Fully coupled snowpack/atmosphere simulations of snowfall and blowing snow in alpine terrain

V. Vionnet1,2,3, H. Bellot4, G. Guyomarc'h3, C. Lac3, E. Martin4, V. Masson3, F. Naaim Bouvet4, A. Prokop5

1Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada
2Environmental Numerical Prediction Research, Dorval, Canada
3Météo – France - CNRS, CNRM, UMR 3589, Grenoble and Toulouse, France
4IRSTEA, Grenoble and Aix en Provence, France
5UNIS, Svalbard, Norway
Snow/Atmosphere coupling processes during blowing snow events

- Influence of near-surface atmospheric turbulence and the saltation dynamics
- Blowing snow sublimation and feedbacks on the SBL
- Evolution of physical properties of surface snow (roughness, cohesion, ...)

[Image of snowy mountains with text overlay]
A fully coupled snowpack/atmosphere model
A fully coupled snowpack/atmosphere model

Atmospheric model: **Meso-NH**

- 3D Turbulence Scheme
- Cloud microphysical scheme

Lafore et al. (1998), Lac et al. (2018)
A fully coupled snowpack/atmosphere model

Atmospheric model: Meso-NH

- 3D Turbulence Scheme
- Cloud microphysical scheme

Lafore et al. (1998), Lac et al. (2018)

Simulation of complex and turbulent atmospheric flow in alpine terrain
A fully coupled snowpack/atmosphere model

Atmospheric model: **Meso-NH**

- 3D Turbulence Scheme
- Cloud microphysical scheme

Lafont et al. (1998), Lac et al. (2018)
A fully coupled snowpack/atmosphere model

Atmospheric model: Meso-NH

- 3D Turbulence Scheme
- Cloud microphysical scheme

Lafore et al. (1998), Lac et al. (2018)

Snowpack model: Crocus

- Detailed layering of the snowpack
- Metamorphism laws

Brun et al. (1989, 1992), Vionnet et al. (2012)
A fully coupled snowpack/atmosphere model

Atmospheric model: Meso-NH
- 3D Turbulence Scheme
- Cloud microphysical scheme

Lafore et al. (1998), Lac et al. (2018)

Snowpack model: Crocus
- Detailed layering of the snowpack
- Metamorphism laws

Brun et al. (1989, 1992), Vionnet et al. (2012)

Blowing snow scheme

2nd level atmospheric model

1st level atmospheric model

Surface boundary layer

Salination layer

Snowpack

Type of grains → Threshold wind speed

Wind Temp, ReHu

Turbulent diffusion

Sublimation

Sedimentation

Radius (m)

2 parameter gamma distribution

Meso-NH

SBL

SURFEX

Crocus

Vionnet et al. (2014)
Spatial variability of snow accumulation during snowfall

- Orographic snowfall
- Preferential deposition of falling snow
- Wind-induced transport of deposited snow (salation/suspension)
Spatial variability of snow accumulation during snowfall

- Orographic snowfall
- Preferential deposition of falling snow
- Wind-induced transport of deposited snow (salation/suspension)

- What is the relative importance of these processes?
- Can atmospheric models provide useful informations?
Spatial variability of snow accumulation during snowfall

- Orographic snowfall
- Preferential deposition of falling snow
- Wind-induced transport of deposited snow (salation/suspension)

- What is the relative importance of these processes?
- Can atmospheric models provide useful informations?

Case study: 24-h blowing snow event with concurrent snowfall in Feb. 2011 around Col du Lac Blanc

Study: *High resolution Large Eddy Simulation of Snow Accumulation in Alpine Terrain* (Vionnet et al., JGR-A, 2017)
Downscaling the meteorology to the local scale:

➢ 3 nested grids from operational analysis at 2.5 km down to 50-m grid spacing
Main structures of atmospheric flow in alpine terrain

Good agreement around CLB

Strong overestimation of wind speed at Sarennes AWS
Spatial variability of total solid precipitation

- Different contributions of snowflakes and graupel (rimed particles)
- **Graupel:** higher terminal fall velocity, reduced downwind transport
Detailed cloud processes

➢ Strong updrafts producing supercooled cloud droplets
➢ Growth of snowflakes by riming of cloud droplets
➢ Local maximal production of graupel

➢ Local microphysical processes can potentially affect the spatial distribution of snowfall in alpine terrain (similar results as Mott et al. 2014)
Overestimation of near-surface fluxes for intermediate wind speeds
Influence of falling snow flakes on the vertical profile of flux

Blowing snow fluxes at Col du Lac Blanc

Observations
Simulated fluxes:
- Blown snow particles only
- With falling snow flakes

Snow Particles Counters (SPC)

Particle Flux (kg m$^{-2}$ s$^{-1}$)
Wind-induced snow redistribution

➢ Strong spatial variability when including snow transport
➢ Main source of variability of snow accumulation
Model limitations

➢ **Spatial resolution (50 m)** is not sufficient to capture fine-scale patterns of snow accumulation

➢ **Parameterizations** in the blowing snow scheme: saltation layer, representation of non-steady processes, ...

➢ Uncertainties in the representation of **cloud processes** at high-resolution

Vionnet et al (2014)
Conclusion and perspectives

- **Meso-NH/Crocus**: a numerical lab. to investigate coupling processes between the atmosphere and the snow surface in alpine terrain (available in Meso-NH 5.4 mesonh.aero.obs-mip.fr).
Conclusion and perspectives

- **Meso-NH/Crocus**: a numerical lab. to investigate coupling processes between the atmosphere and the snow surface in alpine terrain (available in Meso-NH 5.4 mesonh.aero.obs-mip.fr).

Future challenges for blowing snow models in alpine terrain (in general)

- **Representation of physical processes:**
 - **Interactions** between local and non-local atmospheric turbulence and blowing snow dynamics (ejections, splash, …) (Paterna et al., 2016; Comola and Lehning, 2017; Askamit and Pomeroy, 2018)
 - Evolution of **snow surface properties** during blowing snow events: surface roughness (Amory et al. 2015), fragmentation (Comola et el. 2017) and hardening (Sommer et al., 2017)
- Models at temporal and spatial scales relevant for avalanche hazard and hydrological forecasting
- Model evaluation with multiple sensors (TLS, ALS, Radar, Wind Lidar, SPC, …)
Thanks for your attention!
Case study: 14-15 February 2011

Synoptic conditions

➢ **Cold front** crossing France
➢ **Southern flow** ahead of the front
➢ **Snowfall** over the Alps (limit rain/snow 1200 m)

Wind field and specific humidity at 700 hPa on 14 February 2011 12:00
Case study: 14-15 February 2011

Synoptic conditions

➢ Cold front crossing France
➢ Southern flow ahead of the front
➢ Snowfall over the Alps (limit rain/snow 1200 m)

Local conditions at CLB (2700 m)

➢ Non-erodable initial snow cover
➢ Snowfall (around 15 cm)
➢ Wind-induced redistribution of falling snow

Wind field and specific humidity at 700 hPa on 14 February 2011 12:00

Southern Winds