∥2
]

< ε(B.7)

for every partition 0 = t0 < t1 < . . . < tn = t with supi=0,...,n−1 |ti+1 − ti| < δ.

Proof. Fix t ∈ [0, T ] and let ε > 0 be arbitrary. Since Φ : [0, t] → L2(Ω;H) is
uniformly continuous on the compact interval [0, t], there exists δ > 0 such that

E
[
‖Φs − Φr‖2

]
<

ε

t2
(B.8)

for all r, s ∈ [0, t] with |s− r| < δ.
Let Z1 = {0 = t0 < t1 < . . . < tn = t} and Z2 = {0 = s0 < s1 <

. . . < sm = t} be two decompositions satisfying supi=0,...,n−1 |ti+1 − ti| < δ and
supi=0,...,m−1 |si+1 − si| < δ. Then there is a unique decomposition Z = {0 = r0 <
r1 < . . . < rp = t} such that Z = Z1 ∪ Z2. Thus, we get

n−1∑
i=0

(ti+1 − ti)Φti
−

m−1∑
i=0

(si+1 − si)Φsi
=

p−1∑
i=0

(ri+1 − ri)(Φai
− Φbi

)

with ai ∈ Z1, bi ∈ Z2 and |bi − ai| < δ for all i = 0, . . . , p − 1. We obtain by the
Cauchy-Schwarz inequality and (B.8)

E

[∥∥∥∥ n−1∑
i=0

(ti+1 − ti)Φti −
m−1∑
i=0

(si+1 − si)Φsi

∥∥∥∥2
]
≤ E

[( p−1∑
i=0

(ri+1 − ri)‖(Φai − Φbi)‖
)2]

≤ E
[( p−1∑

i=0

(ri+1 − ri)
)( p−1∑

i=0

(ri+1 − ri)‖Φai − Φbi‖2

)]

= t

p−1∑
i=0

(ri+1 − ri)E
[
‖Φai

− Φbi
‖2
]

< ε.

By the completeness of L2(Ω; H), the lemma is proven. �

B.7. Definition. Let Φ ∈ Cad([0, T ];L2(Ω; H)). Then the integral Yt = (G-)
∫ t

0
Φsds,

t ∈ [0, T ] is the stochastic process Y = (Yt)t∈[0,T ] where every Yt is the unique ele-
ment from L2(Ω;H) such that (B.7) is valid.

Again, for every t ∈ [0, T ] the integral (G-)
∫ t

0
Φsds is only determined up to a

P–null set. We shall prove the existence of a continuous modification.
Let Φ ∈ Cad([0, T ], L2(Ω; H)). We define

Jt(Φ) := (G-)
∫ t

0

Φsds, t ∈ [0, T ](B.9)

and the sequence of continuous adapted processes

Jn
t (Φ) :=

2n−1∑
i=0

(tni+1 ∧ t− tni ∧ t)Φtn
i
, n ∈ N0(B.10)

where the tni are defined in (B.4). Note that for each t ∈ [0, T ] we have Jn
t (Φ) →

Jt(Φ) in L2(Ω;H) by Lemma B.6.
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B.8. Theorem. Let Φ ∈ Cad([0, T ];L2(Ω; H)). Then J(Φ) has a continuous modi-
fication and, moreover,

sup
t∈[0,T ]

‖Jn
t (Φ)− Jt(Φ)‖ → 0 P–a.s.

Proof. Let ε > 0 be arbitrary. Since Φ : [0, T ] → L2(Ω;H) is uniformly continuous
on the compact interval [0, T ], there exists δ > 0 such that

E
[
‖Φt − Φs‖2

]
<

ε

T 2
(B.11)

for all s, t ∈ [0, T ] with |t − s| < δ. Choose n0 ∈ N such that 2−n0T < δ. For all
n, m ∈ N0 with n > m ≥ n0 we obtain

Jn(Φ)− Jm(Φ) =
2n−1∑
i=0

(
tni+1 ∧ t− tni ∧ t

)(
Φtn

i
− Φtn

j(i)

)
with j(i) ∈ {0, . . . , i} such that |tni − tnj(i)| < 2−n0T < δ for all i = 0, . . . , 2n−1. We
obtain by the Cauchy-Schwarz inequality and (B.11) for all n, m ≥ n0 with n > m

E
[

sup
t∈[0,T ]

‖Jn
t (Φ)− Jm

t (Φ)‖2

]
= E

[
sup

t∈[0,T ]

∥∥∥∥ 2n−1∑
i=0

(
t ∧ tni+1 − t ∧ tni

)(
Φtn

i
− Φtn

j(i)

)∥∥∥∥2
]

≤ TE
[

sup
t∈[0,T ]

2n−1∑
i=0

(
t ∧ tni+1 − t ∧ tni

)
‖Φtn

i
− Φtn

j(i)
‖2

]

= T

2n−1∑
i=0

(
ti+1 − ti

)
E
[
‖Φtn

i
− Φtn

j(i)
‖2
]

< ε.

By the Markov inequality, there exists a subsequence (Jnk(Φ)) such that

P
(

sup
t∈[0,T ]

‖Jnk+1
t (Φ)− Jnk

t (Φ)‖ ≥ 2−k

)
≤ 2−k for all k ∈ N.

The Borel-Cantelli lemma implies that for almost all ω ∈ Ω the sequence (Jnk(Φ)(ω))
is a Cauchy sequence in the space of continuous functions on [0, T ] equipped with
the supremum-norm. Therefore, (Jnk(Φ)) converges P–a.s. to an adapted process,
uniformly on [0, T ], which is therefore continuous.

According to Lemma B.6, this limit process is a modification of the integral
process J(Φ). �

Now let X be a real-valued Lévy process with E[X2
1 ] < ∞. Then it admits a

unique decomposition Xt = Mt + bt, where M is a Lévy martingale satisfying
E[M2

1 ] < ∞ and b = E[X1]. According to [27, Def. 3.7], we set

(G-)
∫ t

0

ΦsdXs := (G-)
∫ t

0

ΦsdMs + b · (G-)
∫ t

0

Φsds.

We shall also use the notation

G(Φ)t = (G-)
∫ t

0

ΦsdXs, t ∈ [0, T ].

Note that G(Φ) = I(Φ)+b ·J(Φ), where I(Φ) is defined in (B.2) and J(Φ) is defined
in (B.9). We also introduce Gn(Φ) = In(Φ) + b · Jn(Φ) for n ∈ N0, where In(Φ) is
defined in (B.3) and Jn(Φ) is defined in (B.10).

For a predictable H-valued process Φ and a real-valued semimartingale X, we can
define the usual Itô-integral (developed e.g. in Jacod and Shiryaev [35] or Protter
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[48]) ∫ t

0

ΦsdXs,

which is used for financial modelling. The construction is just as for real-valued
integrands, namely by defining the integral first for simple integrands and then
extending it via the Itô-isometry. In order to get the Itô-isometry, it is vital that
the state space H is a Hilbert space.

The construction of the stochastic integral in the more general situation, where
the driving semimartingale may also be infinite dimensional, can be found in Métivier
[44]. Da Prato and Zabczyk [13] and Carmona and Tehranchi [8] treat the case with
infinite dimensional Brownian motion as integrator, in [8] also with a focus on in-
terest rate models.

We also remark that the stochastic integral can still be defined on appropriate
Banach spaces, so-called M-type 2 spaces. Then the integral is still a bounded linear
operator, but no isometry, in general. We refer to [53] for further details.

We now observe that the integral (G-)
∫ t

0
ΦsdXs of van Gaans [27] is not consis-

tent with the usual stochastic integral
∫ t

0
ΦsdXs used in financial modelling. As an

example, let X be a standard Poisson process with values in R. In Ex. 3.9 in [27]
it is derived that

(G-)
∫ t

0

XsdXs =
1
2
(
X2

t −Xt

)
.

Apparently, this does not coincide with the pathwise Lebesgue-Stieltjes integral∫ t

0

XsdXs =
1
2
(
X2

t + Xt

)
,

but we have

(G-)
∫ t

0

XsdXs =
∫ t

0

Xs−dXs,

showing that inconsistencies occur as soon as integrands with jumps are used. In-
deed, we have the following general result about the relation between the integral
of van Gaans and the usual Itô-integral:

B.9. Theorem. Let Φ ∈ Cad([0, T ];L2(Ω;H)) be left-continuous or càdlàg. Then
we have for all t ∈ [0, T ]

(G-)
∫ t

0

ΦsdXs =
∫ t

0

Φs−dXs P–a.s.(B.12)

Proof. If Φ is left-continuous, we have supt∈[0,T ] ‖Gn
t − Gt‖ → 0 almost surely by

Theorem B.5 and Theorem B.8, and therefore also in probability. For the usual Itô-
integral we have supt∈[0,T ]

∥∥∥Gn
t −

∫ t

0
ΦsdXs

∥∥∥→ 0 in probability, which is proven as
in the real-valued case, see e.g. [35, Prop. I.4.44]. Thus we obtain for all t ∈ [0, T ]

(G-)
∫ t

0

ΦsdXs =
∫ t

0

ΦsdXs P–a.s.(B.13)

and, since Φ is left-continuous, also relation (B.12).
If Φ is càdlàg, we show that Φ− is a modification of Φ, because then (B.12) is

a consequence of (B.13) and Lemma B.11 below. Let t ∈ (0, T ] be arbitrary and
(tn) be a sequence such that tn ↑ t. Since Φ : [0, T ] → L2(Ω; H) is continuous, we
deduce E[‖Φt−Φtn

‖2] → 0. Thus there is a subsequence (nk) with ‖Φt−Φtnk
‖ → 0

almost surely, and therefore we have P(Φt = Φt−) = 1. �
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B.10. Remark. If the driving process X is a (possibly infinite dimensional) Brow-
nian motion, the equivalence of the van Gaans integral with the usual stochastic
integral (see Da Prato and Zabczyk [13] for the infinite dimensional case) is pro-
vided in [26, Sec. 3].

It remains to show the following auxiliary result, which we have used in the proof
of Theorem B.9.

B.11. Lemma. Let Φ,Ψ ∈ Cad([0, T ];L2(Ω;H)) be such that Ψ is a modification
of Φ. Then G(Ψ) is a modification of G(Φ).

Proof. Let t ∈ [0, T ] be arbitrary. By hypothesis, we have P(Gn
t (Φ) = Gn

t (Ψ)) = 1
for all n ∈ N0. Since Gn

t (Φ) → Gt(Φ) and Gn
t (Ψ) → Gt(Ψ) in L2(Ω;H) by Lemma

B.1 and Lemma B.6, there is a subsequence (nk) such that Gnk
t (Φ) → Gt(Φ) almost

surely, and another subsequence nkl
such that G

nkl
t (Ψ) → Gt(Ψ) almost surely,

showing that P(Gt(Φ) = Gt(Ψ)) = 1. �

Appendix C. Stochastic differential equations

Now let (St)t≥0 be a C0-semigroup in the separable Hilbert space H, i.e. a family
of bounded linear operators St : H → H such that

• S0 = Id;
• Ss+t = SsSt for all s, t ≥ 0;
• limt→0 Sth = h for all h ∈ H;

with generator A : D(A) ⊂ H → H. By ‖ · ‖L(H) we denote the operator norm of
a bounded linear operator. The semigroup (St) is called contractive in H if

‖St‖L(H) ≤ 1, t ≥ 0

and pseudo-contractive in H if there is a constant ω ≥ 0 such that

‖St‖L(H) ≤ eωt, t ≥ 0.

In this section, we intend to find mild solutions of stochastic differential equations
of the type {

drt = (Art + α(t, rt))dt +
∑n

i=1 σi(t, rt−)dXi
t ,

r0 = h0

(C.1)

driven by real-valued Lévy processes X1, . . . , Xn satisfying E[(Xi
1)

2] < ∞, i =
1, . . . , n, for each initial condition h0 ∈ H, that is, a process (rt)t≥0 satisfying

rt = Sth0 +
∫ t

0

St−sα(s, rs)ds +
n∑

i=1

∫ t

0

St−sσi(s, rs−)dXi
s, t ∈ R+.(C.2)

We also intend to establish the existence of a weak solution (rt)t≥0 to (C.1), i.e.
(rt) satisfies, for all ζ ∈ D(A∗),

〈ζ, rt〉 = 〈ζ, h0〉+
∫ t

0

(
〈A∗ζ, rs〉+ 〈ζ, α(s, rs)〉

)
ds +

n∑
i=1

∫ t

0

〈ζ, σi(s, rs−)〉dXi
s

(C.3)

for each t ∈ R+. By convention, uniqueness of a solution to (C.1) is meant up to a
modification. Here is our main existence and uniqueness result:
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C.1. Theorem. Let (St)t≥0 be a C0-semigroup in H, and H0 ⊂ H be a closed
subspace such that (St) is pseudo-contractive in H0. Let α, σ1, . . . , σn : R+ ×H →
H0 be continuous. Assume there is constant L ≥ 0 such that

‖α(t, h1)− α(t, h2)‖ ≤ L‖h1 − h2‖(C.4)

‖σi(t, h1)− σi(t, h2)‖ ≤ L‖h1 − h2‖, i = 1, . . . , n(C.5)

for all t ∈ R+ and all h1, h2 ∈ H. Then, for each h0 ∈ H, there exists a unique mild
and a unique weak adapted càdlàg solution (rt)t≥0 to (C.1) with r0 = h0 satisfying

E
[

sup
t∈[0,T ]

‖rt‖2

]
< ∞ for all T > 0.(C.6)

Proof. Let h0 ∈ H be arbitrary. We decompose each Lévy process Xi
t = M i

t + bit
into its martingale and finite variation part, where we notice that bi = E[Xi

1]. By
[27, Thm. 4.1] there exists a unique adapted continuous function r : R+ → L2(Ω;H)
such that for all t ≥ 0

rt = Sth0 + (G-)
∫ t

0

St−sα̃(s, rs)ds +
n∑

i=1

(G-)
∫ t

0

St−sσi(s, rs)dM i
s,

where α̃(t, r) = α(t, r) +
∑n

i=1 biσi(t, r). By assumption, (St) is pseudo-contractive
in H0. Hence there exists a constant ω ≥ 0 such that the C0-semigroup (Tt)t≥0

defined as

Tt := e−ωtSt, t ∈ R+(C.7)

is contractive in H0. By the Szeköfalvi-Nagy’s theorem on unitary dilations (see
e.g. [56, Thm. I.8.1], or [14, Sec. 7.2]), there exists another separable Hilbert space
H0 and a strongly continuous unitary group (Ut)t∈R in H0 such that the diagram

H0
Ut−−−−→ H0x`

yπ

H0
Tt−−−−→ H0

commutes for every t ∈ R+, where ` : H0 → H0 is an isometric embedding (hence
the adjoint operator π := `∗ is the orthogonal projection from H0 into H0), that is

πUt`h = Tth for all t ∈ R+ and h ∈ H0.(C.8)

Using (C.7), (C.8) and [27, Thm. 3.3.3] we obtain for all i = 1, . . . , n and t ≥ 0

(G-)
∫ t

0

St−sσi(s, rs)dM i
s = (G-)

∫ t

0

eω(t−s)Tt−sσi(s, rs)dM i
s

= eωt(G-)
∫ t

0

e−ωsπUt−s`σi(s, rs)dM i
s = eωtπUt(G-)

∫ t

0

e−ωsU−s`σi(s, rs)dM i
s.

The integral process

(G-)
∫ t

0

e−ωsU−s`σi(s, rs)dM i
s

has a càdlàg modification by Theorem B.5. Thus the process

(G-)
∫ t

0

St−sσi(s, rs)dM i
s

has a càdlàg modification, because (t, h) 7→ Uth is uniformly continuous on compact
subsets, see e.g. [23, Lemma I.5.2].
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A similar argumentation, using Theorem B.8, shows that

(G-)
∫ t

0

St−sα̃(s, rs)ds

has a continuous modification.
Therefore, (rt) has a càdlàg modification, and, by Theorem B.9, it satisfies

rt = Sth0 +
∫ t

0

St−sα̃(s, rs)ds +
n∑

i=1

∫ t

0

St−sσi(s, rs−)dM i
s, t ≥ 0.

Consequently, (rt)t≥0 is a mild solution to (C.1), i.e. it satisfies (C.2). Introducing
the processes

Φt :=
∫ t

0

St−sα̃(s, rs)ds,(C.9)

Ψi
t :=

∫ t

0

St−sσi(s, rs−)dM i
s, i = 1, . . . , n(C.10)

we have by our findings above

rt = Sth0 + Φt +
n∑

i=1

Ψi
t, t ≥ 0.(C.11)

We fix an arbitrary T > 0. By (C.7), (C.8) and noting that ‖π‖L(H0;H0) = 1 and
‖Ut‖L(H0) ≤ 1 for all t ∈ [0, T ], we obtain for each i = 1, . . . , n

E
[

sup
t∈[0,T ]

‖Ψi
t‖2

]
= E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

St−sσi(s, rs−)dM i
s

∥∥∥∥2
]

= E

[
sup

t∈[0,T ]

∥∥∥∥eωtπUt

∫ t

0

e−ωsU−s`σi(s, rs−)dM i
s

∥∥∥∥2
]

(C.12)

≤ e2ωT E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

e−ωsU−s`σi(s, rs−)dM i
s

∥∥∥∥2
]

< ∞.

The latter expression is finite by Theorem B.5 and Theorem B.9.
We obtain by (C.7), (C.8), Hölder’s inequality and Fubini’s theorem (note that

‖α̃(t, rt)‖2 is càdlàg and therefore B[0, T ]⊗ F-measurable)

E
[

sup
t∈[0,T ]

‖Φt‖2

]
= E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

St−sα̃(s, rs)ds

∥∥∥∥2
]

= E

[
sup

t∈[0,T ]

∥∥∥∥eωtπUt

∫ t

0

e−ωsU−s`α̃(s, rs)ds

∥∥∥∥2
]
≤ Te2ωT E

[ ∫ T

0

‖α̃(t, rt)‖2dt

]
≤ Te2ωT

∫ T

0

E
[
‖α̃(t, rt)‖2

]
dt ≤ T 2e2ωT sup

t∈[0,T ]

E
[
‖α̃(t, rt)‖2

]
< ∞.

The latter supremum is finite, because t 7→ E
[
‖α̃(t, rt)‖2

]
is continuous on the

compact interval [0, T ], as t 7→ α̃(t, rt) is continuous by the continuity of r : [0, T ] →
L2(Ω;H) and (C.4), (C.5). Since the solution process (rt) is given by (C.11), we
obtain, together with (C.12), that (C.6) is valid.

We proceed by showing that (rt)t≥0 is also a weak solution to (C.1). Let ζ ∈
D(A∗) be arbitrary.



22 DAMIR FILIPOVIĆ AND STEFAN TAPPE

We define for arbitrary T ∈ R+ the B[0, T ]⊗P-measurable functions Hi : [0, T ]×
[0, T ]× Ω → R as

Hi(a, t) :=

{
〈A∗ζ, Sa−tσi(t, rt−)〉, a ≥ t

0, a < t.

We obtain by the Cauchy-Schwarz inequality and the pseudo-contractivity of (St)
in H0 that

|Hi(a, t)| ≤ eωT ‖A∗ζ‖ · ‖σi(t, rt−)‖, a, t ∈ [0, T ].(C.13)

The processes Y i
t := (

∫ T

0
H2

i (a, t)da)1/2 are left-continuous by (C.13) and Lebesgue’s
dominated convergence theorem, and therefore predictable. The Lévy martingales
M i, considered on [0, T ], belong to H2 in the sense of the Definition in Protter [48,
p. 156], because, by using [35, Thm. I.4.52],

‖M i‖H2 ≤ ‖M c
i ‖H2 + ‖Md

i ‖H2 = E
[
[M c

i ,M c
i ]T
]1/2 + E

[
[Md

i ,Md
i ]T
]1/2

= (ciT )1/2 + E
[∑

s≤T

(∆M i
s)

2

]1/2

= (ciT )1/2 +
(

T

∫
R

x2Fi(dx)
)1/2

< ∞,

where we have decomposed M i = M c
i + Md

i into its continuous and purely discon-
tinuous martingale part, and where ci denotes the Gaussian part and Fi the Lévy
measure of M i.

There is, by the assumed continuity of σ1, . . . , σn, a constant CT > 0 such that
‖σi(t, 0)‖ ≤ CT for all t ∈ [0, T ] and i = 1, . . . , n. Therefore, we get for all t ∈ [0, T ],
all h ∈ H and all i = 1, . . . , n by (C.5)

‖σi(t, h)‖ ≤ ‖σi(t, 0)‖+ ‖σi(t, h)− σi(t, 0)‖ ≤ (L ∨ CT )(1 + ‖h‖).(C.14)

By inequalities (C.13) and (C.14) we obtain

E
[ ∫ T

0

(Y i
t )2d[M i,M i]t

]
=
(

ci +
∫

R
x2Fi(dx)

)
E
[ ∫ T

0

∫ T

0

H2
i (a, t)dadt

]
≤ T 2(L ∨ CT )2e2ωT ‖A∗ζ‖2

(
ci +

∫
R

x2Fi(dx)
)

E
[

sup
t∈[0,T ]

(1 + ‖rt‖)2
]
.

Thus, the processes Y i are (H2,M i) integrable in the sense of the Definition in
Protter [48, p. 165], because from Hölder’s inequality and (C.6) we infer

E
[

sup
t∈[0,T ]

(1 + ‖rt‖)2
]
≤ 1 + 2E

[
sup

t∈[0,T ]

‖rt‖2

]1/2

+ E
[

sup
t∈[0,T ]

‖rt‖2

]
< ∞.

Consequently, we have Y i ∈ L(M i), that is each Y i is M i integrable in the sense
of Protter [48, p. 165], and therefore we may apply the Fubini Theorem, see Thm.
IV.65 in [48], for the integrands Hi. Using the Fubini Theorem and [58, Lemma
VII.4.5(a)], we obtain for each i = 1, . . . , n∫ t

0

〈A∗ζ, Ψi
s〉ds =

∫ t

0

∫ s

0

〈A∗ζ, Ss−uσi(u, ru−)〉dM i
uds

=
∫ t

0

〈
A∗ζ,

∫ t

u

Ss−uσi(u, ru−)ds
〉
dM i

u =
∫ t

0

〈
ζ, A

∫ t−u

0

Ssσi(u, ru−)ds
〉
dM i

u

=
∫ t

0

〈ζ, St−uσi(u, ru−)− σi(u, ru−)〉dM i
u = 〈ζ, Ψi

t〉 −
∫ t

0

〈ζ, σi(s, rs−)〉dM i
s,
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where the Ψi are defined in (C.10). An analogous calculation, using the standard
Fubini theorem, gives us∫ t

0

〈A∗ζ, Φs〉ds = 〈ζ, Φt〉 −
∫ t

0

〈ζ, α̃(s, rs)〉ds,

where Φ is defined in (C.9), and finally, we get, by taking into account [58, Lemma
VII.4.5(a)] again,∫ t

0

〈A∗ζ, Ssh0〉ds =
〈
ζ, A

∫ t

0

Ssh0ds
〉

= 〈ζ, Sth0〉 − 〈ζ, h0〉.

Together with (C.11), the latter three identities show that

〈ζ, rt〉 = 〈ζ, h0〉+
∫ t

0

(
〈A∗ζ, rs〉+ 〈ζ, α̃(s, rs)〉

)
ds +

n∑
i=1

∫ t

0

〈ζ, σi(s, rs−)〉dM i
s

for all t ∈ [0, T ]. Since T ∈ R+ was arbitrary, (rt)t≥0 is a weak solution to (C.1), as
it fulfills (C.3).

It remains to show that this weak solution is unique. Let (rt)t≥0 be any adapted
càdlàg weak solution to (C.1), i.e. (rt) satisfies (C.3) for all ζ ∈ D(A∗). Let ζ ∈
D(A∗) and g ∈ C1([0, T ]; R) for an arbitrary T ∈ R+. By the definition of the
quadratic co-variation [X, Y ], see e.g. [35, Def. I.4.45], we obtain

〈g(t)ζ, rt〉 = 〈g(0)ζ, h0〉+
∫ t

0

g(s)d〈ζ, rs〉+
∫ t

0

〈ζ, rs〉dg(s) + [g, 〈ζ, r〉]t.

Since g ∈ C1([0, T ]; R), we have [g, 〈ζ, r〉] = 0 according to [35, Prop. 4.49.d].
Therefore and because of (C.3), we get

〈g(t)ζ, rt〉 = 〈g(0)ζ, h0〉+
∫ t

0

(
〈g′(s)ζ + A∗g(s)ζ, rs〉+ 〈g(s)ζ, α(s, rs)〉

)
ds

+
n∑

i=1

∫ t

0

〈g(s)ζ, σi(s, rs−)〉dXi
s.

Since the set {t 7→ g(t)ζ | g ∈ C1([0, T ]; R)} is dense in C1([0, T ];D(A∗)), we deduce

〈g(t), rt〉 = 〈g(0), h0〉+
∫ t

0

(
〈g′(s) + A∗g(s), rs〉+ 〈g(s), α(s, rs)〉

)
ds

+
n∑

i=1

∫ t

0

〈g(s), σi(s, rs−)〉dXi
s

for all g ∈ C1([0, T ];D(A∗)), where we recall that T ∈ R+ was arbitrary. Defining
g ∈ C1([0, t];D(A∗)) for an arbitrary t ∈ R+ and an arbitrary ζ ∈ D(A∗) as
g(s) := S∗t−sζ, s ∈ [0, t], we obtain g′(s) = −A∗g(s), and hence

〈ζ, rt〉 = 〈ζ, Sth0〉+
∫ t

0

〈ζ, St−sα(s, rs)〉ds +
n∑

i=1

∫ t

0

〈ζ, St−sσi(s, rs−)〉dXi
s.

Since D(A∗) is dense in H, the process (rt)t≥0 is also a mild solution to (C.1), i.e.
it satisfies (C.2), proving the desired uniqueness. �

In the special situation where A ∈ L(H), i.e. A is a bounded linear operator, we
can now easily establish the existence of a strong solution (rt)t≥0 to (C.1), that is
we have

rt = h0 +
∫ t

0

(
Ars + α(s, rs)

)
ds +

n∑
i=1

∫ t

0

σi(s, rs−)dXi
s, t ≥ 0.(C.15)
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C.2. Corollary. Let A ∈ L(H) be a bounded linear operator and let α, σ1, . . . , σn :
R+ × H → H be continuous. Assume there is constant L ≥ 0 such that (C.4)
and (C.5) are satisfied for all t ∈ R+ and h1, h2 ∈ H. Then, for each h0 ∈ H,
there exists a unique strong adapted càdlàg solution (rt)t≥0 to (C.1) with r0 = h0

satisfying (C.6).

Proof. The operator A is generated by the semigroup St = etA, which is pseudo-
contractive, because

‖St‖L(H) ≤ et‖A‖L(H) , t ≥ 0.

By Theorem C.1, for each h0 ∈ H, there exists a unique weak adapted càdlàg
solution (rt)t≥0 to (C.1) with r0 = h0 satisfying (C.6), which also fulfills (C.15) by
the boundedness of A, showing that (rt) is a strong solution to (C.1). �

We close this section with a couple of remarks. Actually, [27, Thm. 4.1] is not
explicitly proven in [27]. We quote [27, p. 19]: ”For a proof of Theorem 4.1 one can
follow almost literally the proofs of Theorem 4.1 and Theorem 4.2 in [26], . . .”. The
mentioned result, [26, Thm. 4.1], is an analogous result for stochastic equations
driven by an infinite dimensional Brownian motion.

Note that the existence result of van Gaans [27, Thm. 4.1] demands no further
assumptions on the C0-semigroup. In contrast, we require the pseudo-contractivity
of (St) in a closed subspace in order to prove that the solution possesses a càdlàg
modification.

The idea to use the Szeköfalvi-Nagy’s theorem on unitary dilations in order to
overcome the difficulties arising from stochastic convolutions, is due to Hausenblas
and Seidler, see [31] and [30].

Without using the Szeköfalvi-Nagy’s theorem, Baudoin and Teichmann [3] con-
sider stochastic equations on separable Hilbert spaces equipped with a strongly
continuous group, in Sec. 3 of their article also with focus on interest rate theory.

For every pseudo-contractive semigroup (St), stochastic convolutions
∫ t

0
St−sΦsdMs

with respect to a square-integrable, càdlàg martingale M have a càdlàg modifica-
tion, which is due to Kotelenez [41]. We use the Szeköfalvi-Nagy’s theorem on
unitary dilations in order to get a càdlàg modification, because we deal with the
stochastic integral (G-)

∫ t

0
St−sΦsdMs defined in van Gaans [27, Sec. 3].

Recently, there has been growing interest in stochastic differential equations of
the type (C.1) with jump noise terms. As a result, a few related papers [1, 39, 40,
28, 29, 45, 50] and the forthcoming textbook [49] have been written, but mostly
with other fields of applications than finance.

During the revision of this paper we became aware of the recent preprint [50],
where the authors derived independently similar results. But they work on dif-
ferent function spaces where the forward curve is not necessarily continuous and
thus the short rate is not well defined. Moreover, they only consider volatilities
of composition type, that is σi(t, r)(x) = gi(t, x, r(x)) with deterministic functions
gi : R+ × R+ × R → R.
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[1] Albeverio, S., Mandrekar, V., Rüdiger, B. (2006): Existence of mild solutions for stochastic
differential equations and semilinear equations with non Gaussian Lévy noise. Preprint no.
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